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Abstract. Let A be a basic self-injective Nakayama algebra over an alge-
braically closed field. In this paper, we investigate the ring structure of the
orbit algebra A(7ac; A) = @, , Hom 4. (7he(A), A), where A is the envelop-
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81. Introduction

Let K be an algebraically closed field, and let R be a finite dimensional self-
injective algebra over K. We denote by R°P the opposite algebra of R, and by
mod(R) the category of finitely generated left R-modules. Recall from [ASS]
that the projectively stable category mod(R) of mod(R) is defined to be the
category whose objects are the same as those of mod(R) and the morphism set
Homp (M, N) for M, N in mod(R) is the factor space Homp(M, N)/Z (M, N),
where Z(M, N) is a subspace of Hompg (M, N) consisting of all morphisms
which factor through a projective module in mod(R). Dually, the injectively
stable category mod(R) of mod(R) is also defined. However, since R is self-
injective, we obtain mod(R) = mod(R).

Let M be a module in mod(R), and let P, L Py 2% M — 0 be a mini-
mal projective presentation of M. Applying the functor (—)* := Hompg(—, R),
we have the exact sequence of right R-modules:

t t
O—>Mt&>PSLPf—>C0kerpﬁ — 0.
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Then, by setting Trr(M) := Coker p, we obtain the duality Trg : mod(R) —
mod(R°P) called the transpose duality. Moreover, we have the self-duality
TR = DTrg : mod(R) — mod(R) called the Auslander-Reiten translation
(see [ARS], [ASS]), where D denotes the usual duality Homg (—, K). In this
paper, we study a graded algebra over K induced by 7g in the case where R
is the enveloping algebra of a self-injective Nakayama algebra.

Let s be a positive integer and K an algebraically closed field, and let I" be
the cyclic quiver with s vertices eg,e1,...,es—1 and s arrows ag, @i, ..., Gs—1,
where each a; (0 <t < s—1) starts at e; and ends at e;+1. Here, we regard
the index t of e; modulo s. We denote by K1 the path algebra of I" over K,
and by X the sum of all arrows in KI': X = a9+ ---+ as—1. Moreover, we
denote the K-algebra KI'/(X*) (k> 2) by A. It is known that A is a basic
self-injective Nakayama algebra (see [ASS]). Note that the enveloping algebra
A¢ = A K AP is also a self-injective algebra. Recall that the 74e-orbit
algebra of A, denoted by A(74e; A) as in [P], is a graded K-algebra defined as
follows: A(74e; A) is the direct sum of the K-vector spaces

A(rae; A) = D Hom 4 (the (4), A).
i>0

The multiplication f - g of homogeneous elements f € Hom 4c(7}:(A), A) and
g € Hom 4. (7. (A), A) is the composition fo74.(g) € Hom 4. (7jc ™ (A), A).

In [P], Pogorzaly describes the ring structure of A(74¢; A) by using a Galois
covering of A€ in the case where the Tc-period of A equals one, that is,
k = 2 (mod s). See Remark 2.6 for £k = 1 (mod s). In this paper, under
the condition that s > 2 and £ = 0 (mod s), we find a basis of the K-space
Hom 4 (7% (A), A) (i > 0) by using an injective hull of 7%.(A) and determine
the ring structure of A(74e; A).

This paper is organized as follows: In Section 2, we will define an auto-
morphism of categories (—)qn : mod(A€) — mod(A€) for any integer n and
an automorphism « of A, and prove that A(74e; A) is isomorphic to the orbit
algebra @,.,Hom e (A ix-2), A) induced by (—),x—2 (Lemma 2.1). Next, we
explicitly give a K-basis of Hom ge (A ix—2), A) (Proposition 2.3). Moreover,
in the case s > 2 and k = 0 (mod s), we find a K-basis of #(A,-2,A) (i > 0)
by means of the injective hull of A°-module A,-2i given in [F], and we give a
K-basis of Hom 4. (7%.(A), 4) (i > 0) (Theorem 2.5). In Section 3, we give a
presentation of A(74¢; A) by the generators and the relations in the case s > 2
and k =0 (mod s) (Theorems 3.2, 3.3).
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82. The stable homomorphisms

Let s be a positive integer, and let I' be the cyclic quiver with s vertices
eop,€1,...,6s—1 and s arrows ag, ai,...,as—1, where each a; starts at e; and
ends at e; 1. Here, we regard the index i of e; modulo s. Denote by X the
sum of all arrows in the path algebra KI', and by A the algebra KI'/(XF)
(k > 2) as in Section 1. Furthermore, for simplicity, we denote a coset in A
by one of its representative elements in KI'. Then clearly the set {X7e, | 0 <
(<s—1,0<j<k—1}isa K-basis of A, and so dimg A = ks.

Our purpose in this section is to give a K-basis of Hom 4 (7%.(A), A) for
i > 0 in the case £ = 0 (mod s) (Theorem 2.5). However, the discussion in
the subsections 2.1 and 2.2 are valid for arbitrary k& > 2.

2.1. The algebra A(74¢;A) and an automorphism « of A

Let o : A — A be an algebra automorphism defined by a(e;) = e;—1, a(a;) =
ai—1 for 0 < t < s —1. Then clearly o® = idy holds. For any integer
n and M in mod(A€), we denote by Myn the left A°-module, equivalently,
the A-bimodule defined as follows: Ma» has the underlying K-space M, and
the operation - of A from the right is given by m - a = ma™(a) for a € A,
m € Mun, and the operation of A from the left is the usual one. Moreover, for
any left A°-homomorphism f : M — N, we define the A°-homomorphism
far : Magn — Ngn by fan(m) = f(m) for m € Myn. Then we have the
automorphism of categories (—)qn : mod(A¢) — mod(A¢) with the inverse
(—=)a-» : mod(A°) — mod(A°) (see [H]). It is easy to see that ¢ is in
P(M,N) if and only if gon is in P (Mgn, Non). Hence the functor (—)qn
induces the automorphism of mod(A¢). We also denote this functor by (—)qn.

It is shown in [F, Theorem] that 7i.(A) ~ A k-2 as left A°modules for
each i > 0. So, we immediately have an isomorphism Hom 4. (74.(4), A) —
Hom 4 (A, ik—2), A) of K-spaces. In the following, we show that, in fact, there
is an isomorphism Hom 4 (7% (A), A) — Hom 4e (A, ik-2), A) for each i > 0
which provides an isomorphism of algebras between A(74¢; A) and the orbit
algebra @, Hom 4c (A ix—2), A) induced by (—),k-2.

Lemma 2.1. There exists an isomorphism of K -spaces
07: : HOmAE (7'12'4@ (A), A) L) HOHlAe (Aai(k_z) N A)

for each i > 0 such that

@ 01 : A(TAE7 A) L? @ HOmAe (Aai(k72) ) A)

1>0 1>0

18 an isomorphism of graded K -algebras.



110 T. TESHIGAWARA AND T. FURUYA

Proof. First note that 74 ~ 402, as functors, where Qe : mod(A®) —
mod(A°) is the syzygy functorand .4 : mod(A°) — mod(A°) is the Nakayama
functor DHom ge(—, A¢) (see [ARS]). Moreover Q4 and .4” are commutative
as functors, and so Ti‘e ~ N iQZ‘ie for all 2 > 0 as functors.

We show the following statement from which the lemma easily follows: For
each integers i,j > 0, there exists an isomorphism 7;; : A Q%.(Ay) —
A itk—2)+; in mod(A°) such that, for any integers ¢,p,q > 0 and a morphism
[ Aar — Aqa in Hom 4 (Agp, Aqa), the square

JV‘Q%
N2, (App) LD, N, (Apa)

Zlm,p Zlnf,q

() ek—2)
————  Aj-2)+g

Aal(k72)+p
in mod(A°) commutes.

It is shown in [EH, Section 4] that Q%.(A) ~ A, for £ > 0 as left
A®-modules, and then we easily have an isomorphism of A®modules 1, :
Q4. (Agr) — Ay-wkir for t,7 > 0 such that the following square in mod(A°)
commutes for any /,p,q > 0 and f € Hom se (Aar, Aqa):

Q2Ze f
0% (Aew) 2L 02 (A,0)
ZJWJ zlw
(f) gyt

Aa—£k+p EE— Aa—£k+q.

Since v := o' F @ a1 : A° — A° is a Nakayama automorphism of A°
(see [F, Appendix]), we have .4 ~ F, as functors, where F, : mod(A°¢) —
mod(A€) is the functor defined as follows: For M in mod(A€), F, (M) has the
underlying K-space M, and the operation - of A€ is given by (a ® b°P) - m =
v(ia ® b°P)Ym = a'~F(a)maF~1(b) for a @ b°P € A° and m € F,(M). Also,
for f € Hom (M, N), F,(f) is the coset , f € Hom 4e(F, (M), F,,(N)), where
vf € Homye(F, (M), F,(N)) is given by , f(m) := f(m) for m € F,(M).

Applying 4 to the square above yields the following commutative square
in mod(A°):

e/V[QQZE
NP () AL ezt (4,4)

Zl&z,p Zl&’wq

v (fo—ek)

Flf(Aa—Zk-&-p) — FI/ (Aa—£k+q).
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Moreover there exists the following commutative square in mod(A°¢):

o (fo—ek)
(Aa—[k""p) - Flf(Aoz—““‘*‘q)

Zlaak*l) Zlaﬁ(kfl)

f ek—2)
Appr—24p  ——  Aju-2)4q-

FE

v

In the above square, the left vertical map o/*~1 is defined by

D) = oD (a) o 0 € F Ay ).

and it is verified that o/~ is an A®-homomorphism between the A¢-modules

FY(Ay-ensp) and A _e(e—2)+p. Similarly the right vertical map o1 is defined
and it is also an A°-homomorphism.

We will show the commutativity of this square. Let ¢ —p = z (mod s)
(0<2<s5—1). Let f(er) = Zﬁ é e lkgz,X“ev for each t (1 <t < ),
where kff)v € K. Then we have

nt
_ (t) z+7ts
Flen) =Dk, X e,
Jt=0

where t+p—¢q = w; (mod s) (1 < w; < 5), because f(e;) = f((e;®e}},)-er) =
(et ®@eY,) - fler) = erf(er)errp—q. Furthermore, a(X) = X implies X f(e;) =

f(et+1)X. Hence it follows that kiﬁrs wp = k,‘fjmwg == kglmw for each
r (0 < r < n)and kgrswt = 0 for ' > n, where n = min{ny,...,ng}.

Therefore we have

= Zi(et Z kz—i—zs w1 Z—HS
t=1
Hence we have o/ (f(1)) = f(1) for any j. Finally, for x € F{(A,-e»), we get
(fatte— 0 D) (@) = frius (7D ()
= furi—n (@D (@D (@) © 1) - 1))
(

= fat-2) (@ *V(z)® 1) - 1)
(@ * D (2) @ 1°P) - foe2) (1)

and
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= a0, (fur ) (@D (2) ©1°) - 1))
_ M((o/(k_l)(%) ® 1°P) .Mﬂ))
_ (o/(k_l)(iv) ® 1°P) .O/(k—l)(M(l))
= /=D (2) f(1).

So the square is commutative.

Combining the last two squares, we have the desired isomorphism 7; ;. [

2.2. The spaces of homomorphisms

Next we will give a K-basis of Hom e (7. (A), A) for i > 0. We will use the
following lemma, which is an analogue of [EH, Lemma 2.1]. The proof is
straightforward.

Lemma 2.2. Let n be any integer. Then the map

Homge(Agn, A) — onZ :={x € A | 2y = " (y)x for any y € A}

given by f —— f(1) is an isomorphism of K -spaces.

If s = 1, then we easily see that the 74.-period of A equals one by [F, Corol-
lary 3.7], and so the ring structure of A(74e; A) is described in [P]. Therefore,
in the rest of this paper, we assume s > 2. Also, for any integer z, denote by
Z the unique integer r (0 < r < s— 1) such that z =7 (mod s), and let m be
the unique integer such that k = ms + k.

First we consider the K-space Homge(A_ix-2), A) for each i > 0. We
identify Hom ge (A ixk—2), A) with jix—2)Z via the isomorphism in Lemma 2.2.
Then we have the following proposition.

Proposition 2.3. Let i be any non-negative integer, and set d = —i(k — 2).
Then we have the isomorphism of K-spaces
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Homye(Ay-d, A) = -aZ

;

P K xIs+d if k—1+d<F,
=0
! m—1 o s—1 _
<@ KXJS“H) @ (@ KXmS“Lk_leg) if F—1=4d,
j=0 £=0
m—1 _
={ @ Kxist if k<d#s—1,
=0
o
KX7sts=1 if d=s—1and k #0,
=0
m—2

—~ .

s—1
KXjS+S—1) @ (@ KXmS_1€€> ’Lf E =s—1 and E = 0
/=0

.
=)

Proof. Take any x € ,-aZ and let x = Z?;é Z‘Z;é k;jeX7es, where kj, € K.
Then we have ze; = were; = a~%(e;)re; = epqqres for each t (0 <t < s —1).
Furthermore, if j (0 < j < k—1) satisfies j # d (mod s), then since e;4.q—je; =
0 we get et+deet = Xjet+d_jet = 0. Thus we have

k—1
Y okjuXley= Y kjXe, foreacht (0<t<s—1),
j=0 0<j<k—1,

j=d (mod s)

and hence k;j; =0 for every t (0 <t <s—1)and j (0 <j <k —1) such that
j #d (mod s). Then we have

m s—1 B
SO kjpa X e if d <,
) j=0¢=0
L= 9 m-1s-1 _
kigpa X7 ey if k<d.

J=0

~

=0

Next, note that z.X = a~4(X)z = Xz holds. We consider the case d < k.
If d # k — 1, then since X = Xx we have

|
—

s—1 s

m m

_ yjst+d+1 _ _ yjs+d+1
2D hja X et = 3 Y kg X e
j=0 ¢ Jj=02¢

Il
o
Il
o

js+d,0+1 = js+d, 0

So, for every 0 < 7 < mand 0 < ¢ < s — 1, we obtain k, k.
where we put kjs+8,s = kjs+3’0. Hence kjSJrE’O = kjerE,Z for 0 < j <m and
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0 < /¢ <s—1. This yields

s—1

m _ m _ m _
_ _ js+d, _ js+d @ js+d
=53 ka0 X e = Y kg0 X € @D EXIH
j=0 £=0 j=0 J=0

o~
Il

Therefore ,-«Z C @7, K Xistd Conversely, X754 belongs to ,-aZ, be-
cause Xistde, — eu+des+E = a e )X18+d and XJstdy — XJstd+l —
X XIstd — ozid(X)XjSJra for any 0 < j < m and 0 < u < s — 1. This shows
i / C ,-a4. erefore ,—aZ = E._ s+d_ On the other hand,
I KXt C | _aZ. Therefore ,—aZ Lo K X754 On the other hand

if d =k — 1, then since X = X2 we have

(67

m—1s—1 _ m—1s—1 _

_ js+k _ Z ]s-I—k
Z Z k;jerkfl,ZX €-1 = k]s+k 10X €e.
j=0 ¢=0 j=0 ¢=0

So, forevery 0 < j <m-—1land 0 < ¢ < s —1, weobtalnkJSJrk Lot =

Kjsif1,00 Where we pub ko 5 1o 0= Ko g g0 Hencekyop 0=k 7 1,
for0<j<m-1 andogﬁgs—l. Then it follows that
m—1s—1 _ s—1 _
_ _ js+k—1 _ ms+k—1
= Kjsiro1,0X e+ Z Ksirio1,0X e
=0 ¢=0 =0
m—1 s—1
_ js+k—1 ms+k—1
- kjs—i—k 1 OX + Z kms—f—k 1 ZX €t
m—1 _ - _
c ( @ KXjS-i—k;—l) D (@KXms+k_1€g>.
=0 0=0

Thus o aZ = , 5.2 C (@75 KX 1) @ (@2 KX 1e,). Con-
versely, it is easy to check that the equations XJstF=1e, = q=F+1(e,)Xisth-1
and XJsth-lx — o k+1(X)XIsth=1 1old for every 0 < j < m — 1 and
0 <u<s—1 Hence Xisth=1 ig in o1 Z for 0 < j < m —1. More-
over, it follows that X™5**~1l¢, is in o1 Z for 0 < € < s —1. Actually, for
0</<s—1and 0 <u <s—1, we easily obtain the equations

. 0 if u £ ¢ .
(Xms+k_le€)6“:{ xmsth-1 ol } a Rt (e,) (X tR ey

and

e ifu=1{¢

(XmerEflee)X =0 = O[fEJrl()()(‘X'merEflee)7
which mean that XmerE’leg Isin _zg Z for each 0 < ¢ < s—1. Accordingly, it

follows that (@’;!01 KXIsth=1) @ (@iZ) K xmsth-le,) C o—+1Z. Therefore,
we get the desired equation in this case.
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The desired equations in the case k < d are shown in the similar way
above. 0

2.3. Factor through projectives

Next we will give a basis of the K-space &?(A,-2,A) for i > 0 in the case
k = 0. Until the end of this paper, we assume k = 0, i.e., k = ms.

Let i be an integer. Then, from [F, Lemma 4.5], we can describe an injective
hull of the left A°-module A_ix-2) = A,—2i as follows:

s—1
0— Ag-2 — @ Aegy1 @ eg_oiA,
£=0
where ¢ is given by
ms—1 ‘ ‘
tley) = eu( Z X7 ® Xms_f_l)eu,gi for 0<u<s—1.
=0

In the following lemma, we regard &?(A,-2:, A) as a subspace of ,-2:Z by
means of the isomorphism in Lemma 2.2.

Lemma 2.4. Let i be any non-negative integer.
(1) If —2i # 1 (mod s), then we have P (A,—2i,A) = 0.

(2) If —=2i =1 (mod s), then we have
(a) if char K | m, then P(A,-2,A) =0; and
(b) if char K { m, then the set {X™ '} is a basis of P(A,-2i, A).

Proof. Let ¢ bein P (A,-2i, A). Then, we easily obtain an A°-homomorphism
h: @z;é Aegy1 ® ep_9;A — A such that ¢ = he. Hence, for each u (0 < u <
s — 1), we have

ms—1

wley) = hi(ey) = Z th(eu,j ® eu,gi,j,l)XmS_j_l.
§=0

Case —2i # 1 (mod s): Since u —j Z u—2i —j — 1 (mod s) for j (0 <
Jj < ms—1), we obtain e,_; # ey—2;—j—1 for j (0 < j < ms—1). Then it is
easy to see that h(ey—j ® ey—2;—;—1) is in the radical (X)/(X™*) of A, and so
p(ey) =0 for each 0 < u < s — 1. This means F(A,-2i,A) =0.

Case —2i = 1 (mod s): Since u —j = u—2i—j —1 (mod s) for j (0 <
j < ms—1), we have e,—; = ey_2;—j—1 for j (0 < j < ms —1). Thus
h(eu—j @ ey—2i—j—1) = h(ey—;j @ ey—j) holds. We write h(ew ® ey) = buwew +
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22_11 b i X ey with by,by; € K (1 <i<m—1) for each 0 <w < s — 1.
Then it follows that

ms—1 m—1
ple) = 3 X7 (bﬁeu—j +) buTjJXiseu_j)Xms—J—l
7=0 i=1
ms—1 . '
=S e
j=0
ms—1 s—1
= ( Z bﬁj)euXmsfl — m(Zb])euXmsfl'
j:() j:0
So we get
s—1 s—1 s—1 1
90(1) = Z (p(eu) = m( b]) (Z‘%L)Xms*l — m(z bj)Xmsfl.
u=0 j=0 u=0 =0

Conversely, take any ¢ € K, and let ¢ : A,—2: — A be the A°~homomorphism
given by ¢(1) = mecX™ 1. Then ¢ factors through ¢. In fact, let 7 :
j;é Aep ® epA — A be the A°-homomorphism given by

ceg if £ =0,
0 Hfl1<i<s-—1.

n(er®ep) = {

Then, for every u (0 < u < s — 1), we obtain

ms—1
nL(eu) = n<€u< Z X7 b2y Xm8j1>€u+1)

Jj=0
ms—1
S ey e e
Jj=0
m—1
— Z Xu+€sceoXmsfustfl
£=0

= mee, XML

So one have nu(1) = 25"t nuen) = S5 gmee, X™ 1 = meX ™1 = (1),

U=
which shows ¢ = nt. Consequently, we obtain

P(Ay-2i, A) = {¢ € Homae(Ay-2i, A) | (1) = meX™ ! for ¢ € K}.

Thus, if char K | m, then #(A,-2:, A) = 0; and if char K { m, then by identi-
fying #(A,-2i, A) with a subspace of ,-2:Z via the isomorphism in Lemma 2.2
we obtain a K-basis {X™~!} of #(A,-2,A). This completes the proof. [J
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2.4. The spaces of stable homomorphisms

Finally, we will find a K-basis of Hom 4 (74.(4), A) (i > 0). If, for each i > 0,
we denote by ,-2iZp, the image of #(A,-21,A) under the isomorphism in
Lemma, 2.2, then we have the isomorphism of K-spaces

(2.1) Hom 4c (Ay—2i, A) — a-212] o2 Zpy; fr— f(1) + g2 Zpy.

In the following theorem, we regard Hom 4 (A,-2i, A) ( ~ Hom 4. (7. (A4), A))
as o214/ 422y for i > 0 by using the isomorphism above.

Theorem 2.5. Let k = ms for m > 1 and s > 2. Then, for any non-negative
integer i, we have the following:

(1) If —2i # 1 (mod s), then the set
{XZH|0<j<m—1}
is a K-basis of Hom 4. (7% (A), A).
(2) If —2i =1 (mod s), then we have
(a) if char K | m, then the set
{Xxists=l xms=le, 10<j<m—2 0<l<s—1}

is a K-basis of Hom 4 (74 (A), A); and
(b) if char K ¥ m, then the set

{(XPH LY [0<j<m—2, 0<0<s—2}

is a K-basis of Hom s (14 (A), A) where Y; := Eﬁ‘:o Xms=le, for
0<l<s—2.

Proof. Since k = 0 and —i(k — 2) = 24, it follows from Proposition 2.3 that, if
2i # s —1, that is, —2i # 1 (mod s), then the set

(2.2) (X205 [0 <j<m—1)

is a K-basis of Homge(A, -2, A); and if 2i = s — 1, that is, —2i =1 (mod s),
then the set

(2.3) (XI5t X le | 0<j<m—2,0<0<s5—1}

is a K-basis of Hom ge (A,-2i, A). So, if —2i #1 (mod s), then by Lemma 2.4
(1) we have a K-basis

(X205 [ 0<j<m—1)
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of Hom 4c(A,-2i, A); and if —2i =1 (mod s) and char K | m, then by Lemma
2.4 (2)(a) we obtain a K-basis

{stJrsfl’XmS*lee}0§j§m—2, OSKSS—l}

of Hom 4 (A,-2i, A). On the other hand, if —2i =1 (mod s) and char K { m,
then by Lemma 2.4 (2)(b) we have a K-basis

{(XP LY [0<j<m—2, 0<0<s—2}

of Hom 4c(A,-2i, A), where we put Yy := Zﬁ:o Xms~le; € Hom ye(Aq—2:, A)
for0</i<s—2. O

Remark 2.6. We consider the case k = 1 (mod s). Then, A is exactly a
symmetric algebra (see [T, Lemma 3.1]), and hence A€ is also a symmetric al-
gebra (see [EN, Proposition 2]). So 7i.(A) ~ Q%.(A) for i > 0 as A®modules,
which yields Hom 4 (7% (A4), A) ~ Hom 4.(Q%.(A), A) as K-spaces for each
i > 0. Moreover, since A is self-injective, we have Hom 4.(Q%.(4), A) ~
Ext%. (A, A) for each i > 1. Therefore Hom 4 (7. (A), A) is isomorphic to the
2ith Hochschild cohomology group HH?*(A) := Ext4. (A, A) for each i > 1. In
[H], Holm computes the dimension of HH?*(A) (i > 0) and describes the even
Hochschild cohomology ring HH®(A) = @,~, HH*(A) (see also [EH]).

§3. The ring structure of A(74e; A)

Throughout this section, we keep the notation from Section 2, and assume
that k = 0, i.e., k = ms (m > 1, s > 2). The purpose in this section is to
give the generators and the relations of A(14¢; A) = @, Hom 4 (7% (A), A)
as K-algebra, explicitly, in the similar way in [EH] and [H].

Since, by Lemma 2.1, the algebra A(74¢; A) is isomorphic to the orbit alge-
bra ,.,Hom 4 (A,-2i, A) induced by the functor (—),-2, it suffices to con-
sider the algebra @, Hom 4e(A,-2i, A). As in Theorem 2.5, for each i > 0,
we identify Hom g (A,-2i, A) With o-2iZ/,-2: Zp via the isomorphism (2.1).

The following lemma says that the multiplication - in @,~ o212/ 02 Zpr =
@D, Hom 4 (A,-2, A) is induced by that of A. Here, for simplicity, we set
A = 27,22, (i > 0) and denote a coset x + ,—2:Zp, in A; (i > 0) by

[z].

Lemma 3.1. Let i and j be any non-negative integers. Then xy = yx in A
for x € 27 and y € ,—2;Z. Furthermore, for [x] = x + ,—2Zy € A; and
W = y+ o22Zp € Ay, the multiplication [x] - [y] in P;~oAi is given by
[z] - [y] = [zy] € Aiyj. Consequently, [x] and [y] are commutative.
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Proof. For each ¢ > 0, ,—2¢Z has K-basis (2.2) if —2¢ # 1 (mod s), and has
K-basis (2.3) if —2¢ =1 (mod s). Therefore, we easily see that x € ,-2:Z and
Yy € ,-2jZ are commutative.

Now, by Lemma 2.2, there exist A°-homomorphisms f € Hom ge(A,-2i, A)
and g € Homye(A,-2j, A) satisfying f(1) = x and g(1) = y. Moreover the
multiplication f - ¢ in the orbit algebra €p,., Hom 4 (A,-2:, A) is given by

i 9= io (g)a*% = io 9o—2i = f 0 ga—2i € mAe (AQ*Q(ZHLJ')?A)‘

Then, since

[f 0 ga—2:()] = [f o g(D)] = [f(g(D)] = [f(g(D)] = [9(1)f(1)] = [y2] = [2y],
it follows that [z] - [y] = [zy]. O

Now we give the generators and the relations of the algebra €,;~,A; (~
A(Tac; A)). Note that @, A; is a commutative graded K-algebra by Lemma
3.1.

First we consider the case when s is even. We put s = 2¢ for an integer
t > 1. Then, for each ¢ > 0, since —2i # 1 (mod 2t), by Theorem 2.5 (1) we
obtain the K-basis .

{X2i+2tj |O§] Sm—l}

of A;. Tt is easy to see that, if we set i = gt +r (0 < r < t¢—1), then this basis
can be written as
(X2 | 0<j<m—1}.

Here note that A;; = A; holds for each ¢ > 0. We set yg := X 2t ¢ Ag. Then,
by Lemma 3.1, we have

yg:thj for0<j<m-—-1
in Ag, and we have the following relation:

(1) yg* = 0.

Next, we put y; := X2 € Aq. Then, for 1 <1i <t — 1, we obtain
yg-y’i = XPH2% for0<j<m-—1

in A;. Furthermore, we set y; := 1 € A;(= Ag). Then, for any ¢ > t, by letting
C=gqt+7r (0<r<t-—1), we have

Wyl -yl = XPHE for0<j<m—1

in Ay, and we have the following relation:
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(2) wo-ye =yl
Summarizing these results, we have the following theorem.

Theorem 3.2. Let k = ms and s = 2t (t > 1). Then A(Tge; A) is isomor-
phic to the commutative graded K -algebra K[yo,y1,yt]/ (5, vo -yt — y%), where
degy; =i (1 =0,1,1).

Next we consider the case when s is odd. We put s = 2t 4 1 for an integer
t > 1. For each i > 0 with ¢ # ¢ (mod 2t + 1), since —2¢ # 1 (mod 2t + 1), by
Theorem 2.5 (1) we obtain the K-basis

{XZ+(2t+1)j l0<j<m—1}

of A;. It is easy to see that, if we set i = ¢(2t + 1) +7 (0 < r < 2t, 7 # 1),
then this basis can be written as follows:

{X2T+(2t+1)j‘0§j§m—1} ifOSTSt—l,

and
{X2r-CHEDFCHNT g < j<m—1} ift+1<r<2t

On the other hand, for each i > 0 with ¢ = ¢ (mod 2¢ + 1), by Theorem 2.5
(2) we have the following K-basis of A;:

{x2HCHDT x@Hm=le 10 < j<m—2, 0<{<2t} ifcharK |m,
and
(X2HCHD Y, | 0<j<m—2,0<£<2t—1} if char K {m,

where Yy := Z?ZO X(Qt“)m_lej cA;jfor0<¢<2t—1.
First assume char K | m. We put

20 1= X € A,.
Then by Lemma 3.1 we have
X @+ zg forl1<j<m-1
in Ap, and we obtain the following relation:
(1) 25" =0.
We set
21 :=X?e Ay and 20 1= XmCHD=1o e A, for 0 < £ < 2t

Then for each 1 <3 < ¢ we have
X 2i+(2t41)

j:zé-zi for0<j<m-—1

in A;, and we obtain the following relations:
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m—1 t 2t
ZO ’ Zl - 22:0 zt:£7

(2)
(3) z0-20=0 for 0 <l <2t
(4) z1-2=0 for 0 <¢ <2t
(5) ztw - 20 =0 for0<w,v<2t
Next we set 2411 := X € Ayq1. Then for each t + 1 < ¢ < 2t we have

XH- @D+ = zg . zi_(tﬂ) 2y for0<j<m-—1

in A;, and we obtain the following relations:
(6) 211! =20 - 241,
(7) Zt+1 Zt,f =0 for 0 S J4 S 2t.

Furthermore, we set z9;41 := 1 € Agiy1(= Ag). Then, for any ¢ > 2t + 1, let
C=q2t+1)+7r (0<r<2t). f0<r<t-—1,then

X 2rHt+1)) zg 2] ng_l for0<j<m-1.
If r =t, then

AH(24+1)j _ J .t .4 m2t+1)—1, q ;
X2t )]—zo'zl-z%“, x4 eg=z4p 29, for0<j<m-—2.

Ift4+1<r <2t then

_ ; P (i1 .
X 2r—QtH1D)+(2t4+1)) 2 zI (t+1) S Zp41 th+1 for0<j<m-—1.

So we obtain the following relations:
(8) 20 22041 = 2% - 241,
9) Zt2+1 =21 22t+41-

Next we assume char K { m. As in the above we put 29 := X2+ € A,
21 = X% e Ay, Zer1 = X € Ay, and zopy1 := 1 € Agyp1. Moreover, we set
zg g =Yy for 0 </ <2t —1. Then these elements are generators of ®i>0 A;.
Thus we obtain the relations (1), (6), (8) and (9) above and the following
relations:

(2) Z(gnil"z]i =0,
(3" zo-z£7€:0for0§€§2t—1,

(4" zl-zz’e:()for()§€§2t—l,
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(5") ztu - 20 for 0 <w,v <2t —1,
(7") zt41 'let,e =0for0<¢<2t—1.
Summarizing these results, we have the following theorem.

Theorem 3.3. Let k = ms and s = 2t + 1 (t > 1). If char K | m, then
A(Tpe; A) is a commutative graded algebra with generators zo, 21,2t (0 < £ <
2t), z441, 22141 where degz; =i (i = 0,1,t + 1,2t + 1) and degzy = t, and
relations

2 t+1 ¢
Z6n =0, iyl = A1 2241, 21+ =20 Zt41, R0 " R4+l = 27 Zt41,
m—1 t 2t =0 0< < 9
20 TR = Zg:o 2ty Rt Rty = for 0 <u,v < 2t,
2j-2p =0 for j=0,1,t+1 and 0 < ¢ < 2t.

And if char K 1 m, then A(7Tae; A) is a commutative graded algebra with
generators zg, 21, zgl (0< €< 2t—1), 2441, 22041 wheredegz; =1 (i =0,1,t+
1,2t + 1) and deg z; , = t, and relations

_ 2 _ t+1 _ ot
20" =0, 2zi\ =21 2241, 21 =20 Zt+1, 20" 2241 = 2] ° Zt+1,

ot =0, 2 24y =0 for 0 <u,v <2t —1,

U

zj 2, =0forj=0,1,t+1and 0 < £ <2t — 1.
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