On N(k)-contact metric manifolds satisfying certain conditions

Cihan Özgür and Sibel Sular

(Received December 1, 2007)

Abstract. We classify N(k)-contact metric manifolds satisfying the conditions $\mathcal{Z}(\xi, X) \cdot C_0 = 0$, $C_0(\xi, X) \cdot \mathcal{Z} = 0$ and $C_e(\xi, X) \cdot \mathcal{Z} = 0$, where \mathcal{Z}, C_0 and $C_e(\xi, X) \cdot \mathcal{Z} = 0$ and the extended contact conformal curvature tensor, respectively.

AMS 2000 Mathematics Subject Classification. 53C25, 53D10.

Key words and phrases. N(k)-contact metric manifold; Sasakian manifold; contact conformal curvature tensor; extended contact conformal curvature tensor; concircular curvature tensor.

Introduction

A transformation of an n-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a *concircular transformation* [15]. An invariant of a concircular transformation is the *concircular curvature tensor* \mathcal{Z} . It is defined by [15]

(0.1)
$$\mathcal{Z} = R - \frac{r}{n(n-1)}R_0,$$

where R is the curvature tensor, r is the scalar curvature and

$$R_0(X,Y)W = g(Y,W)X - g(X,W)Y, \qquad X,Y,W \in TM.$$

It is easy to see that Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature.

In [4], the classification of N(k)-contact metric manifolds satisfying the condition $\mathcal{Z}(\xi, X) \cdot \mathcal{Z} = 0$ was given by Blair, Kim and Tripathi (see also [3]). In [14], Tripathi and Kim studied the concircular curvature tensor of a (k, μ) -contact metric manifold and they classified (k, μ) -contact metric manifolds

satisfying the condition $\mathcal{Z}(\xi, X) \cdot S = 0$. Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (k, \mu)$ -nullity distribution was studied by Papantoniou in [5].

In [9], Kitahara, Matsuo and Pak defined a tensor field B_0 on a Hermitian manifold which is conformally invariant and studied some of its properties. They called this tensor field the *conformal invariant curvature tensor*. By using the Boothby-Wang fibration [7], Jeong, Lee, Oh and Pak constructed a contact conformal curvature tensor C_0 [10] on a Sasakian manifold from the conformal invariant curvature tensor. In a (2n+1)-dimensional contact metric manifold $(M, \varphi, \xi, \eta, g)$, it is defined by

$$C_{0}(X,Y)Z = R(X,Y)Z$$

$$+ \frac{1}{2n} \{-g(QY,Z)\varphi^{2}X + g(QX,Z)\varphi^{2}Y + g(\varphi Y,\varphi Z)QX - g(\varphi X,\varphi Z)QY + g(\varphi X,Z)\varphi Y - g(Q\varphi Y,Z)\varphi X + 2g(Q\varphi X,Y)\varphi Z + g(\varphi X,Z)QY - g(\varphi Y,Z)QX + 2g(\varphi X,Y)QZ\}$$

$$(0.2) + \frac{1}{2n(n+1)} \left(2n^{2} - n - 2 + \frac{(n+2)r}{2n}\right) \times \left\{g(\varphi Y,Z)\varphi X - g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z\right\} + \frac{1}{2n(n+1)} \left(n + 2 - \frac{(3n+2)r}{2n}\right) (g(Y,Z)X - g(X,Z)Y) - \frac{1}{2n(n+1)} \left(4n^{2} + 5n + 2 - \frac{(3n+2)r}{2n}\right) \times \left\{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y + \eta(X)g(Y,Z)\xi - \eta(Y)g(X,Z)\xi\right\},$$

where R, Q, r are the curvature tensor, the Ricci operator and the scalar curvature, respectively. In [11], Pak and Shin showed that every contact metric manifold with vanishing contact conformal curvature tensor is a Sasakian space form. In [8], Kim, Choi, the first author and Tripathi extended the concept of contact conformal curvature tensor to an extended contact conformal curvature tensor C_e . It is defined by

(0.3)
$$C_e(X,Y)Z = C_0(X,Y)Z - \eta(X)C_0(\xi,Y)Z - \eta(Y)C_0(X,\xi)Z - \eta(Z)C_0(X,Y)\xi.$$

In [8], it was proved that an N(k)-contact metric manifold with vanishing extended contact conformal curvature tensor is a Sasakian manifold.

Motivated by the studies of the above authors, in this study, we consider N(k)-contact metric manifolds satisfying the conditions $\mathcal{Z}(\xi, X) \cdot C_0 = 0$, $C_0(\xi, X) \cdot \mathcal{Z} = 0$ and $C_e(\xi, X) \cdot \mathcal{Z} = 0$.

§1. Preliminaries

An odd-dimensional differentiable manifold M is called an almost contact manifold [2] if there is an almost contact structure (φ, ξ, η) consisting of a tensor field φ type (1, 1), a vector field ξ , and a 1-form η satisfying

(1.1)
$$\varphi^2 = -I + \eta \otimes \xi$$
, and (one of) $\eta(\xi) = 1$, $\varphi \xi = 0$, $\eta \circ \varphi = 0$.

If the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbb{R}$ defined by

$$J\left(X, f\frac{d}{dt}\right) = \left(\varphi X - f\xi, \eta(X)\frac{d}{dt}\right)$$

is integrable then the structure (φ, ξ, η) is said to be normal, where X is tangent to M, t is the coordinate of \mathbb{R} and f is a smooth function on $M^{2n+1} \times \mathbb{R}$. M becomes an almost contact metric manifold with an almost contact metric structure (φ, ξ, η, g) , if

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

or equivalently

$$g(X, \varphi Y) = -g(\varphi X, Y)$$
 and $g(X, \xi) = \eta(X)$

for all $X, Y \in TM$, where g is a Riemannian metric tensor of M.

An almost contact metric structure is called a contact metric structure if

$$g(X, \varphi Y) = d\eta(X, Y)$$

holds on M for $X, Y \in TM$.

A normal contact metric manifold is a Sasakian manifold. However an almost contact metric manifold is Sasakian if and only if

$$\nabla_X \varphi = R_0(\xi, X), \quad X \in TM,$$

where ∇ is Levi-Civita connection. Also a contact metric manifold M is Sasakian if and only if the curvature tensor R satisfies

$$R(X,Y)\xi = R_0(X,Y)\xi, X,Y \in TM,$$

(see [2], Proposition 7.6).

The tangent sphere bundle of a flat Riemannian manifold admits a contact metric structure satisfying $R(X,Y)\xi=0$ [2]. The (k,μ) -nullity condition on a contact metric manifold is considered as a generalization of both $R(X,Y)\xi=0$ and the Sasakian case. The (k,μ) -nullity distribution $N(k,\mu)$ [5] of a contact metric manifold M^{2n+1} is defined by

$$N(k,\mu): p \to N_n(k,\mu) = \{W \in T_nM \mid R(X,Y)W = (kI + \mu h)R_0(X,Y)W\},\$$

for all $X, Y \in TM$ where $(k, \mu) \in \mathbb{R}^2$ and the tensor field h is defined by $h = \frac{1}{2}L_{\xi}\varphi$, here L_{ξ} denotes Lie differentiation in the direction of ξ . If ξ belongs to (k, μ) -nullity distribution $N(k, \mu)$ then a contact metric manifold M^{2n+1} is called a (k, μ) -contact metric manifold. In particular the condition

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$$

holds on a (k,μ) -contact metric manifold. On a (k,μ) -manifold $k \leq 1$. If k=1, the structure is Sasakian and if k<1, the (k,μ) -nullity condition determines the curvature of M^{2n+1} -completely [5]. For a (k,μ) contact metric manifold, the conditions of being a Sasakian manifold, a K-contact manifold, k=1 and k=0 are all equivalent. Also k=1 and k=1 are related by

$$h^2 = (k-1)\varphi^2.$$

If $\mu = 0$, the (k, μ) -nullity distribution $N(k, \mu)$ is reduced to the k-nullity distribution N(k) [13], where the k-nullity distribution N(k) of a Riemannian manifold M is defined by

$$N(k): p \to N_p(k) = \{W \in T_pM \mid R(X,Y)W = kR_0(X,Y)W\};$$

k being a constant. If $\xi \in N(k)$, then we call a contact metric manifold M an N(k)-contact metric manifold. If k = 1, an N(k)-contact metric manifold is Sasakian. If k < 1, the scalar curvature is r = 2n(2n - 2 + k). Also in an N(k)-contact metric manifold the following conditions hold:

(1.2)
$$S(X,\xi) = 2nk\eta(X), \quad Q\xi = 2nk\xi,$$

$$(1.3) R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y)$$

and

$$(1.4) R(\xi, X)Y = k(g(X, Y)\xi - \eta(Y)X),$$

(see [5]). For an extended contact conformal curvature tensor we find the following equations in an N(k)-contact metric manifold:

$$C_{e}(X,Y)Z = C_{0}(X,Y)Z - 2(k-1)\{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\}\xi$$

$$(1.5) -4(k-1)\eta(Z)\{\eta(Y)X - \eta(X)Y\}$$

$$+k\{\eta(X)g(\varphi Y,Z) - \eta(Y)g(\varphi X,Z) - 2\eta(Z)g(\varphi X,Y)\}\xi,$$

$$C_e(X,Y)\xi = -2(k-1)\{\eta(Y)X - \eta(X)Y\} = -2(k-1)R_0(X,Y)\xi$$

and

$$C_e(\xi, X)Y = 2(k-1)\eta(Y)\{X - \eta(X)\xi\} = -2(k-1)\eta(Y)R_0(\xi, X)\xi.$$

Consequently we have

(1.6)
$$C_0(X,Y)\xi = 2(k-1)\{\eta(Y)X - \eta(X)Y\} + 2kg(\varphi X,Y)\xi,$$

$$(1.7) C_0(\xi, X)Y = 2(k-1)\{g(X, Y)\xi - \eta(Y)X\} - kg(\varphi X, Y)\xi = -C_0(X, \xi)Y.$$

From (1.5), in a Sasakian manifold, the extended contact conformal curvature tensor and the contact conformal curvature tensor are related by

(1.8)
$$C_e(X,Y)Z = C_0(X,Y)Z + \eta(X)g(\varphi Y,Z)\xi - \eta(Y)g(\varphi X,Z)\xi - 2\eta(Z)g(\varphi X,Y)\xi,$$

(see [8]).

The standard contact metric structure on the tangent sphere bundle T_1M satisfies the (k,μ) -nullity condition if and only if the base manifold M is of constant curvature. If M has constant curvature c, then k=c(2-c) and $\mu=-2c$.

For a given contact metric structure (φ, ξ, η, g) , \mathcal{D} -homothetic deformation is the structure defined by

$$\overline{\eta} = a\eta, \quad \overline{\xi} = \frac{1}{a}\xi, \quad \overline{\varphi} = \varphi, \quad \overline{g} = ag + a(a-1)\eta \otimes \eta,$$

where a is a positive constant. While such a change preserves the state of being contact metric, K-contact, Sasakian or strongly pseudo-convex CR, it destroys a condition like $R(X,Y)\xi=0$ or $R(X,Y)\xi=k(\eta(Y)X-\eta(X)Y)$. However, the form of the (k,μ) -nullity condition is preserved under a \mathcal{D} -homothetic deformation with

$$\overline{k} = \frac{k + a^2 - 1}{a^2}, \quad \overline{\mu} = \frac{\mu + 2a - 2}{a}.$$

Given a non-Sasakian (k, μ) -manifold M, in [6] an invariant

$$I_M = \frac{1 - \frac{\mu}{2}}{\sqrt{1 - k}}$$

was introduced by E. Boeckx. He showed that for two non-Sasakian (k, μ) -manifolds $(M_i, \varphi_i, \xi_i, \eta_i, g_i)$, i = 1, 2, we have $I_{M_1} = I_{M_2}$ if and only if up to a \mathcal{D} -homothetic deformation, the two manifolds are locally isometric as contact metric manifolds. Hence we know all non-Sasakian (k, μ) -manifolds locally as soon as we have, for every odd dimension 2n + 1 and for every possible value of the invariant I, one (k, μ) -manifold $(M, \varphi, \xi, \eta, g)$ with $I_M = I$. For I > -1 such examples may be found from the standard contact metric structure on the tangent sphere bundle of a manifold of constant curvature c where we have $I = \frac{1+c}{|I-c|}$ [6].

Using this invariant, an example of a (2n+1)-dimensional $N(1-\frac{1}{n})$ -contact metric manifold, n>1, was constructed by Blair, Kim and Tripathi in [4] as follows:

Example 1. Since the Boeckx invariant for a $(1-\frac{1}{n},0)$ -manifold is $\sqrt{n} > -1$, we consider the tangent sphere bundle of an (n+1)-dimensional manifold of constant curvature c so chosen that the resulting \mathcal{D} -homothetic deformation will be a $(1-\frac{1}{n},0)$ -manifold. That is, for k=c(2-c) and $\mu=-2c$ we solve

$$1 - \frac{1}{n} = \frac{k + a^2 - 1}{a^2}, \quad 0 = \frac{\mu + 2a - 2}{a}$$

for a and c. The result is

$$c = \frac{(\sqrt{n} \pm 1)^2}{n-1}, \quad a = 1+c$$

and taking c and a to be these values it is obtained an $N(1-\frac{1}{n})$ -contact metric manifold.

We need the following theorems in Section 2.

Theorem 1. A contact metric manifold M^{2n+1} satisfying the condition $R(X,Y)\xi = 0$ is locally isometric to $E^{n+1} \times S^n(4)$ for n > 1 and flat for n = 1 ([2], Theorem 7.5).

Theorem 2. If a contact metric manifold M^{2n+1} is of constant curvature c and dimension ≥ 5 , then c=1 and the structure is Sasakian ([2], Theorem 7.3).

§2. Main Results

In this section, we give the main results of the study. Now we begin with the following:

Theorem 3. Let M be a (2n+1)-dimensional non-Sasakian N(k)-contact metric manifold. Then M satisfies the condition $\mathcal{Z}(\xi,X)\cdot C_0=0$ if and only if either M is locally isometric to the product $E^{n+1}\times S^n(4)$ for n>1 and flat for n=1 or locally isometric to the Example 1.

Proof. If M is a non-Sasakian N(k)-contact metric manifold then the equation (0.1) can be written as

(2.1)
$$\mathcal{Z}(\xi, X) = \frac{2n}{2n+1} \left(k - 1 + \frac{1}{n} \right) R_0(\xi, X),$$

which implies that

$$\mathcal{Z}(\xi, X) \cdot C_0 = \frac{2n}{2n+1} \left(k - 1 + \frac{1}{n} \right) R_0(\xi, X) \cdot C_0.$$

Therefore $\mathcal{Z}(\xi, X) \cdot C_0 = 0$ is equivalent to $k = 1 - \frac{1}{n}$ or $R_0(\xi, X) \cdot C_0 = 0$. If $k = 1 - \frac{1}{n}$, then M is locally isometric to the Example 1.

If $R_0(\xi, X) \cdot C_0 = 0$ we can write

$$0 = R_0(\xi, X)C_0(Y, V)U - C_0(R_0(\xi, X)Y, V)U - C_0(Y, R_0(\xi, X)V)U - C_0(Y, V)R_0(\xi, X)U$$

for all $X, Y, V, U \in TM$. So using the definition of R_0 we get

(2.2)
$$0 = C_0(Y, V, U, X)\xi - \eta(C_0(Y, V)U)X$$
$$-g(X, Y)C_0(\xi, V)U + \eta(Y)C_0(X, V)U$$
$$-g(X, V)C_0(Y, \xi)U + \eta(V)C_0(Y, X)U$$
$$-g(X, U)C_0(Y, V)\xi + \eta(U)C_0(Y, V)X,$$

where $C_0(Y, V, U, X) = g(C_0(Y, V)U, X)$. Putting $U = \xi$ in (2.2) and by the use of (1.6) and (1.7) in (2.2) we obtain

(2.3)
$$C_0(Y,V)X = 2(k-1)[g(X,V)Y - g(X,Y)V] +2k[g(\varphi Y,V)X - \eta(Y)g(\varphi X,V)\xi - \eta(V)g(\varphi Y,X)\xi].$$

Taking $Y = \xi$ in (2.3) we find

$$C_0(\xi, V)X = 2(k-1)[g(X, V)\xi - \eta(X)V] + 2kg(\varphi V, X)\xi.$$

In view of (1.7), we know that

$$C_0(\xi, V)X = 2(k-1)[q(X, V)\xi - \eta(X)V] - kq(\varphi V, X)\xi.$$

Comparing last two equations we find $kg(\varphi V, X)\xi = 0$. Since $g(\varphi V, X) \neq 0$, we get k = 0. Hence from Theorem 1, M is locally isometric to the product $E^{n+1} \times S^n(4)$ for n > 1 and flat for dimension 3. The converse statement is trivial. This completes the proof of the theorem.

Theorem 4. Let M be a (2n+1)-dimensional non-Sasakian N(k)-contact metric manifold. If M satisfies the condition $C_0(\xi, X) \cdot \mathcal{Z} = 0$ then either it is locally isometric to the product $E^{n+1} \times S^n(4)$ for n > 1 and flat for n = 1 or locally isometric to the Example 1.

Proof. Since M satisfies the condition $C_0(\xi, X) \cdot \mathcal{Z} = 0$, we can write

$$(2.4) 0 = C_0(\xi, X)\mathcal{Z}(Y, V)U - \mathcal{Z}(C_0(\xi, X)Y, V)U - \mathcal{Z}(Y, C_0(\xi, X)V)U - \mathcal{Z}(Y, V)C_0(\xi, X)U$$

for all $X, Y, V, U \in TM$. So using (1.7) we have

$$0 = 2(k-1) \left\{ \mathcal{Z}(Y,V,U,X)\xi - \mathcal{Z}(Y,V,U,\xi)X - g(X,Y)\mathcal{Z}(\xi,V)U + \eta(Y)\mathcal{Z}(X,V)U - g(X,V)\mathcal{Z}(Y,\xi)U + \eta(V)\mathcal{Z}(Y,X)U - g(X,U)\mathcal{Z}(Y,V)\xi + \eta(U)\mathcal{Z}(Y,V)X \right\} + k \left\{ -g(\varphi X,\mathcal{Z}(Y,V)U)\xi + g(\varphi X,Y)\mathcal{Z}(\xi,V)U + g(\varphi X,V)\mathcal{Z}(Y,V)\xi \right\},$$

where $\mathcal{Z}(Y, V, U, X) = g(\mathcal{Z}(Y, V)U, X)$. Taking $U = \xi$ in (2.5) we get

$$0 = 2(k-1) \left\{ \mathcal{Z}(Y,V,\xi,X)\xi - g(X,Y)\mathcal{Z}(\xi,V)\xi + \eta(Y)\mathcal{Z}(X,V)\xi - g(X,V)\mathcal{Z}(Y,\xi)\xi + \eta(V)\mathcal{Z}(Y,X)\xi - \eta(X)\mathcal{Z}(Y,V)\xi + \mathcal{Z}(Y,V)X \right\} + k \left\{ -g(\varphi X,\mathcal{Z}(Y,V)\xi)\xi + g(\varphi X,Y)\mathcal{Z}(\xi,V)\xi + g(\varphi X,V)\mathcal{Z}(Y,\xi)\xi \right\}.$$

Since M is a non-Sasakian N(k)-contact metric manifold, using (0.1), the above equation can be written as

$$0 = \frac{2n}{2n+1} \left(k - 1 + \frac{1}{n} \right) \left[2(k-1) \left\{ R_0(Y, V, \xi, X) \xi \right. \right. \\ \left. - g(X, Y) R_0(\xi, V) \xi + \eta(Y) R_0(X, V) \xi \right. \\ \left. - g(X, V) R_0(Y, \xi) \xi + \eta(V) R_0(Y, X) \xi - \eta(X) R_0(Y, V) \xi \right\} \\ \left. + k \left\{ - g(\varphi X, R_0(Y, V) \xi) \xi + g(\varphi X, Y) R_0(\xi, V) \xi \right. \\ \left. + g(\varphi X, V) R_0(Y, \xi) \xi \right\} \right] + 2(k-1) \mathcal{Z}(Y, V) X.$$

So by virtue of the definition of R_0 we obtain

$$(k-1)\mathcal{Z}(Y,V)X = \frac{n}{2n+1} \left(k-1+\frac{1}{n}\right) \left[2(k-1)\{g(X,V)Y - g(X,Y)V\} + k\{g(X,Y)V - g(X,Y)Y\}\right].$$

Putting $Y = \xi$ in (2.6) we find

$$(k-1)\mathcal{Z}(\xi, V)X = \frac{n}{2n+1} \left(k - 1 + \frac{1}{n} \right) [(2(k-1)) \{g(X, V)\xi - \eta(X)V\} - kg(\varphi X, V)\xi].$$

Hence in view of (0.1) and the definition of R_0 we have

$$k\left(k-1+\frac{1}{n}\right)g(\varphi X,V)\xi=0.$$

Since $g(\varphi X, V) \neq 0$ then we obtain either k = 0 or $k - 1 + \frac{1}{n} = 0$. If k = 0 from Theorem 1, M is locally isometric to the $E^{n+1} \times S^n(4)$ for n > 1 and flat for dimension 3. If $k - 1 + \frac{1}{n} = 0$, then M is locally isometric to the Example 1.

Thus the proof of the theorem is completed.

Theorem 5. Let M be a (2n+1)-dimensional N(k)-contact metric manifold, n > 1. Then M satisfies the condition $C_e(\xi, X) \cdot \mathcal{Z} = 0$ if and only if it is a Sasakian manifold.

Proof. For all $X, Y, V, U \in TM$, from (0.3) and (1.5), we can write

$$(C_{e}(\xi, X) \cdot \mathcal{Z}) (Y, V)U = C_{e}(\xi, X)\mathcal{Z}(Y, V)U - \mathcal{Z}(C_{e}(\xi, X)Y, V)U$$
$$-\mathcal{Z}(Y, C_{e}(\xi, X)V)U - \mathcal{Z}(Y, V)C_{e}(\xi, X)U$$
$$= 2(k-1)[-\eta(X)\mathcal{Z}(Y, V, U, \xi)\xi + \mathcal{Z}(Y, V, U, \xi)X$$
$$+\eta(X)\eta(Y)\mathcal{Z}(\xi, V)U - \eta(Y)\mathcal{Z}(X, V)U$$
$$+\eta(X)\eta(V)\mathcal{Z}(Y, \xi)U - \eta(V)\mathcal{Z}(Y, X)U$$
$$+\eta(U)\eta(X)\mathcal{Z}(Y, V)\xi - \eta(U)\mathcal{Z}(Y, V)X].$$

Therefore $C_e(\xi, X) \cdot \mathcal{Z} = 0$ is equivalent to k = 1 or

$$0 = -\eta(X)\mathcal{Z}(Y, V, U, \xi)\xi + \mathcal{Z}(Y, V, U, \xi)X + \eta(X)\eta(Y)\mathcal{Z}(\xi, V)U$$

$$(2.7) \qquad -\eta(Y)\mathcal{Z}(X, V)U + \eta(X)\eta(V)\mathcal{Z}(Y, \xi)U - \eta(V)\mathcal{Z}(Y, X)U$$

$$+\eta(U)\eta(X)\mathcal{Z}(Y, V)\xi - \eta(U)\mathcal{Z}(Y, V)X.$$

If k=1, then M is a Sasakian manifold. Putting $U=\xi$ in (2.7) we obtain

(2.8)
$$0 = \eta(X)\eta(Y)\mathcal{Z}(\xi,V)\xi - \eta(Y)\mathcal{Z}(X,V)\xi + \eta(X)\eta(V)\mathcal{Z}(Y,\xi)\xi - \eta(V)\mathcal{Z}(Y,X)\xi + \eta(X)\mathcal{Z}(Y,V)\xi - \mathcal{Z}(Y,V)X.$$

Since M is an N(k)-contact metric manifold, using (0.1) in (2.8) we can write

$$0 = \left(k - \frac{r}{2n(2n+1)}\right) [\eta(X)\eta(Y)R_0(\xi, V)\xi - \eta(Y)R_0(X, V)\xi + \eta(X)\eta(V)R_0(Y, \xi)\xi - \eta(V)R_0(Y, X)\xi + \eta(X)R_0(Y, V)\xi] - \mathcal{Z}(Y, V)X.$$

So by virtue of the definition of R_0 we have

(2.9)
$$\mathcal{Z}(Y,V)X = \left(k - \frac{r}{2n(2n+1)}\right) \left[\eta(X)\eta(V)Y - \eta(X)\eta(Y)V\right].$$

Then by the use of (0.1), the equation (2.9) can be written as

$$R(Y,V)X = \left(k - \frac{r}{2n(2n+1)}\right) [\eta(X)\eta(V)Y - \eta(X)\eta(Y)V] + \frac{r}{2n(2n+1)} \{g(X,V)Y - g(Y,X)V\}.$$

Hence from (2.10), by a contraction, we obtain

(2.11)
$$S(X,V) = \frac{r}{2n+1}g(X,V) + \left(2nk - \frac{r}{2n+1}\right)\eta(X)\eta(V).$$

From (2.11), by a contraction, we get

$$r = 2nk(2n+1).$$

Then putting r = 2nk(2n + 1) into (2.10) we obtain

$$R(Y,V)X = k(g(X,V)Y - g(Y,X)V).$$

So M is a space of constant curvature k. Since n > 1, hence from Theorem 2, it is necessarily a Sasakian manifold of constant curvature +1, n > 1. From (1.8), since $C_e(\xi, X)Y = 0$ for all Sasakian manifolds, the converse statement is trivial. Hence we get the result as required.

Acknowledgement. The authors are thankful to the referees for their valuable suggestions for improvement of this paper.

References

- [1] C. Baikoussis, D. E. Blair and T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X,Y)\xi = k(\eta(Y)X \eta(X)Y)$, Mathematics Technical Report, University of Ionnina, 1992.
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
- [3] D. E. Blair, Curvature of contact metric manifolds, Complex, Contact and Symmetric Manifolds, 1–13, Progr. Math., 234, Birkhäuser Boston, Boston, MA, 2005.

- [4] D. E. Blair, J-S. Kim, M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883–892.
- [5] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. **91** (1995), no. 1-3, 189–214.
- [6] E. Boeckx, A full classification of contact metric (k, μ) -spaces, Illinois J.Math. 44 (2000), 212–219.
- [7] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721–734.
- [8] J-S. Kim, J. Choi, C. Özgür, M. M. Tripathi, On the contact conformal curvature tensor of a contact metric manifold, Indian J. Pure Appl. Math., 37 (2006), no. 4, 199–207.
- [9] H. Kitahara, K. Matsuo and J.S. Pak, A conformal curvature tensor field on Hermitian manifolds, J. Korean Math. Soc. 27 (1990), no. 1, 7–17.
- [10] J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak, On the contact conformal curvature tensor, Bull. Korean Math. Soc. 27 (1990), 133–142.
- [11] J. S. Pak and Y. J. Shin, A note on contact conformal curvature tensor, Commun. Korean Math. Soc. 13 (1998), no. 2, 337–343.
- [12] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (k, \mu)$ -nullity distribution, Yokohama Math. J. **40** (1993), 149–161.
- [13] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. (2) 40 (1988), no. 3, 441–448.
- [14] M. M. Tripathi and J-S. Kim, On the concircular curvature tensor of a (κ, μ) -manifold, Balkan J. Geom. Appl. 9 (2004), no. 1, 104–114.
- [15] K. Yano, Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.

Cihan Özgür

Department of Mathematics, Balıkesir University 10145, Balıkesir, TURKEY

 $E ext{-}mail: cozgur@balikesir.edu.tr}$

Sibel Sular

Department of Mathematics, Balıkesir University

10145, Balıkesir, TURKEY

 $E ext{-}mail:$ csibel@balikesir.edu.tr