Representations of p'-valenced Schurian schemes

Akihide Hanaki and Yoshimasa Hieda

(Received May 30, 2008; Reviced October 31, 2008)

Abstract. Let p be a prime number. We consider representations of p'-valenced Schurian schemes over a field of characteristic p, especially the case that the cardinality of the underlying set can be divided by p and not by p^2 . A typical example of such scheme is obtained by the following way. Let G be a finite group of order pq, where q is prime to p, and let H be a p'-subgroup of G. Define the scheme by the action of G on $H \setminus G$. In this case, we will show that the adjacency algebra is a direct sum of some Brauer tree algebras and simple algebras, and hence it has finite representation type.

Also we give some examples of the case that G is the symmetric group of degree p and H is its Young subgroup.

AMS 2000 Mathematics Subject Classification. 05E30.

Key words and phrases. Association scheme, Schurian scheme, Representation type, Brauer tree algebra, Schur functor

§1. Introduction

Let (X, S) be an association scheme in the sense in [14], and let F be an algebraically closed field of positive characteristic p. It is natural to consider the problem: "Determine the representation type of the adjacency algebra". We say a finite dimensional F-algebra A has finite representation type if the cardinality of isomorphism classes of finite dimensional indecomposable A-modules is finite. It is well-known that a group algebra has finite representation type if and only if its Sylow p-subgroup is cyclic ([7]). We want to consider a generalization of this fact to association schemes. But an association scheme does not have something like a Sylow subgroup. So we consider the case that |X|, the cardinality of the underlying set X, can be divided by p and not by p^2 . But this assumption is not enough to our problem.

Example 1.1. Let (X, S) be the group association scheme of the symmetric group \mathfrak{S}_3 of degree 3, and let p = 3. The adjacency algebra FS is isomorphic to the center of the group algebra $F\mathfrak{S}_3$, and so FS is isomorphic

to $F[x,y]/(x^2,y^2,xy)$. This algebra has infinite representation type (see [4, I.4.3.1]).

So we strengthen our hypothesis. Suppose the scheme is p'-valenced, namely the valency of every relation in S is prime to p.

Question 1.2. Let (X, S) be a p'-valenced scheme and F be an algebraically closed field of positive characteristic p. Suppose |X| can be divided by p and not by p^2 . Is it true that FS has finite representation type?

In this article, we will give a partial result to this question. A typical example of a scheme satisfying the conditions in Question 1.2 is obtained as follows.

Example 1.3. Let G be a finite group with order pq, where q is prime to p, and H a p'-subgroup of G. Define a Schurian scheme (X, S) by the action of G on $H \setminus G$. Then (X, S) satisfies the assumption in Question 1.2.

We will denote the Schurian scheme defined by a finite group G and its subgroup H by $\mathfrak{X}(G,H)$. We call a scheme isomorphic to the Schurian scheme $\mathfrak{X}(G,H)$ defined by a p'-subgroup H a strongly p'-valenced Schurian scheme. For example, the Schurian scheme $\mathfrak{X}(G,H)$ defined by the way in Example 1.3 is a strongly p'-valenced. Also we write \mathfrak{S}_n , \mathfrak{A}_n , and \mathfrak{C}_n for the symmetric group of degree n, the alternating group of degree n, and the cyclic group of order n, respectively.

Example 1.4. Let $G = \mathfrak{S}_4$, $H = \mathfrak{S}_3$, and let p = 2. Then $\mathfrak{X}(G, H)$ seems to be not strongly 2'-valenced Schurian, since H is not a 2'-subgroup. But easily we can see that $\mathfrak{X}(G, H)$ is isomorphic to $\mathfrak{X}(\mathfrak{A}_4, \mathfrak{C}_3)$, and $\mathfrak{X}(\mathfrak{A}_4, \mathfrak{C}_3)$ is strongly 2'-valenced Schurian.

Our main result is as follows, though it is an easy corollary to the results in [5] and [10]. This is a partial answer to Question 1.2.

Theorem 1.5. Let (X,S) be a strongly p'-valenced Schurian scheme with |X| = pq, where q is prime to p, and let F be an algebraically closed field of characteristic p. Then the adjacency algebra FS is a direct sum of some Brauer tree algebras and simple algebras, especially its representation type is finite.

We note that the result is valid even for a non-Schurian scheme, if it is algebraically isomorphic to a Schurian scheme.

In section 4, we will give some examples of the adjacency algebra for the case $G = \mathfrak{S}_p$. For example, we consider the case that H is a Young subgroup

of \mathfrak{S}_p . In this case, the principal block is the only one non-semisimple block of the adjacency algebra, and we can determine the Brauer tree of it. We note that, if $H = \mathfrak{S}_t \times \mathfrak{S}_{p-t}$, then the scheme is the Johnson scheme. This example is related to some results in [6] and [13].

§2. Preliminaries

Let (X, S) be an association scheme, namely, X is a finite set, S is a collection of non-empty subsets of $X \times X$ and they satisfy the following conditions:

- (1) $X \times X = \bigcup_{s \in S} s$ (disjoint),
- (2) $1 := \{(x, x) | x \in X\} \in S$,
- (3) if $s \in S$ then $s^* := \{(y, x) | (x, y) \in s\} \in S$,
- (4) and $\sigma_s \sigma_t = \sum_{u \in S} p_{st}^u \sigma_u$ for some $p_{st}^u \in \mathbb{Z}$, where $\sigma_s \in Mat_{|X|}(\mathbb{Z})$ for $s \in S$ is the adjacency matrix, i.e., $\sigma_s \in Mat_{|X|}(\mathbb{Z})$ by $(\sigma_s)_{xy} = 1$ if $(x,y) \in s$ and 0 otherwise.

Hence every row or column of σ_s contains exactly $n_s := p_{ss^*}^1$ ones. We call n_s the valency of $s \in S$. An association scheme (X, S) is said to be p'-valenced if every valency is prime to p. Also from the condition (4) $\mathbb{Z}S := \bigoplus_{s \in S} \mathbb{Z}\sigma_s \subset Mat_{|X|}(\mathbb{Z})$ is a \mathbb{Z} -algebra. Then for any commutative ring R with unity, we can define an R-algebra $RS := R \otimes_{\mathbb{Z}} \mathbb{Z}S$ and call it the adjacency algebra of (X, S) over R.

Let G be a finite group and H a subgroup of G. We know that the adjacency algebra of the Schurian (association) $scheme \mathfrak{X}(G,H)$ is isomorphic to the Hecke algebra $\operatorname{End}_{RG}(R[H\setminus G])$ as an R-algebra. Also, for $s\in S$, $n_s=|H:H\cap H^g|$ for some $g\in G$. So $\mathfrak{X}(G,H)$ is p'-valenced if and only if $|H:H\cap H^g|$ is prime to p for all $g\in G$. In particular, if H is a p'-subgroup of G then $\mathfrak{X}(G,H)$ is p'-valenced.

We recall a strongly p'-valenced Schurian scheme (X, S), which is isomorphic to a Schurian scheme $\mathfrak{X}(G, H)$, where H is a p'-subgroup of G.

From now on we prepare some terminologies and basic facts from the representation theory of algebras and the symmetric groups for later use. We refer to [3] or [11], and [8] or [9].

First we assume that all algebras and their (right) modules are finitely generated over the coefficient rings under consideration. If A is a ring with unity, then IRR(A) denotes a full set of non-isomorphic irreducible A-modules and mod(A) denotes the category of (finitely generated right) A-modules. Moreover, we fix the following notations: let F be an algebraically closed field

of characteristic p and (K, R, F) be a (splitting) p-modular system, that is, R is a complete discrete valuation ring with F as residue field and K is the quotient field of R of characteristic 0. Here "splitting" means that K is a splitting field for all K-algebras considered here (of course F is so).

If A is an R-algebra then we also consider k-algebra $A^k := k \otimes_R A$, where k is K or F, and $A \subset A^K$ via $a \in A$ identifies with $1_K \otimes a \in A^K$. For an A^K -module M we have an R-free A-submodule M_0 , called an R-form of M, such that $M \simeq K \otimes_R M_0$ and write $M_0^* = F \otimes_R M_0$, called a modular reduction of M.

Remark. ([11, Chapter 2 Theorem 1.6, 1.9]) An R-form M_0 of M always exists and is not unique in general, not even up to isomorphism. Then modular reductions of M are not isomorphic. However, the set of irreducible constituents of M_0^* is uniquely determand by M.

Then for $M \in IRR(A^K)$ and $S \in IRR(A^F)$, we can write $d_{M,S}$, called the *decomposition number*, the composition multiplicity of S in M_0^* , i.e., the number of factors isomorphic to S in any composition series of M_0^* . Also matrix $(d_{M,S})$ is called the *decomposition matrix*.

Furthermore, for $U, V \in \text{mod}(A^F)$, write $U \leftrightarrow V$ if they have the same composition factors with multiplicities, and $U \mid V$ means that U is isomorphic to a direct summand of V.

A partition of the positive integer n is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_d)$ of non-negative integers whose sum is n. The Young diagram $[\lambda]$ associated with λ is the set of the ordered pairs (i,j) of integers, called the nodes of $[\lambda]$, with $1 \leq i \leq d$ and $1 \leq j \leq \lambda_i$, where d denotes the largest number such that $\lambda_d \neq 0$, called the depth of λ . They are illustrated as arrays of squares. So for example the partition $(n-m,1^m)$, we use exponential expressions to indicate repeating terms in the sequence, is called hook partition from its shape. A partition λ is said to be p-singular if there is an integer $i \geq 0$ such that $\lambda_{i+1} = \lambda_{i+2} = \cdots = \lambda_{i+p}$, and is p-regular otherwise. We denote by P(n) and $P(n)^0$ the sets of the partitions and p-regular partitions of n, respectively. The dominance order \leq on P(n) is defined as follows: given $\lambda, \mu \in P(n), \lambda \leq \mu$ if and only if $\sum_{1 \leq i \leq j} \lambda_i \leq \sum_{1 \leq i \leq j} \mu_i$ for all $j \geq 1$.

Given $\lambda \in P(n)$, we have a $k\mathfrak{S}_n$ -module S_k^{λ} called the *Specht module* corresponding to λ over k, where k is K or F. We know that $\operatorname{IRR}(K\mathfrak{S}_n) = \{S_K^{\lambda} \mid \lambda \in P(n)\}$ and $\operatorname{IRR}(F\mathfrak{S}_n) = \{D^{\lambda} \mid \lambda \in P(n)^0\}$, where D^{λ} denotes the *head* of S_F^{λ} . Namely, S_F^{λ} has the unique maximal submodule with quotient D^{λ} . Moreover, $\mathfrak{S}_{\lambda} := \mathfrak{S}_{\lambda_1} \times \mathfrak{S}_{\lambda_2} \times \cdots \times \mathfrak{S}_{\lambda_d}$ denotes the *Young subgroup* of \mathfrak{S}_n corresponding to λ . Then in closing of this section we introduce the following fact.

Proposition 2.1. ([9, Corrolary 2.2.2]) Given $\lambda, \mu \in P(n)$, $\lambda \leq \mu$ if and only if S_K^{μ} appears as direct summands of $K_{\mathfrak{S}_{\lambda}} \uparrow^{\mathfrak{S}_n} := K_{\mathfrak{S}_{\lambda}} \otimes_{K\mathfrak{S}_{\lambda}} K\mathfrak{S}_n \simeq K[\mathfrak{S}_{\lambda} \setminus \mathfrak{S}_n]$, where $K_{\mathfrak{S}_{\lambda}}$ is the trivial module of $K\mathfrak{S}_{\lambda}$.

§3. Brauer tree algebras and Schur functors

First we recall the definition of a Brauer tree algebra with a Brauer tree T according to [1] and [2]. So let k be an arbitrary field in this section.

A *Brauer tree* is a tree, namely, a finite undirected simple graph without cycles, which has the following informations and property:

- (1) an anticlockwise cyclic ordering of the edges incident to each vertex,
- (2) a positive integer, called the *multiplicity*, of each vertex,
- (3) and at most one vertex with multiplicity greater than one.

If there exists the vertex whose multiplicity greater than one, it is called the *exceptional vertex*, and its multiplicity is called the *exceptional multiplicity*.

Moreover, a (finite dimensional) k-algebra A is called a Brauer tree algebra for a Brauer tree T, if there is a one-to-one correspondence between the edges i of T and the irreducible A-modules $S_i \in IRR(A)$ which has the following properties:

- (1) $P_i/\text{rad}(P_i) \simeq \text{soc}(P_i) \simeq S_i$, where P_i is the projective cover of S_i ,
- (2) $\operatorname{rad}(P_i)/\operatorname{soc}(P_i)$, called the *heart* of P_i , is the direct sum of two (possibly zero) uniserial modules U_i, V_i corresponding to the two vertices u, v at the end of the edge i, respectively,
- (3) and if the edges around u are cyclically ordered $i, i_1, i_2, \dots, i_r, i$ in anticlockwise direction and the multiplicity of u is m_u , then the corresponding uniserial module U_i has composition factors (from the top)

$$S_{i_1}, S_{i_2}, \dots, S_{i_r}, S_i, S_{i_1}, S_{i_2}, \dots, S_{i_r}, S_i, \dots, \dots, S_i, S_{i_1}, S_{i_2}, \dots, S_{i_r}$$

so that $S_{i_1}, S_{i_2}, \dots, S_{i_r}$ appear m_u times and S_i appears $m_u - 1$ times.

Example 3.1. Let G be a finite group and B a p-block of the group algebra FG whose defect group is cyclic. Then B is a Brauer tree algebra with the Brauer tree T_B : the vertex u at the end of the edge i corresponding to the p-conjugate class of irreducible KG-module V_u such that the decomposition number $d_{V_u,S_i} \neq 0$. In fact, at most one p-conjugate class has the size m greater than one. So if there exists a such p-conjugate class, the vertex corresponding to this class is the exceptional vertex and m is the exceptional multiplicity.

In the rest of this article if a k-algebra A is a direct sum of some Brauer tree algebras and simple algebras, then we call A an extended Brauer tree algebra as simple algebra is presented by one vertex. Hence A has finite representation type.

Let A be a k-algebra and e be a non-zero idempotent of A. Also J(A) is the Jacobson radical of A. According to [5] and [10], we consider the *Schur functor* $f = f_{A,e}$ from mod(A) to mod(eAe), namely, for $V, V' \in \text{mod}(A)$ and A-map $\alpha : V \to V'$, f(V) := Ve and $f(\alpha) : Ve \to V'e$ is the eAe-map given by the restriction of α to Ve. Then the following holds.

Theorem 3.2. (see [5] and [10]) We use the above notations.

- (1) f(VJ(A)) = f(V)J(eAe) for any A-module V.
- (2) f is exact. In particular, if V is an A-module and W is an A-submodule of V, then $f(V/W) \simeq f(V)/f(W)$ as eAe-modules.
- (3) If V is an irreducible A-module then f(V) is either zero or irreducible eAe-module. Moreover, f induces the bijection from $IRR(A)^e := \{V \in IRR(A)|f(V) \neq 0\}$ to IRR(eAe).
- (4) If P is the projective cover of $S \in IRR(A)^e$, then f(P) is the projective cover of $f(S) \in IRR(eAe)$.
- (5) Put k = K. Let e be an idempotent of A_0 , an R-form of A, satisfying the condition $e^* \neq 0$. Then $d_{V,S} = d_{f(V),f^*(S)}$ for $V \in IRR(A)^e$ and $S \in IRR(A_0^*)^{e^*}$, where $f^* := f_{A_0^*,e^*}$. Therefore the decomposition matrix of eAe is the submatrix of the decomposition matrix of A, where the row (column resp.) indices are restricted to $IRR(A)^e$ ($IRR(A_0^*)^{e^*}$ resp.).

From this theorem, we have

Corollary 3.3. Let G be a finite group, H a p'-subgroup of G and $e := \frac{1}{|H|} \sum_{h \in H} h \in RG$. If G has a cyclic Sylow p-subgroup, then the Hecke algebra e^*FGe^* is an extended Brauer tree algebra, and the decomposition matrix of eKGe is the submatrix of the decomposition matrix of G, where the row (column resp.) indices are restricted to $IRR(KG)^e$ ($IRR(FG)^{e^*}$ resp.).

Proof. The second half follows from the above theorem (5). So we need only prove the first half.

As G has a cyclic Sylow p-subgroup, FG is an extended Brauer tree algebra, i.e., for any p-block B^* of FG, B^* is a Brauer tree algebra with the Brauer tree T_{B^*} or a simple algebra (see Example 3.1).

Case 1. B^* is a simple algebra (i.e., the defect of B^* is 0).

In this case $|\operatorname{IRR}(B)| = |\operatorname{IRR}(B^*)| = 1$. So let $\operatorname{IRR}(B) = \{V\}$. Then $e^*B^*e^*$ is 0 or a simple algebra according as V is in $\operatorname{IRR}(KG)^e$ or not. Case 2. B^* is a Brauer tree algebra (i.e., the defect of B^* is not 0).

We will show that $e^*B^*e^*$ is a direct sum of some Brauer tree algebras. First we mention that $V \in IRR(KG)^e$ if and only if $K_H \mid V \downarrow_H$, and $S \in IRR(FG)^{e^*}$ if and only if $F_H \mid S \downarrow_H$ as e is the central primitive idempotent of KH correponding to K_H .

Let $f = f_{KG,e}$ and $f^* = f_{FG,e^*}$ be the Schur functors. Then we consider the map $f := (f, f^*)$ from (mod(KG), mod(FG)) to $(\text{mod}(eKGe), \text{mod}(e^*FGe^*))$ via $f (V, S) = (f(V), f^*(S))$. Here we identify the edge (vertex respectively) of the Brauer tree T_{B^*} with the corresponding irreducible FG-module (the p-conjugate class of irreducible KG-modules respectively) (see Example 3.1). Hence the image $f (T_{B^*})$ is \emptyset or a disjoint union of some Brauer trees as follows: Put $V \in IRR(B)$ and $S \in IRR(B^*)$ with the decomposition number $d_{V,S} \neq 0$, i.e., the vertex V is at the end of the edge $S \circ -$. As the above mention and f (F) = f (F)

$$f(\circ -) = \begin{cases} \circ - & \text{if } S \in IRR(FG)^{e^*} \\ \circ & \text{if } S \not\in IRR(FG)^{e^*} \text{ and } V \text{ is not at the end of tree } T_{B^*}. \end{cases}$$

Furthermore, from the construction of T_{B^*} and $f(T_{B^*})$ there is still an anticlockwise cyclic ordering of the edges incident to each vertex of each tree parts in $f(T_{B^*})$, and if T_{B^*} has the exceptional vertex $V \in IRR(KG)^e$ with multiplicity m, then f(V) is the exceptional vertex and its multiplicity is m. Therefore, $f(T_{B^*})$ is \emptyset or a disjoint union of some Brauer trees according as $IRR(B) \cap IRR(KG)^e$ is \emptyset or not.

So we need only consider the case $\operatorname{IRR}(B) \cap \operatorname{IRR}(KG)^e \neq \emptyset$ and each Brauer tree parts \widetilde{T} in $f\!\!f(T_{B^*})$. Let $\beta_{\widetilde{T}}^*$ be the block of $e^*B^*e^*$ corresponding to \widetilde{T} . Then there is a one-to-one correspondence $f\!\!f$ between the edges of \widetilde{T} and the irreducible FG-modules in $\operatorname{IRR}\left(\beta_{\widetilde{T}}^*\right)$ which has the properties $(1)\sim(3)$ in the definition of the Brauer tree algebras as follows:

- (1) is clear since e^*FGe^* is symmetric algebra.
- (2) and (3): Let $f^*(S_i) \in IRR\left(\beta_{\widetilde{T}}^*\right)$. So we use the same notation in the definition of the Brauer tree algebras. As f^* preserves inclusion (in particular the unique maximal submodule and the simple socle) and direct sum by the above theorem,

possibly $f^*(U_i) = 0$ or $f^*(V_i) = 0$. Moreover, if U_i is a uniserial FG-module then $f^*(U_i)$ is either zero or a uniserial e^*FGe^* -module by the above theorem (1) and (2). In fact, if the edges around $f^*(U_i)$ are remaining cyclically ordered $i, i_{j_1}, i_{j_2}, \dots, i_{j_n}, i$ in anticlockwise direction and the multiplicity of $f^*(U_i)$ is the same m_u , then the corresponding uniserial module $f^*(U_i)$ has composition factors (from the top)

$$S_{i_{j_1}}, S_{i_{j_2}}, \cdots, S_{i_{j_n}}, S_i, S_{i_{j_1}}, S_{i_{j_2}}, \cdots, S_{i_{j_n}}, S_i, \cdots, \cdots, S_i, S_{i_{j_1}}, S_{i_{j_2}}, \cdots, S_{i_{j_n}}, S_{i_{$$

so that $S_{i_{j_1}}, S_{i_{j_2}}, \cdots, S_{i_{j_n}}$ appear m_u times and S_i appears $m_u - 1$ times. Therefore $\beta_{\widehat{T}}^*$ is a Brauer tree algebra, namely, the assertion holds.

In particular, we get the next theorem:

Theorem 3.4. Let (X,S) be a strongly p'-valenced Schurian scheme with |X| = pq, where q is prime to p, and let F be an algebraically closed field of characteristic p. Then the adjacency algebra FS is an extended Brauer tree algebra, especially its representation type is finite.

Proof. By the assumption $(X,S) \simeq \mathfrak{X}(G,H)$ as association schemes for some finite group G and its p'-subgroup H. Hence FG is an extended Brauer tree algebra as |G| is devided by p and not by p^2 . So put $e := \frac{1}{|H|} \sum_{h \in H} h \in RG$. Then $FS \simeq e^*FGe^*$ and FS is also an extended Brauer tree algebra by the above corollary.

§4. Examples

Example 4.1. Let $\mu := (\mu_1, \mu_2, \dots, \mu_d)$ be a partition of p whose depth is d ($d \ge 2$). And let $G := \mathfrak{S}_p$, H be a Young subgroup \mathfrak{S}_μ of G, and let (X, S) be the Schurian scheme $\mathfrak{X}(G, H)$. Also let B_0 (β_0 resp.) be the principal p-block of RG (RS resp.). Then the following holds.

(1) $IRR(\beta_0) = \{S_i \mid 0 \le i \le d-1\}$ and $IRR(\beta_0^*) = \{D_i \mid 0 \le i \le d-2\}$, where S_i (D_i resp.) denotes the irreducible KS-module (FS-module resp.) corresponding to the partition $(p-i, 1^i)$.

(2) β_0^* is the Brauer tree algebra with tree being the following straight line:

So the decomposition matrix of β_0^* is the following form:

Proof. First we may assume that p > 2. As H is a p'-subgroup of G, we may identify FS with e^*FGe^* , where $e := \frac{1}{|H|} \sum_{h \in H} h \in RG$.

We know that $IRR(B_0) = \{S_K^{\lambda} \mid \lambda \text{ is a hook partition}\}$ and $IRR(B_0^*) = \{D^{\lambda} \mid \lambda \text{ is a } p\text{-regular hook partition}\}$. Moreover, B_0^* is the Brauer tree algebra with tree being the following straight line:

Here $\operatorname{IRR}(KG)^e \cap \operatorname{IRR}(B_0) = \{S_K^{(p-i,1^i)} \mid 0 \leq i \leq d-1\}$ since $(p) \triangleright (p-1,1) \triangleright \cdots \triangleright (p-d+1,1^{d-1}) \trianglerighteq \mu \not \lhd (p-d,1^d)$ and Proposition 2.1([9, Corollary 2.2.2]). Then $D^{(p-i,1^i)} \not \in \operatorname{IRR}(FG)^{e^*}$ for $d-1 \leq i \leq p-2$ and $D^{(p-(d-2),1^{d-2})} \in \operatorname{IRR}(FG)^{e^*}$ from the above Brauer tree. So we need only prove the first half of (2), namely, $\operatorname{IRR}(FG)^{e^*} \cap \operatorname{IRR}(B_0^*) = \{D^{(p-i,1^i)} \mid 0 \leq i \leq d-2\}$ by Corollary 3.3.

Now we use the induction on d. (i) d=2, i.e., $\mu=(p-j,j)$ for some $1 \leq j < p$. In this case $\operatorname{IRR}(FG)^{e^*} \cap \operatorname{IRR}(B_0^*) = \{D^{(p)}\}$. (ii) $d \geq 3$. There exists $\widetilde{\mu} \in P(p)$ such that the depth of $\widetilde{\mu}$ is d-1 and $\widetilde{H} := \mathfrak{S}_{\widetilde{\mu}} \geq \mathfrak{S}_{\mu} = H$. So by the hypothesis $F_{\widetilde{H}} \mid D_i \downarrow_{\widetilde{H}}$ for $0 \leq i \leq d-3$. Then $F_H \mid D_i \downarrow_H$, i.e., $D^{(p-i,1^i)} \in \operatorname{IRR}(FG)^{e^*}$ for $0 \leq i \leq d-3$ and the assertion holds.

Acknowledgement

The authors thank the referee for his/her careful reading of the article.

References

- [1] J. L. Alperin, *Local Representation Theory*, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge Univ Pr, 1986.
- [2] D. J. Benson, Representations and Cohomology: Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge Univ Pr, 1991.
- [3] C. W. Curtis and I. Reiner: Methods of Representation Theory with Application to Finite Groups and Orders-Volume I, John Wiley and Sons, New York, 1981.
- [4] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, 1990.
- [5] J. A. Green, *Polynomial representations of* GL_n , Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin, 1980.
- [6] Y. Hieda and Y. Tsushima, On $S_R(H)$ -blocks for finite groups, J. Algebra **202** (1998), no. 2, 583–588.
- [7] D. Higman, *Indecomposable representations at characteristic p*, Duke J. Math. **21** (1954), no. 2,377–381.
- [8] G. D. James, *The Representation Theory of Symmetric Groups*, Lecture Notes in Mathematics, vol. 682, Spriger-Verlag, Berlin, 1978.
- [9] G. D. James and A. Kerber, *The representation theory of the symmetric groups*, Encyclopedia of Math.16, Addison-Wesley, Massachusetts, 1981.
- [10] M. T. F. O. Martins, A theorem on decomposition numbers, Comm. Algebra 10 (1982), no. 4, 383–392.
- [11] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, 1989.
- [12] G. R. Robinson, Some Remarks on Hecke Algebras, J. of Algebra 163 (1994), 806–812.
- [13] O. Shimabukuro, An analogue of Nakayama's conjecture for Johnson schemes, Ann. Comb. 9 (2005), no. 1, 101–115.
- [14] P.-H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Mathematics, vol. 1628, Springer-Verlag, Berlin, 1996.

Akihide Hanaki

Department of Mathematical Sciences, Faculty of Science,

Shinshu University

Matsumoto 390-8621, Japan

E-mail: hanaki@math.shinshu-u.ac.jp

Yoshimasa Hieda

Department of Industrial Systems Engineering : Natural Science $\,$

Osaka Prefectural College of Technology Neyagawa, Osaka 572-8572, Japan

 $E ext{-}mail:$ hieda@las.osaka-pct.ac.jp