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Abstract. We give in this paper sufficient conditions for r-lightlike submani-
folds M of dimension m, which is not totally geodesic in an (m+n)-dimensional
semi-Riemannian manifold of constant curvature c to admit a reduction of codi-
mension. We consider proper r-lightlike, coisotrope and totally lightlike sub-
manifolds, generalizing thus previous results on isotropic submanifolds [1] as
well as in the Riemannian case developed in [2, 5, 10].
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§1. Introduction and basic facts

This paper deals with the reduction of the codimension of lightlike subman-
ifolds in semi-Riemannian manifolds. Assume (M, g) is an m-dimensional r-
lightlike submanifold which is not totally geodesic in an (m + n)-dimensional
(n ̸= m) semi-Riemannian manifold of constant curvature c. The reduction of
the codimension consists of finding a sufficient condition for M to be immersed
into an (m+p)-dimensional totally geodesic submanifold of constant curvature,
where p < n. The substantial codimension is then the smallest codimension
that an immersion can be reduced to. We generalize results obtained on the
subject when the ambient space is Riemannian [5, 10] and the ones obtained
in the semi-Riemannian case [1] where lightlike isotropic submanifolds have
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been considered. We also give a sufficient condition for a totally umbilical
coisotropic submanifold [4] of pseudo-Euclidean space to admit a reduction of
codimension.

Reduction of codimension is often used in geometry. The following classical
property of curves in Euclidean n-space IRn is a motivating example for our
study. Consider a curve c : (a, b) → IRn. Suppose for j < n, its curvatures
k1, . . . , kj−1, do not vanish and kj is identically null. It is well known that c
is then contained in a j-dimensional affine subspace. From a physics point of
view the universe we live in is usually represented as a 4-dimensional subspace
embedded into a (4 + d)-dimensional spacetime. This idea has attracted and
still attracts the attention of many physicists and cosmologists. Also the
imbedding of the exact solutions of Einstein equations into higher dimensional
semi-Euclidean space is expected to provide a better understanding of their
intrinsic geometry. In both cases the problem to be solved is to find out the
lowest codimension of the imbedding under consideration in order to obtain
a theoretical framework in which fundamental laws of physics might present
some unification. The Kaluza-Klein scheme that takes into account the mutual
interaction between matter and metric is a stimulating example.

The present paper aims to furnish a contribution to studies in those direc-
tions. It is organized as follows. We give in the preliminaries in section 2,
basic formulas concerning geometric objects on lightlike submanifolds, which
is now the classic reference in this subject. Proofs of the main results are given
in section 3 and finally we construct examples to illustrate our motivations in
section 4.

§2. Preliminaries

2.1. Preliminary Recollections

For the convenience of the reader, we start with an overview of geometry
of lightlike submanifolds, using notations and results of [3]. The fundamen-
tal difference between the theory of lightlike (or degenerate) submanifolds
(M, g), and the classical theory of submanifolds of a semi-Riemannian mani-
fold (Mm+n

, g) comes from the fact that

Rad(TM) = TM ∩ TM⊥ ̸= {0}.(2.1)

Given an integer r > 0, the submanifold M is said to be r-lightlike (or r-
degenerate) if the rank of Rad(TM) is equal to r everywhere. We have four
cases of lightlike submanifolds:

• The proper r-lightlike submanifolds, where 0 < r < min(m,n). In this
case, we have Rad(TM) ⊆ TM and Rad(TM) ⊆ TM⊥ then there exist
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non-degenerate screen distributions S(TM) and S(TM⊥), complemen-
tary vector subbundle to Rad(TM) in TM and in TM⊥ respectively
such that,

TM = Rad(TM) ⊥ S(TM).
TM⊥ = Rad(TM) ⊥ S(TM⊥).

The subbundle S(TM⊥) is called transversal screen distribution. Let
tr(TM) and ltr(TM) be complementary vector bundles to TM in TM
and to Rad(TM) in S(TM⊥)⊥, respectively. Then we have

TM |M = TM ⊕ tr(TM)
= S(TM) ⊥ S(TM⊥) ⊥ (Rad(TM) ⊕ ltr(TM))(2.2)

where

tr(TM) = ltr(TM) ⊥ S(TM⊥)(2.3)

• The coisotropic submanifolds, with 1 ≤ r = n < m. In this case, relation
(2.2) becomes

TM |M = TM ⊕ ltr(TM)
= S(TM) ⊥ (Rad(TM) ⊕ ltr(TM))

(2.4)

• The isotropic submanifold case, with 1 ≤ r = m < n. In this case,
Rad(TM) = TM  TM⊥ and S(TM) = {0}. The relation (2.2) is
expressed as

TM |M = TM ⊕ tr(TM)
= (TM ⊕ ltr(TM)) ⊥ S(TM⊥).

(2.5)

Null curves are examples of isotropic submanifolds.

• The totally lightlike submanifolds, where 1 < r = n = m. We have in
this case Rad(TM) = TM = TM⊥, S(TM) = S(TM⊥) = {0} and

TM |M = TM ⊕ ltr(TM).(2.6)

Null curves of two dimensional manifolds are examples of totally lightlike
submanifolds.
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2.2. The Induced Connection

Let ∇ be the Levi-Civita connection on M . Then we have

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM)(2.7)

and

∇XV = −AV X + ∇t
XV ∀X ∈ Γ(TM), V ∈ Γ(tr(TM))(2.8)

where {∇XY, AV X} and {h(X,Y ),∇t
XV } are in Γ(TM) and Γ(tr(TM)), re-

spectively. We suppose S(TM⊥) ̸= {0} and we denote by L and S the pro-
jections of tr(TM) on ltr(TM) and S(TM⊥) respectively. Using the relation
(2.3), relations (2.7) and (2.8) become respectively

∇XY = ∇XY + hl(X, Y ) + hs(X, Y ), ∀X,Y ∈ Γ(TM)(2.9)

where hl(X,Y ) = L(h(X, Y )), hs(X, Y ) = S(h(X, Y )) and

∇XV = −AV X + Dl
XV + Ds

XV(2.10)

∀X ∈ Γ(TM), ∀V ∈ Γ(tr(TM)), where

Dl
XV = L(∇t

XV ) Ds
XV = S(∇t

XV ).

Then we have for all X ∈ Γ(TM) and V ∈ Γ(tr(TM))

∇l
X(LV ) = Dl

X(LV ) and ∇s
X(SV ) = Ds

X(SV ).
Dl(X, SV ) = Dl

X(SV ) and Ds(X, LV ) = Ds
X(LV ).

The applications ∇l and ∇s are linear connections on ltr(TM) and S(TM⊥),
respectively. We call them respectively lightlike connection and the screen
transversal connection on M . Relation (2.10) can also be written as

∇XV = −AV X + Dl(X, SV ) + Ds(X, LV ) + ∇l
X(LV ) + ∇s

X(SV ).

These geometric objects verify the following relations [3, p.156]:

g(hs(X, Y ),W ) + g(Y, Dl(X, W )) = g(AW X, Y )(2.11)
g(hl(X,Y ), ξ) + g(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0(2.12)

g(W,Ds(X,N)) = g(AW X, N)(2.13)
g(ANX, N ′) = g(AN ′X, Y )(2.14)

g(ANX,PY ) = g(N,∇XPY )(2.15)
hl

i(X, ξj) = hl
j(X, ξi)(2.16)



REDUCTION OF THE CODIMENSION 157

where

X, Y ∈ Γ(TM), N ∈ Γ(ltr(TM)), ξi ∈ Γ(Rad(TM)), W ∈ Γ(S(TM⊥))

and hl
i are such that hl

i(X,Y ) = g(∇XY, ξi). Then hl
i does not depend on the

choice of S(TM), S(TM⊥) and ltr(TM) and are zero on Rad(TM). Con-
sequently the second fundamental form hl is identically equal to zero on an
isotropic and on a totally lightlike submanifolds.

So, Dl is a shape application form of r-lightlike and isotropic submanifolds.
We have

(∇Xg)(X, Y ) = g(hl(X, Y ), Z) + g(hl(X, Z), Y )(2.17)
(∇t

Xg)(V, V ′) = −(g(AV X, V ′) + g(AV ′X, V ).(2.18)

Hence, the induced connections ∇ and ∇t are not metric in general. As a
consequence, we have

1. The induced connection ∇ of the Levi-Civita connection ∇ of (M, g) is
metric on isotropic and totally lightlike submanifolds (M, g).

2. A proper r-lightlike or a coisotropic submanifold (M, g) admits a metric
connection if and only if hl vanishes identically on M .

Let f : Mm −→ Mm+n be an isometric immersion of an m-dimensional
r-lightlike (1 ≤ r ≤ min(m,n)) submanifold into an (m + n)-dimensional
semi-Riemannian manifold. The first transversal space of f at x ∈ M is the
subspace

T1(x) = span{hl(X, Y ) + hs(X, Y ), X, Y ∈ TxM}, x ∈ M.

Proposition 2.1. Suppose that the induced connection ∇ on M is a metric
connection, then the first transversal space of f , T1(x) is characterized by

T1(x) = {W ∈ S(TxM⊥) ⊂ tr(TxM), Dl(.,W ) = 0 and AW = 0}⊥

for all x ∈ M .

Proof. Recall that ∇ is metric ⇐⇒ hl = 0 and we have

T1(x) = span{hs(X,Y ), X, Y ∈ TxM} x ∈ M.

Suppose
N(x) = {W ∈ S(TxM⊥) ⊂ tr(TxM), Dl(.,W ) = 0 and AW = 0}⊥.

Let V ∈ T1(x) and W ∈ N⊥(x) such that V = hs(X, Y ).

g(V, W ) = g(hs(X, Y ), W ) = g(AW X, Y ) − g(Dl(X, W ), Y )
= 0.
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We have for every V ∈ T1(x), g(V, W ) = 0, ∀W ∈ N⊥(x) and ∀x ∈ M . Then
V lies in (N⊥(x))⊥ = N(x), T1(x) ⊂ N(x).

Conversely, taken V ∈ T⊥
1 (x) such that ∀X, Y ∈ TxM

g(hs(X, Y ), V ) = g(AV X,Y ) − g(Dl(X, V ), Y ) = 0.

If Y ∈ Rad(TxM), then g(Dl(X,V ), Y ) = 0 and Dl(X, .) = 0 for all X. If
Y ∈ S(TxM), then g(AV X,Y ) = 0 and AV = 0.

Hence V ∈ N⊥(x) and N(x) = (N⊥)⊥(x) ⊂ T1(x). �

Let f : Mm −→ IRm+n
q be an isometric immersion of an m-dimensional

coisotropic submanifold into an (m + n)-dimensional semi-Riemannian mani-
fold. Define the first radical space of f at x ∈ M to be the subspace

R1(x) = span{ξ ∈ Rad(TxM), ∃X ∈ TxM, ȦξX ̸= 0}, x ∈ M.

The first transversal space then becomes

T ′
1(x) = {hl(X, Y ), X, Y ∈ TxM}, x ∈ M.

Proposition 2.2. If (Mm, g, S(TM)) is a non totally geodesic coisotropic
submanifold, then for x ∈ M , T ′

1(x) is characterized by R1(x).

Proof. Let x ∈ M and πx a projection of TxM on S(TxM). If U ∈ T ′
1(x) and

U ̸= 0, then there exists X,Y ∈ TxM such that U = hl(πx(Y ), X). Moreover
there exists ξ ∈ rad(TxM) and (ξ ̸= 0), such that g(hl(πx(Y ), X), ξ) ̸= 0.
Hence from relation (2.12), one has g(hl(X, πx(Y )), ξ) = g(ȦξX, πx(Y )) ̸= 0
and ξ ∈ R1(x). Conversely, if ξ ∈ R1(x) then there exists X ∈ TxM such that
ȦξX ̸= 0. Hence g(ȦξX, ȦξX) = g(h(X, ȦξX), ξ) ̸= 0 and U = h(X, ȦξX) ∈
R1(x). �

Let x ∈ M and P and P̃ be subbundle in Rad(TM) and in ltr(TM)
respectively. We say that P and P̃ are corresponding subbundles, if for all
ξx ∈ P (x) there exists Nx ∈ P̃ (x) such that g(ξx, Nx) = 1 and g(ξx, N ′

x) = 0
for all N ′

x ∈ ltr(TxM)\P̃ (x) and vice versa.

Proposition 2.3. Let P be vector subbundle of constant rank in Rad(TM)
which contains R1(x) for all x ∈ M and P (x) the complementary of P (x) in
Rad(TxM). If P (x) and P (x) are parallel w.r.t the ∇̇t then their corresponding
subbundles P̃ (x) ⊃ T1(x) and P̃ (x) in ltr(TM) respectively are parallel w.r.t.
∇t.

Proof. Let x ∈ M and ξ ∈ P (x). Then Ȧξ = 0 and for all, U ∈ P̃ (x),
g(ξ, U) = 0. Let X ∈ TxM , we have

∇Xg(ξ, U) = 0 ⇐⇒ g(∇̇t
Xξ, U) + g(ξ,∇t

XU) = 0
⇐⇒ g(∇̇t

Xξ, U) = −g(ξ,∇t
XU) = 0
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g(ξ,∇t
XU) = 0 ⇐⇒ ∇t

XU ∈ P̃ (x). Thus P̃ (x) is parallel.
It’s the same with P (x) and P̃ (x). �

2.3. The main results

Suppose that (Mm+n
c , g) is an (m + n)-dimensional complete and simply con-

nected semi-Riemannian manifold with constant sectional curvature c and
f : Mm −→ M

m+n an isometric immersion of the lightlike submanifold Mm

in M
m+n.

Theorem 2.1. Let f : Mm −→ M
m+n be an isometric immersion of a r-

lightlike submanifold (1 ≤ r ≤ m, r ̸= n) (M, g, S(TM), S(TM⊥)) into
(Mm+n

c , g). Suppose that

1. the induced linear connection ∇ on M and the transversal linear con-
nection ∇t on the transversal subbundle tr(TM) are metric ones.

2. there exists a screen transversal subbundle P of S(TM⊥) of constant
rank p (p < n), parallel w.r.t the connection ∇s on S(TM⊥), such that

T1(x) ⊂ P (x), ∀x ∈ M

where T1(x) is the first transversal space of f at x ∈ M.

Then the codimension of f can be reduced to p.

The difference which exists between Theorem 1 of [1] and Theorem 2.1
(above), is that the latter is more general. Because in this case the subbundle
S(TM⊥) ̸= {0} contrary to the isotropic case where S(TM⊥) = {0} (and AW

is not defined).
Instead of a screen transversal subbundle as in Theorem 2.1, in the coisotropic

submanifold we use a radical subbundle. We have

Theorem 2.2. Let f : Mm −→ IRm+n be an isometric immersion of a
lightlike coisotropic submanifold (M, g, S(TM)) into a pseudo-Euclidean space
(IRm+n

q , g). Suppose there exists a radical subbundle P of Rad(TM) of con-
stant rank p (p < n), parallel w.r.t the connection ∇̇t on Rad(TM), such that
its complementary in Rad(TxM) is also parallel and

R1(x) ⊂ P (x), ∀x ∈ M

where R1(x) is the first radical space of f at x ∈ M . Then the codimension of
f can be reduced to p.
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Now suppose that (M, S(TM), g) is a coisotropic submanifold of semi-
Riemannian (IRm+n

q , g). The submanifold M is said to be totally umbilical
in M , if and only if

hl(X, Y ) = g(X, Y )N, ∀X,Y ∈ Γ(TM), N ∈ tr(TM)(2.19)

and h the second fundamental form [7]. Then N is called an umbilical vector
field.

If ξ is a nonzero vector fields in Γ(Rad(TM)) such that g(ξ,N) = 1 then

g(hl(X,Y ), ξ) = g(X, Y ), and g(ξ, N) = 1.

This definition does not depend on the choice of screen distribution [3, Theo
2.1, pg 157].

Then we have the following.

Theorem 2.3. Let f : Mm −→ IRm+n be a totally umbilical isometric im-
mersion of a lightlike coisotropic submanifold (M, g, S(TM)) into a pseudo-
Euclidean space (IRm+n

q , g). Suppose that the umbilical vector field is parallel
w.r.t the connection ∇t on ltr(TM). Then the codimension of f can be reduced
to 1.

§3. Proof of Theorems

3.1. Proof of Theorem 2.1

Recall that P is parallel w.r.t. ∇s if for all

X ∈ Γ(TM) and W ∈ Γ(P ),∇s
XW ∈ Γ(P ).

As c is constant, we have three possible cases.
Case c = 0.
Let x0 ∈ M , we have to prove that f(M) ⊂ Tx0M ⊕ P (x0). Let η be a

vector of P⊥(x0), the complementary orthogonal bundle of P (x0) in S(TM⊥)
and ηt the parallel transport of vector η in Γ(P⊥) along the regular curve
γ : I −→ M (I ⊂ IR) through x0.

Since g is non degenerate on S(TM⊥), if P⊥ is parallel then P is parallel.
Hence

ηt = ∇s
γ̇η ∈ Γ(P⊥(γ(t))),∀t ∈ I

and
∇γ̇ηt = −Aηt γ̇ + Dl(γ̇, ηt) + ∇s

γ̇ηt

but
ηt = ∇s

γ̇η ∈ Γ(P⊥(γ(t))) =⇒ Aηt γ̇ = 0 and Dl(γ̇, ηt) = 0,
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as ηt is parallel transport of η along γ in Γ(P⊥), ∇s
γ̇ηt = 0, ∀t ∈ I.

Thus, we have ∇γ̇ηt = 0 =⇒ ηt = η = cste in IRm+n
q

d

dt
(g(f(γ(t)) − f(x0), ηt)) = g(f⋆γ̇, η) = 0

=⇒ f(γ(t)) − f(x0) ∈ (P⊥(γ(t)))⊥ = P (γ(t)).

As γ and η are arbitrary,

f(M) ⊂ Tx0(M) ⊕ P (x0) ∼= IRn+p

and IRn+p is totally geodesic in IRn+m
q .

Case c > 0.
Then Mm is isometrically immersed in the pseudosphere M

m+n = Sm+n
q

by an immersion f : Mm −→ Sm+n
q . Denote by i : Sm+n

q −→ IRm+n+1
q the

canonical injection of Sm+n
q in IRm+n+1

q and consider the isometric immersion
f̂ = i ◦ f : Mm −→ IRm+n+1

q .
We have the corresponding vector spaces

tr(T̂xM) = tr(TxM)⊕ < f(x) >

where
< f(x) >:= span{f(x)} ⊂ S(T̂xM⊥).

We deduce

T̂1(x) = T1(x)⊕ < f(x) >⊂ P (x)⊕ < f(x) >= P̂ (x).

The complementaries P̂ (x) in S(T̂xM⊥) and P (x) in S(TxM⊥) coincide; P̂⊥(x) =
P⊥(x), and parallel w.r.t. the connection ∇s = ∇̂s

|S(TxM⊥)
.

As < f(x) >⊂ P̂ (x) and P (x) is parallel w.r.t. the connection ∇̂s
|S(TxM⊥)

in S(T̂xM⊥), then ∀X ∈ Γ(TM) and W ∈ P̂ (x)⊥,

g(∇̂s
Xf(x),W ) = ∇Xg(f(x),W ) + g(f(x), ∇̂s

XW )
= 0 (car∇̂s

XW ∈ P̂⊥(x))

so that ∇̂s
Xf(x) ∈ P̂ (x). Hence P̂ (x) is parallel w.r.t. the connection ∇̂s.

As ltr(TxM) = ltr(T̂xM) is parallel, then ∀N ∈ ltr(TxM)

∇X < f(x), N > = 0
= < ∇Xf(x), N > + < f(x),∇XN >

= − < Âf(x)X,N >
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and hence ∇̂t is a metric connection. As in the case c = 0, we obtain

f̂(M) ⊂ T̂xM ⊕ P̂ (x) = TxM ⊕ P (x) ⊕ f(x) ∼= IRm+p+1

f(M) ⊂ Sm+n
q ∩ IRm+p+1.

This ends the proof of the case c > 0
Case c < 0.
The proof of this case is similar to the second case c > 0. We consider an

immersion f̂ = Mm −→ IRm+n+1
q+1 such that f̂ = i ◦ f where i : IHm+p −→

IRm+n+1
q+1 is the canonical injection of pseudo-hyperbolic IHm+n into IRm+n+1

q+1 ,
we have

f̂(M) ⊂ T̂xM ⊕ P̂ (x) = TxM ⊕ P (x) ⊕ f(x) ∼= IRm+p+1

f(M) ⊂ IHm+n
c ∩ IRm+p+1.

This ends the proof of Theorem 2.1. �

Corollary 3.1. Let f : Mm −→ M
m+n be an isometric immersion of a

r-lightlike submanifold (1 ≤ r ≤ m, r ̸= n) (M, g, S(TM), S(TM⊥)) into
(Mm+n

c , g). If the induced connection ∇ and the transversal connection ∇t

are metric ones, then the substantial codimension of f is less than or equal to
n − r.

Proof. As ∇ and ∇t are metric, ltr(TM) is parallel w.r.t. the connection ∇t.
Hence S(TM⊥) is also parallel w.r.t. ∇t. In particular S(TM⊥) is parallel
w.r.t. ∇s. Since T1(x) ⊂ S(TxM⊥) and S(TM⊥) has a constant rank n − r,
there exists a parallel distribution P of constant rank in S(TM⊥) such that
T1(x) ⊂ P (x) ⊆ S(TxM⊥). Hence f admits a reduction of its codimension to
the rank of P (0 < rank(P ) ≤ rank(S(TxM⊥)) = n − r). �

An isometric immersion f is said to be an 1-regular if the first transversal
(radical) space has a constant rank.

Corollary 3.2. If f is an 1-regular immersion and T1 = S(TM⊥), then the
codimension of f can be reduced to n − r.

As a consequence of Theorem 2.1, we have

Corollary 3.3. The totally geodesic submanifold Qm+p of IRm+n
q obtained af-

ter reduction of codimension and which contains f(Mm) is a degenerate sub-
manifold of IRm+n

q . Moreover

• If p < n − r, then Qm+p is r-lightlike.

• If p = n − r, then Qm+p is coisotropic.
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Proof. Since hl = 0 and T1(x) ⊂ P (x) ⊂ S(TM⊥), then ∀x ∈ M, TxM⊕P (x)
has r lightlike vectors fields. Hence Q is r-degenerate because

TxQ = TxM ⊕ P (x) = S(TxM) ⊕ Rad(TxM) ⊕ P (x), ∀x ∈ M.

Moreover

TxM = TxM ⊕ P (x) ⊕ P⊥(x) ⊕ ltr(TxM) = TxQ + tr(TxM), ∀x ∈ M

where tr(TxM) = P⊥(x) ⊕ ltr(TxM).
If p < n − r, then the rank of P⊥(x) is zero. Hence Q is an r degenerate

manifold.
If p = n − r, then the rank of P⊥(x) is zero and tr(TxM) = ltr(TxM).

Hence Q is lightlike coisotrope submanifold. �

Proof of Theorem 2.2. The idea of proof is identical to that of Theorem 2.1
apart from some technical use for radical subbundle. Let x ∈ M , we will prove
that f(M) ⊂ TxM ⊕ P̃ (x) and that TxM ⊕ P̃ (x) is totally geodesic in IRm+n

q .
Let η be a vector of P (x) and ηt the parallel transport of η in P along an

arbitrary smooth curve γ : I −→ M (I ⊂ IR) through x. The relation (2.7)
gives

∇γ̇ηt = ∇γ̇ηt + hl(γ̇, ηt) ∀I ∈ IR.

With the Weingarten relation we have

∇γ̇ηt = −Ȧηt γ̇ + ∇̇γ̇ηt

ηt ∈ Γ(P ) =⇒ Ȧηt γ̇ = 0. As ηt is obtained by parallel transport of η along γ
in Γ(P ), ∇̇t

γ̇ηt = 0, ∀t ∈ I. Hence we have ∇γ̇ηt = 0.
With relation (2.12), h(ηt, γ̇) = 0, and ∇γ̇ηt = 0 yields ηt = η = cste

d

dt
(g(f(γ(t)) − f(x), ηt)) = g(f⋆γ̇, η) = 0.

As γ and η are arbitrary and f(γ(t)) − f(x) ∈ ltr(M), we have

f(γ(t)) − f(x) ∈ P̃ (γ(t)).

Hence
f(M) ⊂ Tx(M) ⊕ P̃ (x) ≡ IRm+p.

IRm+p is totally geodesic in IRm+n
q . �

Corollary 3.4. Let f : Mm −→ IRm+n
q be a 1-regular immersion. If R1 is a

parallel subbundle of rank p < n, then f has a substantial codimension p.
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3.2. Proof of Theorem 2.3

For totally umbilical coisotropic submanifold M , T1(x) = span{Nx}, for each
x ∈ M and as N is a parallel vector field, T1 is then a distribution of constant
rank 1. Then the first radical space R1 is also parallel and of constant rank 1.
Use Theorem 2.2 to complete the proof. �

Remark 3.1. In the Theorem 2.3, one can replace the condition on the vector
field N by ∇t

ξi
N = α(ξi)N (parallel along the Rad(TM) subbundle), where

α(ξi) is a smooth function of M , because we have

∇t
XN = 0, ∀X ∈ Γ(S(TM)).(3.1)

§4. Examples

4.1. r-lightlike submanifold

We consider the surface M of Euclidean space IR4
2 with semi-Riemannian met-

ric of signature sig(g) = (−,−, +, +) by equations:

M −→ IR4
2

(v1, v2) 7−→ (x1, x2, x3, x4)

where 

x1 = v1

x2 = v2

x3 =
1√
2
(v1 + v2)

x4 =
1
2

log(1 + (v1 − v2)2)

TM = span{V1, V2}
with

V1 =
∂

∂v1
=

∂

∂x1
+

1√
2

∂

∂x3
+

(x1 − x2)
(1 + (x1 − x2)2)

∂

∂x4

V2 =
∂

∂v2
=

∂

∂x2
+

1√
2

∂

∂x3
− (x1 − x2)

(1 + (x1 − x2)2)
∂

∂x4

and TM⊥ = span{H1,H2},
where

H1 =
∂

∂x1
+

√
2

∂

∂x3

H2 = 2(x2 − x1)
∂

∂x2
+

√
2(x2 − x1)

∂

∂x3
+ (1 + (x2 − x1)2)

∂

∂x4
,
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moreover H1 = V1 + V2, and

Rad(TM) = TM ∩ TM⊥ = span{ξ = H1}

is a distribution of constant rank 1. Hence the surface M is a 1-lightlike surface
of IR4

2. The vector subbundle S(TM⊥), complementary to rad(TM) in TM⊥

is spanned by H2.

S(TM⊥) = span{H2}.

The construction of lightlike transversal vector bundle ltr(TM) gives:

ltrTM = span

{
N = −1

2
∂

∂x1
+

1
2

∂

∂x2
+

1√
2

∂

∂x3

}

and g(N, N) = 0, g(N, ξ) = 1.
Put H1 = ξ, H2 = W2 and U =

√
2(1 + (x1 − x2))V2.

Therefore

tr(TM) = ltr(TM) ⊥ S(TM⊥) = span{N,W}.

An easy computation gives

∇UU = 2(1 + (x2 − x1)2)
{

2(x2 − x1)
∂

∂x2
+

√
2(x2 − x1)

∂

∂x3
+

∂

∂x4

}

∇ξU = ∇Xξ = ∇XN = 0 ∀X ∈ Γ(TM).
Using the Gauss and Weingarten relations, we obtain

hl = 0, hs(X, ξ) = 0, hs(U,U) = W

∇XU =
2
√

2(x1 − x2)3

(1 + (x1 − x2)2)
X2U with X = X1ξ+X2U ∈ Γ(TM), Aξ = 0, Dl(X,W ) =

0, AW ξ = 0 and AW U = −2U .
So, the surface M is non totally geodesic and the induced and transversal

connections ∇ and ∇t respectively are metric connections. The first transver-
sal space is given by

T1(x) = {hs(X,Y ), X, Y ∈ Γ(TM)} = S(TxM⊥).

The distribution T1 is of constant rank 1. Hence M admits a reduction of its
codimension to 1.
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4.2. Coisotropic submanifold

Let M be a submanifold of IR5
2, Euclidean space of IR5 with semi-Riemannian

metric of signature sig(g) = (−,−, +,+, +). Suppose M is defined by equa-
tions: 

x1 = u

x2 = ((v1)2 + (v2)2)
1
2

x3 = v1

x4 = u
x5 = v2

(4.1)

The tangent bundle is given by TM = span{U1, U2, U3} where

U1 =
∂

∂u
=

∂

∂x1
+

∂

∂x4

U2 =
∂

∂v1
=

x3

x2

∂

∂x2
+

∂

∂x3

U3 =
∂

∂v2
=

x5

x2

∂

∂x2
+

∂

∂x5

and the cotangent bundle is TM⊥ = span{ξ1 = U1, ξ2 = x3U2 + x5U3}.
Then the radical subbundle is given by Rad(TM) = TM ∩ TM⊥ = TM⊥.

Thus M is coisotropic.
The construction of lightlike transversal subbundle, ltr(TM) gives:

ltrTM = span{N1, N2}

where
N1 =

1
2

(
− ∂

∂x1
+

∂

∂x4

)
and N2 =

1
2(x3)2

(
−x2 ∂

∂x2
+ x3 ∂

∂x3
− x5 ∂

∂x5

)
with g(Ni, Nj) = 0, g(Ni, ξj) = δij .

Put TM = span{ξ1, ξ2, V } where V = x2U3. With a direct computation
IR5

2, we obtain

∇V ξ1 = ∇ξ2ξ1 = ∇ξ1ξ2 = ∇ξ1V = 0, ∇V ξ2 = V.

∇ξ2ξ2 = ξ2, ∇ξ2V = V, ∇V V = x2 ∂

∂x2
+ x5 ∂

∂x5
.

Thus the Gauss and the Weigentern formulas give

∇V ξ2 = V, ∇ξ1ξ2 = ∇ξ1V = 0, ∇ξ2ξ2 = ξ2, ∇ξ2V = V,

∇V V =
1
2
ξ2, ∇Xξ1 = 0 ∀X ∈ Γ(TM)
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and

hl
1(X, Y ) = 0, hl

2(X, ξ) = 0, hl
2(V, V ) = −(x3)2 ̸= 0 ∀x ∈ M.

Then the induced connection ∇ on M , is not a metric connection, thus M is
no totally geodesic. Moreover we have Ȧξ1X = Ȧξ2ξ = 0, Ȧξ2V = −V, ∀X ∈
Γ(TM) and ξ ∈ Γ(TM⊥). Therefore the first transversal space and the first
radical space are

T1(x) = span{hl(V, V )} = span{N2} and R1(x) = span{ξ2}.

We have g(∇V ξ2, N1) = 0. So R1(x) is parallel ∀x ∈ M and the rank of
R1 is constant equal to 1. The map f is 1-regular and admits a substantial
codimension 1. Moreover, we have

hl(X,Y ) = g(X,Y )N2.
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Institut de Mathématiques et de Sciences Physiques(IMSP)ICAC-3 (Affiliate Centre of the
ICTP - Trieste, Italy
BP 613 Porto-Novo (Rép. du Bénin)
E-mail : hassirou@imsp-uac.org
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