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Abstract. This paper deals with weakly Ricci-symmetric lightlike hypersur-
faces of indefinite Sasakian manifolds, tangent to the structure vector field.
We prove that, in a weakly Ricci symmetric lightlike η-Einstein (or Einstein)
hypersurface of an indefinite Sasakian manifold, the associated 1-forms α and
β satisfy α + β = 0 (Theorem 4). Also, we show that there exist no weakly
Ricci symmetric screen locally (or globally) conformal lightlike hypersurfaces of
indefinite Sasakian manifolds with cyclic parallel Ricci tensor if α + β + γ is
not everywhere zero (Theorem 5). A particular case of weakly Ricci symmetric
condition is studied and we prove that a special weakly Ricci symmetric screen
locally (or globally) conformal lightlike hypersurface cannot be η-Einstein (or
Einstein) and under certain condition, it cannot be (D ⊥ 〈ξ〉, D′)-mixed-totally
geodesic (Theorem 7).
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§1. Introduction

The notion of weakly Ricci symmetric manifolds was considered in [10], [9] and
others references therein. A non-flat semi-Riemannian manifold M is called
weakly Ricci-symmetric if the Ricci tensor Ric is non-zero and satisfies the
following condition, for any vector fields X , Y and Z in M ,

(∇XRic)(Y ,Z) = α(X)Ric(Y ,Z) + β(Y )Ric(X,Z)

+ γ(Z)Ric(Y ,X),(1.1)

where α, β and γ defined respectively by , g(X, ρ) = α(X), g(X, δ) = β(X),
g(X,κ) = γ(X), are 1-forms called the associated 1-forms which are not zero
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simultaneously and ∇ is the Levi-Civita connection for a semi-Riemannian
metric g. In such case, ρ, δ and κ are called associated vector fields corre-
sponding to the 1-forms α, β and γ respectively. If in (1.1) the 1-form α

is replaced by 2α, then the semi-Riemannian manifold is called a generalized
pseudo Ricci symmetric introduced by Chaky and Koley in [3]. So the defining
condition of weakly Ricci symmetric manifold is weaker than the generalized
pseudo Ricci symmetric manifold. If in (1.1) the 1-form α is replaced by 2α
and β and γ are equal to α, then the semi-Riemannian manifold is called a
special weakly Ricci symmetric and investigated by Singh and Kahan [9].

The purpose of this paper is to investigate the effect of weakly Ricci sym-
metric condition on the lightlike geometry of hypersurfaces of an indefinite
Sasakian manifold, tangent to the structure vector field ξ. Especially, we pay
attention to lightlike hypersurfaces with symmetric Ricci tensor. This, because
of the geometric point of view and also, physically, Ricci tensor symmetric is
essential (see [5] for details and references therein). In the next paragraph,
we summarize basic formulae concerning geometric objects on lightlike hyper-
surfaces, using notations of [4]. In the last part of the paper, we consider a
weakly Ricci symmetric lightlike hypersurface of an indefinite Sasakian man-
ifold. We prove that, in a weakly Ricci symmetric lightlike η-Einstein (or
Einstein) hypersurface of an indefinite Sasakian manifold, the associated 1-
forms α and β satisfy α + β = 0. We also prove that there exist no weakly
Ricci symmetric screen locally (or globally) conformal lightlike hypersurfaces
of indefinite Sasakian manifolds with cyclic parallel Ricci tensor if α + β + γ

is not everywhere zero. Finally, we prove that a special weakly Ricci sym-
metric screen locally (or globally) conformal lightlike hypersurface cannot be
η-Einstein (or Einstein) and if the trace of AN satisfies the partial differential
equation ξ · trAN − τ(ξ)trAN = 0, it cannot be (D ⊥ 〈ξ〉, D′)-mixed-totally
geodesic.

§2. Preliminaries

A (2n + 1)-dimensional semi-Riemannian manifold (M, g) is said to be an
indefinite Sasakian manifold if it admits an almost contact structure (φ, ξ, η),
i.e. φ is a tensor field of type (1, 1) of rank 2n, ξ is a vector field, and η is a
1-form, satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0,

η(X) = g(ξ,X), g(φX, φY ) = g(X,Y ) − η(X) η(Y ),

(∇Xη)Y = −g(φ X, Y ), (∇Xφ)Y = g(X,Y )ξ − η(Y )X,

∇Xξ = −φ(X), ∀X,Y ∈ Γ(TM))(2.1)
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where ∇ is the Levi-Civita connection for a semi-Riemannian metric g.
A plane section σ in TpM is called a φ-section if it is spanned by X and φX ,

where X is a unit tangent vector field orthogonal to ξ. The sectional curvature
of a φ-section σ is called a φ-sectional curvature. A Sasakian manifold M with
constant φ-sectional curvature c, M is said to be a Sasakian space form and
is denoted by M(c). The curvature tensor R of a Sasakian space form M(c)
is given by [11]

R(X,Y )Z =
c + 3

4

(

g(Y ,Z)X − g(X,Z)Y
)

+
c − 1

4

(

η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y ,Z)η(X)ξ

+ g(φ Y ,Z)φ X − g(φX,Z)φY − 2g(φX, Y )φ Z
)

, X, Y , Z ∈ Γ(TM).(2.2)

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with index
s, 0 < s < 2n + 1 and let (M, g) be a hypersurface of M , with g = g |M .

M is a lightlike hypersurface of M if g is of constant rank 2n − 1 and the
normal bundle TM⊥ is a distribution of rank 1 on M [4]. A complementary
bundle of TM⊥ in TM is a rank 2n − 1 non-degenerate distribution over M .
It is called a screen distribution and is often denoted by S(TM). A lightlike
hypersurface endowed with a specific screen distribution is denoted by the
triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the following result
has an important role in studying the geometry of a lightlike hypersurface.

Theorem 1. [4] Let (M, g, S(TM)) be a lightlike hypersurface of a semi-
Riemannian manifold (M, g). Then, there exists a unique vector bundle N(TM)
of rank 1 over M such that for any non-zero section E of TM⊥ on a coor-
dinate neighborhood U ⊂ M , there exist a unique section N of N(TM) on U
satisfying

g(N,E) = 1 and g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ).(2.3)

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote Γ(E) the smooth sections of the vector bundle E. Also by
⊥ and ⊕ we denote the orthogonal and nonorthogonal direct sum of two vector
bundles. By Theorem 1 we may write down the following decomposition

TM = S(TM) ⊥ TM⊥,(2.4)

TM = TM ⊕ N(TM) = S(TM) ⊥ (TM⊥ ⊕ N(TM))

Let ∇ be the Levi-Civita connection on (M, g), then by using the second
decomposition of (2.4), we have Gauss and Weingarten formulae in the form

∇XY = ∇XY + h(X,Y ), ∀X, Y ∈ Γ(TM),(2.5)

and ∇XV = −AV X + ∇⊥
XV, ∀X ∈ Γ(TM), V ∈ Γ(N(TM)),(2.6)
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where ∇XY , AV X ∈ Γ(TM) and h(X,Y ), ∇⊥
XV ∈ Γ(N(TM)). ∇ is a sym-

metric linear connection on M called an induced linear connection, ∇⊥ is a
linear connection on the vector bundle N(TM). h is a Γ(N(TM))-valued
symmetric bilinear form and AV is the shape operator of M concerning V .

Equivalently, consider a normalizing pair {E,N} as in Theorem 1. Then
(2.5) and (2.6) take the form, for any X, Y ∈ Γ(TM |U ),

∇XY = ∇XY + B(X,Y )N and ∇XN = −ANX + τ(X)N.(2.7)

It is important to mention that the second fundamental form B is independent
of the choice of screen distribution, in fact, from (2.7), we obtain

B(X,Y ) = g(∇XY,E), ∀X, Y ∈ Γ(TM |U ),(2.8)

τ(X) = g(∇⊥
XN,E), ∀X ∈ Γ(TM |U ).(2.9)

Let P be the projection morphism of TM on S(TM) with respect to the
orthogonal decomposition of TM . We have

∇XPY = ∇∗
XPY + C(X,PY )E and ∇XE = −A∗

EX − τ(X)E,(2.10)

where ∇∗
XPY and A∗

EX belong to Γ(S(TM)). C, A∗
E and ∇∗ are called

the local second fundamental form, the local shape operator and the induced
connection on S(TM). In general, the induced linear connection ∇ is not a
metric connection and we have

(∇Xg)(Y,Z) = B(X,Y )θ(Z) + B(X,Z)θ(Y ),

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·). Also,
we have the following identities,

g(A∗
EX,PY ) = B(X,PY ), g(A∗

EX,N) = 0, B(X,E) = 0.(2.11)

Finally, using (2.7), R and R are the curvature tensor fields of M and M are
related as

R(X,Y )Z = R(X,Y )Z + B(X,Z)ANY − B(Y,Z)ANX

+ {(∇XB)(Y,Z) − (∇Y B)(X,Z) + τ(X)B(Y,Z) − τ(Y )B(X,Z)}N,(2.12)

where (∇XB)(Y,Z) = X.B(Y,Z) − B(∇XY,Z) − B(Y,∇XZ).(2.13)

§3. Main Results

Let (M,φ, ξ, η, g) be an indefinite Sasakian manifold and (M, g) be its lightlike
hypersurface, tangent to the structure vector field ξ (ξ ∈ TM). If E is a
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local section of TM⊥, then g(φE,E) = 0, and φE is tangent to M . Thus
φ(TM⊥) is a distribution on M of rank 1 such that φ(TM⊥) ∩ TM⊥ = {0} .

This enables us to choose a screen distribution S(TM) such that it contains
φ(TM⊥) as vector subbundle. We consider a local section N of N(TM). Since
g(φ N,E) = −g(N,φ E) = 0, we deduce that φE is also tangent to M and
belongs to S(TM). On the other hand, since g(φ N,N) = 0, we see that the
component of φN with respect to E vanishes. Thus φN ∈ Γ(S(TM)). From
(2.1), we have g(φN, φE) = 1. Therefore, φ(TM⊥) ⊕ φ(N(TM)) (direct sum
but not orthogonal) is a nondegenerate vector subbundle of S(TM) of rank 2.

It is known [2] that if M is tangent to the structure vector field ξ, then, ξ

belongs to S(TM). Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists
a nondegenerate distribution D0 of rank 2n − 4 on M such that

S(TM) =
{

φ(TM⊥) ⊕ φ(N(TM))
}

⊥ D0 ⊥ 〈ξ〉,(3.1)

where 〈ξ〉 is the distribution spanned by ξ, that is, 〈ξ〉 = Span{ξ}. It is easy
to check that the distribution D0 is invariant under φ, i.e. φ(D0) = D0.

Example 1. Let R
7 be the 7-dimensional real number space. We consider

{xi}1≤i≤7 as cartesian coordinates on R
7 and define with respect to the natural

field of frames
{

∂
∂xi

}

a tensor field φ of type (1, 1) by its matrix:

φ(
∂

∂x1
) = −

∂

∂x2
, φ(

∂

∂x2
) =

∂

∂x1
+ x4

∂

∂x7
, φ(

∂

∂x3
) = −

∂

∂x4
,

φ(
∂

∂x4
) =

∂

∂x3
+ x6

∂

∂x7
, φ(

∂

∂x5
) = −

∂

∂x6
, φ(

∂

∂x6
) =

∂

∂x5
,

φ(
∂

∂x7
) = 0.(3.2)

The differential 1-form η is defined by

η = dx7 − x4dx1 − x6dx3.(3.3)

The vector field ξ is defined by ξ = ∂
∂x7

. It is easy to check (2.1) and thus

(φ, ξ, η) is an almost contact structure on R
7. Finally we define metric g on

R
7 by

g = (x2
4 − 1)dx2

1 − dx2
2 + (x2

6 + 1)dx2
3 + dx2

4 − dx2
5 − dx2

6 + dx2
7

− x4dx1 ⊗ dx7 − x4dx7 ⊗ dx1 + x4x6dx1 ⊗ dx3 + x4x6dx3 ⊗ dx1

− x6dx3 ⊗ dx7 − x6dx7 ⊗ dx3,(3.4)

with respect to the natural field of frames. It is easy to check that g is a semi-
Riemannian metric and (φ, ξ, η, g) given by (3.2)-(3.4) is a Sasakian structure
on R

7.
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We now define a hypersurface M of (R7, φ, ξ, η, g) as

M =
{

(x1, ..., x7) ∈ R
7 : x5 = x4

}

.(3.5)

Thus the tangent space TM is spanned by {Ui}1≤i≤6, where U1 = ∂
∂x1

, U2 =
∂

∂x2
, U3 = ∂

∂x3
, U4 = ∂

∂x4
+ ∂

∂x5
, U5 = ∂

∂x6
, U6 = ξ and the 1-dimensional

distribution TM⊥ of rank 1 is spanned by E, where E = ∂
∂x4

+ ∂
∂x5

. It fol-

lows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike hypersurface of

R
7. Also, the transversal bundle N(TM) is spanned by N = 1

2

(

∂
∂x4

− ∂
∂x5

)

.

On the other hand, by using the almost contact structure of R
7 and also

by taking into account of the decomposition (3.1), the distribution D0 is
spanned by

{

F, φF
}

, where F = U2, φF = U1 + x4ξ and the distribu-

tions 〈ξ〉, φ(TM⊥) and φ(N(TM)) are spanned, respectively, by ξ, φE =
U3−U5+x6ξ and φN = 1

2(U3+U5+x6ξ). Hence M is a lightlike hypersurface
of R

7.

Moreover, from (2.4) and (3.1) we obtain the decomposition

TM =
{

φ(TM⊥) ⊕ φ(N(TM))
}

⊥ D0 ⊥< ξ >⊥ TM⊥,(3.6)

TM =
{

φ(TM⊥) ⊕ φ(N(TM))
}

⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)).

Now, we consider the distributions on M ,

D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D′ := φ(N(TM)).(3.7)

Then D is invariant under φ and

TM = D ⊕ D′ ⊥ 〈ξ〉.(3.8)

Let us consider the local lightlike vector fields U := −φN, V := −φE. Then,
from (3.8), any X ∈ Γ(TM) is written as X = RX + QX + η(X)ξ, QX =
u(X)U, where R and Q are the projection morphisms of TM into D and D ′,
respectively, and u is a differential 1-form locally defined on M by u(·) :=

g(V, ·). Applying φ to X and (2.1) (note that φ
2
N = −N), we obtain φ X =

φX + u(X)N, where φ is a tensor field of type (1, 1) defined on M by φX :=
φ RX and we also have φ2 X = −X + η(X)ξ + u(X)U, ∀X ∈ Γ(TM). Now
applying φ to φ2 X and since φU = 0, we obtain φ3 + φ = 0, which shows
that φ is an f -structure [11] of constant rank. We have the following useful
identities

∇Xξ = −φX,(3.9)

B(X, ξ) = −u(X),(3.10)

B(X,U) = C(X,V )(3.11)

(∇Xu)Y = −B(X,φY ) − u(Y )τ(X).(3.12)
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Lemma 1. Let M be a lightlike hypersurface of an indefinite Sasakian mani-
fold M with ξ ∈ TM . Then, M is (D ⊥ 〈ξ〉, D ′)-mixed totally geodesic if and
only if, for any X ∈ Γ(D ⊥ 〈ξ〉),

ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉).(3.13)

Proof. By the definition, M is (D ⊥ 〈ξ〉, D ′)-mixed totally geodesic if and only
if, for any X ∈ Γ(D ⊥ 〈ξ〉), B(X,U) = 0, From (3.11) we obtain u(ANX) =
g(ANX,V ) = 0. i.e. ANX ∈ Γ(D ⊥ 〈ξ〉). Given that ANX has no component
in Γ(TM⊥), then ANX ∈ Γ(φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉). The converse is obvious
by using (3.11).

From (3.10), we have B(ξ, U) = −1. This means that the lightlike hyper-
surface M of an indefinite Sasakian manifold M , with ξ ∈ TM , cannot be
(〈ξ〉, D′)-mixed totally geodesic.

Lemma 2. Let M be a lightlike hypersurface of an indefinite Sasakian space

M
2n+1

with ξ ∈ TM . Then, for any X ∈ Γ(TM),

∇XU = −

2n−4
∑

i=1

C(X,φFi)

g(Fi, Fi)
Fi − θ(X)ξ + C(X,U)E + τ(X)U(3.14)

Proof. From the definition of lightlike hypersurface of an indefinite Sasakian
manifold through the local field of frames

{

φE, φN, ξ,E, Fi

}

1≤i≤2n−4
on U ⊂

M , where {Fi}1≤i≤2n−4 is an orthonormal field of frames of D0, we have, for

any X ∈ Γ(TM), ∇XU =
∑2n−4

i=1 λiFi+ϕ1ξ+ϕ2E+ϕ3V +ϕ4U. From (2.7) and
(2.10), we obtain λig(Fi, Fi) = g(∇XU,Fi) = −g(ANX,φFi) = −C(X,φFi),
ϕ1 = g(∇XU, ξ) = −g(∇XφN, ξ) = −θ(X), ϕ2 = g(∇XU,N) = C(X,U),
ϕ3 = g(∇XU,U) = 0 and ϕ4 = g(∇XU, V ) = τ(X) which prove (3.14).

We are now concerned with the structure equations of the immersions of
a lightlike hypersurface in a semi-Riemannian manifold. Let us consider the
pair {E,N} on U ⊂ M (see Theorem 1) and by using (2.2) and (2.12), we
have

(∇XB)(Y,Z) − (∇Y B)(X,Z) = τ(Y )B(X,Z) − τ(X)B(Y,Z)

+
c − 1

4

(

g(φY,Z)u(X) − g(φX,Z)u(Y ) − 2g(φX, Y )u(Z)
)

.(3.15)

In the sequel, we need the following proposition.

Proposition 3. Let M be a lightlike hypersurface of an indefinite Sasakian
space form M(c) of constant curvature c with ξ ∈ TM . Then, the Lie deriva-
tive of the second fundamental form B with respect to ξ is given by

(LξB)(X,Y ) = −τ(ξ)B(X,Y ), ∀X, Y ∈ Γ(TM).(3.16)

Moreover, if τ(ξ) 6= 0, then ξ is a Killing vector field with respect to the second
fundamental form B if and only if M is totally geodesic
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Proof. By replacing Z with ξ into (2.13) and using (3.9), we obtain

(∇ξB)(X,Y ) = (LξB)(X,Y ) + B(φX, Y ) + B(X,φY ).(3.17)

Likewise, by replacing Z with X and X with ξ into (2.13) and also using (3.9)
and (3.10), we have

(∇XB)(ξ, Y ) = −X.u(Y ) + B(φX, Y ) + u(∇XY ).(3.18)

Substracting (3.17) and (3.18), and using (3.12) we obtain

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = (LξB)(X,Y ) − u(Y )τ(X).(3.19)

From (3.15), the left hand side of (3.19) becomes

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = −u(Y )τ(X) − τ(ξ)B(X,Y ).(3.20)

The expressions (3.19) and (3.20) implies (LξB)(X,Y ) = −τ(ξ)B(X,Y ). If
τ(ξ) 6= 0, the equivalence follows.

Note that the 1-form τ in (2.9) depends on the vector field E and it is easy
to see that if E = λE with λ a positive smooth function on M , the associated
1-form τ is related to τ by

τ(X) = τ(X) + X(ln λ), ∀X ∈ Γ(TM |U ).(3.21)

The induced connection ∇ on the lightlike hypersurface M is not metric in
general and the Ricci tensor associated is not symmetric, contrary to the case
of semi-Riemannian manifolds. However, for η-Einstein (or Einstein) light-
like hypersurfaces, that is, the Ricci tensor Ric tensor satisfies Ric(X,Y ) =
k1g(X,Y ) + k2η(X)η(Y ) (or Ric(X,Y ) = kg(X,Y )), due to the symmetric of
the induced degenerate metric g and η⊗ η, the Ricci tensor is symmetric, and
the notion of η-Einstein (respectively Einstein) manifold does not depend on
the choice of the screen distribution S(TM). Consequently

Proposition 4. On a lightlike η-Einstein (respectively, Einstein) hypersur-
face, the 1-form τ in (2.9) is closed.

Proof. Define the Ricci tensor Ric as

Ric(X,Y ) = trace(Z −→ R(X,Y )Z), ∀X, Y ∈ Γ(TM)

where R is the curvature tensor of the induced connection ∇.
Consider a local quasi-orthogonal frame field {X0, N,Xi}i=1,...,2n−1 on M

where {X0, Xi} is a local frame field on M with respect to the decomposi-
tion (3.7) with N , the unique section of transversal bundle N(TM) satisfying
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(2.3), and E = X0. Put Rls := Ric(Xs, Xl) and R0k := Ric(Xk, X0). Us-
ing the frame field {X0, N,Xi}, a direct calculation gives locally Rls − Rsl =
2dτ(Xl, Xs) and R0k−Rk0 = 2dτ(X0, Xk). Since the Ricci tensor is symmetric
on M which is η-Einstein (respectively, Einstein), we have dτ = 0.

By definition Ric(X,Y ) = trace(Z −→ R(X,Y )Z), we have, for any X,
Y ∈ Γ(TM),

Ric(X,Y ) =

2n−4
∑

i=1

εig(R(Fi, X)Y, Fi) + g(R(ξ,X)Y, ξ) + g(R(E,X)Y,N)

+ g(R(φE,X)Y, φN) + g(R(φN,X)Y, φE),(3.22)

where {Fi}1≤i≤2n−4 is an orthogonal basis of D0 and εi = g(Fi, Fi) 6= 0, since
the distribution D0 is non-degenerate. From Gauss and Codazzi equations,
we obtain

g(R(Fi, X)Y, Fi) =
c + 3

4
{εig(X,Y ) − g(X,Fi)g(Y, Fi)}

+
c − 1

4

{

−εiη(X)η(Y ) + g(Fi, φY )g(φX,Fi)

+ g(φX, Y )g(φFi, Fi) + 2g(φX,Fi)g(φY, Fi)
}

+ B(X,Y )C(Fi, Fi) − B(Fi, Y )C(X,Fi),(3.23)

g(R(ξ,X)Y, ξ) =
c + 3

4
{−η(Y )η(X) + g(X,Y )}

+
c − 1

4
{−g(X,Y ) + η(X)η(Y )} + B(X,Y ))C(ξ, ξ)

− B(ξ, Y )C(X, ξ),(3.24)

g(R(E,X)Y,N) =
c + 3

4
g(X,Y ) +

c − 1

4
{−η(X)η(Y ) + u(Y )θ(φX)

− 2u(X)θ(φY )} ,(3.25)

g(R(φE,X)Y, φN) =
c + 3

4
{−u(Y )v(X) + g(X,Y )} +

c − 1

4
{−η(X)η(Y )

+ 2u(φX)v(φY )
}

+ B(X,Y )C(φE, φN)

− B(φE, Y )C(X,φN),(3.26)

g(R(φN,X)Y, φE) =
c + 3

4
{g(X,Y ) − u(X)v(Y )}

+
c − 1

4

{

−η(X)η(Y ) − θ(Y )u(φX) + 2v(φX)u(φY )
}

+ B(X,Y )C(φN, φE) − B(φN, Y )C(X,φE).(3.27)

So substituting (3.23), (3.24), (3.25), (3.26) and (3.27) in (3.22) and by re-
grouping like terms, we have the following result.
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Proposition 5. Let M be a lightlike hypersurface of an indefinite Sasakian
manifold M with ξ ∈ TM . Then the Ricci tensor Ric is given by, for any X,
Y ∈ Γ(TM),

Ric(X,Y ) = ag(X,Y ) − bη(X)η(Y ) + B(X,Y )trAN

− B(ANX,Y ),(3.28)

where a = (2n+1)(c+3)−8
4 , and b = (2n+1)(c−1)

4 and trace tr is written with
respect to g restricted to S(TM).

By Proposition 5 and using (3.10), we have the following useful identities

Ric(X, ξ) = 2(n − 1)η(X) − u(X)trAN + u(ANX),(3.29)

Ric(ξ, Y ) = 2(n − 1)η(Y ) − u(Y )trAN − B(ANξ, Y ).(3.30)

From (3.28), we have

Ric(X,Y ) − Ric(Y,X) = B(ANX,Y ) − B(ANY,X).(3.31)

This means that the Ricci tensor of a lightlike hypersurface M of an indefinite
Sasakian space form M(c) is not symmetric in general. So, only some privi-
leged conditions on the local second fundamental form of M may enable the
Ricci tensor to be symmetric. It is easy to check, from (3.28), that the Ricci
tensor of M is symmetric if and only if the shape operator of M is symmetric
with respect to the second fundamental form of M . Also, the Ricci tensor
of the induced connection ∇ of any totally geodesic lightlike hypersurface is
symmetric.

Are there any others, with symmetric induced Ricci tensors, but not neces-
sarily totally geodesic or shape operator symmetric with respect to the second
fundamental form ? Here is one such class. First, we recall the definition of
screen conformal lightlike hypersurfaces of a semi-Riemannian manifold M .

A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold is
screen locally conformal if the shape operators AN and A∗

E of M and its screen
distribution S(TM), respectively, are related by [5]

AN = ϕA∗
E(3.32)

where ϕ is a non-vanshing smooth function on U in M . In case U = M

the screen conformality is said to be global. Such a submanifold has some
important and desirable properties, for instance, the integrability of its screen
distribution (see [5] for details).

Theorem 2. Let (M, g, S(TM)) be a locally (or globally) screen conformal
lightlike hypersurface of an indefinite Sasakian manifold (M (c), g) of constant
curvature c with ξ ∈ TM . Then the Ricci tensor of the induced connection ∇
is symmetric.
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Proof. From (3.31) and (3.32), we obtain

Ric(X,Y ) − Ric(Y,X) = B(ANX,Y ) − B(ANY,X)

= ϕ (B(A∗
EX,Y ) − B(A∗

EY,X))

= ϕg([A∗
E , A∗

E ]Y,X) = 0.

This complete the proof.

Example 2. Let M be a hypersurface of R
7, of Example 1, given by

x5 = x4,

where (x1, ..., x7) is a local coordinate system for R
7. As explained in Example

1, M is a lightlike hypersurface of R
7 having a local quasi-orthogonal field of

frames {U1, U2, U3, U4 = E, U5, U6 = ξ, N} along M . Denote by ∇ the Levi-
Civita connection on R

7. Then, by straightforward calculations, we obtain

∇U1
N = −

1

4
x4U1 −

1

4
(x2

4 + 1)ξ, ∇U2
N = ∇U4

N = ∇U5
N = 0,

∇U3
N = −

1

4
x6U1 −

1

4
x4x6ξ, ∇ξN =

1

4
U1 +

1

4
x4ξ,(3.33)

∇U1
E = −

1

2
x4U1 −

1

2
(x2

4 + 1)ξ, ∇U2
E = ∇U4

E = ∇U5
E = 0,

∇U3
E = −

1

2
x6U1 −

1

2
x4x6ξ, ∇ξE =

1

2
U1 +

1

2
x4ξ.(3.34)

Using these equations above, the differential 1-form τ vanishes i.e. τ(X) = 0,
for any X ∈ Γ(TM). So, from the Gauss and Weingarten formulae we infer

ANU1 =
1

4
x4U1 +

1

4
(x2

4 + 1)ξ, ANU2 = ANU4 = ANU5 = 0,

ANU3 =
1

4
x6U1 +

1

4
x4x6ξ, ANξ = −

1

4
U1 −

1

4
x4ξ,(3.35)

A∗
EU1 =

1

2
x4U1 +

1

2
(x2

4 + 1)ξ, A∗
EU2 = A∗

EU4 = A∗
EU5 = 0,

A∗
EU3 =

1

2
x6U1 +

1

2
x4x6ξ, A∗

Eξ = −
1

2
U1 −

1

2
x4ξ.(3.36)

From (3.35) and (3.36), ANX = 1
2A∗

EX, for any X ∈ Γ(TM) and trAN = 0,
i.e. the shape operator AN is trace-free. Therefore, the hypersurface M of R

7

is screen conformal and minimal. So, its screen distribution is integrable. The
non-vanishing components of the second fundamental form B are given by

B(U1, U1) = −x4, B(U1, U3) = −
1

2
x6, B(U1, U6) =

1

2
.(3.37)

From the above equations, it is easy to check that, B(ANUi, Uj) = B(ANUj, Ui),
for any i 6= j and i, j = 1, ..., 6. Consequently, Ricci tensor of the induced con-
nection ∇ on the hypersurface M of R

7 is symmetric.
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Also, we have

Theorem 3. Let (M, g, S(TM)) be a totally contact geodesic lightlike hyper-
surface of an indefinite Sasakian manifold (M, g) with ξ ∈ TM . If the second
fundamental form B of M is parallel, then the Ricci tensor of the induced
connection ∇ is symmetric.

Proof. M is said to be totally contact geodesic lightlike hypersurface of an
indefinite Sasakian manifold (M, g) if the local second fundamental form B of
M satisfies

B(X,Y ) = η(X)B(Y, ξ) + η(Y )B(X, ξ) = −η(X)u(Y ) − η(Y )u(X),

for any X, Y ∈ Γ(TM) and its covariant derivative is given by

(∇XB)(Y,Z) = (u(X)θ(Y ) + g(φX, Y ))u(Z)

+ (u(X)θ(Z) + g(φX,Z))u(Y )

+ (τ(X)u(Y ) + B(X,φY ))η(Z)

+ (τ(X)u(Z) + B(X,φZ))η(Y ).(3.38)

B is parallel if (∇ZB)(X,Y ) = 0, for any X, Y , Z ∈ Γ(TM). Using (3.38),
we have, for any X ∈ Γ(TM), 0 = (∇XB)(ξ, U) = τ(X).

Proceed as in the proof of Proposition 4. Consider a local quasi-orthogonal
frame field {X0, N,Xi}i=1,...,2n−1 on M where {X0, Xi} is a local frame field
on M with respect to the decomposition (3.7) with N , the unique section
of transversal bundle N(TM) satisfying (2.3), and E = X0. Put Rls :=
Ric(Xs, Xl) and R0k := Ric(Xk, X0). Using the frame field {X0, N,Xi}, we
have locally Rls − Rsl = 2dτ(Xl, Xs) = 0 and R0k − Rk0 = 2dτ(X0, Xk) = 0
which complete the proof.

Example 3. Let (R5, g) be the 5-dimensional semi-Riemmannian manifold,
where the metric g is given, with respect to the cartesian coordinates {xi}1≤i≤5

on R
5 and the natural field of frames { ∂

∂xi
}, by

g = (x2
3 − 1)dx2

1 − dx2
2 + dx2

3 + dx2
4 + dx2

5 − x3dx1 ⊗ dx5

− x3dx5 ⊗ dx1,(3.39)

We define with respect to the natural field of frames
{

∂
∂xi

}

a tensor field φ of

type (1, 1) by its matrix:

φ(
∂

∂x1
) = −

∂

∂x2
, φ(

∂

∂x2
) =

∂

∂x1
+ x3

∂

∂x5
, φ(

∂

∂x3
) = −

∂

∂x4
,

φ(
∂

∂x4
) =

∂

∂x3
and φ(

∂

∂x5
) = 0.(3.40)
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The differential 1-form η and the vector field ξ are defined, respectively, by

η = dx5 − x3dx1 and ξ =
∂

∂x5
.(3.41)

It is easy to check (φ, ξ, η, g) given by (3.39)-(3.41) is a Sasakian structure on
R

5.

Consider a hypersurface (M, g) in R
5 given by the equation x4 = x2, where

(x1, ..., x5) is a local coordinate system for R
5. The tangent space TM is

spanned by {U1, U2, U3, U4}, where U1 = ∂
∂x1

, U2 = ∂
∂x2

+ ∂
∂x4

, U3 =
∂

∂x3
, U4 = ξ, and the 1-dimensional distribution TM⊥ of rank 1 is spanned

by E with E = ∂
∂x2

+ ∂
∂x4

. Also, the transversal bundle N(TM) is spanned

by N = 1
2

(

− ∂
∂x2

+ ∂
∂x4

)

. It follows that TM⊥ ⊂ TM . Then M is a 4-

dimensional lightlike hypersurface of R
5 having a local quasi-orthogonal field

of frames {U1, U2 = E, U3, U4 = ξ, N} along M . Denote by ∇ the Levi-Civita
connection on R

5. Then, by straightforward calculations, we obtain

∇XN = 0, ∀X ∈ Γ(TM).

Using these equations above, the differential 1-form τ vanishes i.e. τ(X) = 0,
for any X ∈ Γ(TM). So, from the Gauss and Weingarten formulae we have

ANX = 0, A∗
EX = 0 and ∇XE = 0, ∀X ∈ Γ(TM).

Therefore, by Duggal-Bejancu theorems (Theorem 2.2 and Theorem 2.7) in
[4] the lightlike hypersurface M of R

5 is totally geodesic and its distribution is
parallel. Also, from the above equations, it is easy to check that η(X)B(Y, ξ)+
η(Y )B(X, ξ) = 0 = B(X,Y ), for any X, Y ∈ Γ(TM). So M is totally contact
geodesic, parallel and admits a symmetric induced Ricci tensor.

On the other hand, by considering again the Example 1, since B(U1, U6) =
1
2 6= −η(U1)u(U6) − η(U6)u(U1) = 0, the hypersurface M of R

7 defined in the
example 1 is not totally contact geodesic.

Based on discussion so far it would be appropriate to say that from the
geometric point of view alone, the induced tensor Ric on M must be symmet-
ric, as without this property one only obtains tensorial relations. Physically,
Ric symmetric is essential. Consequently, as per above note, it is desirable
to assume that only dτ vanishes locally (or globally) on M . Luckily, we have
so far seen that there are large classes of hypersurfaces with symmetric Ricci
tensor.

In particular, symmetric induced Ricci tensor has been useful in finding
several good properties of lightlike hypersurfaces [5]. For these reasons, only
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symmetric induced Ricci tensor will be considered in the sequel of this pa-
per. In this case, the weakly Ricci-symmetric notion in lightlike hypersurfaces
becomes valid.

Next, we investigate the effect of weakly Ricci symmetric condition on the
geometry of lightlike hypersurfaces in an indefinite Sasakian manifold.

Suppose that Ricci tensor of a lightlike hypersurface M of an indefinite
Sasakian manifold (M, g) with ξ ∈ TM is symmetric. A submanifold M is
called a weakly Ricci symmetric if

(∇XRic)(Y,Z) = α(X)Ric(Y,Z) + β(Y )Ric(X,Z)

+ γ(Z)Ric(Y,X),(3.42)

where α, β and γ are defined respectively by , for any X ∈ Γ(TM), g(X, ρ) =
α(X), g(X, δ) = β(X), g(X,κ) = γ(X), are 1-forms called the associated 1-
forms which are not zero simultaneously. We denote this kind of 2n-dimensional
submanifold by (WRS)2n.

Note that the covariant derivative of the induced Ricci tensor on M (3.28)
is given by, for any X, Y , Z ∈ Γ(TM),

(∇XRic)(Y,Z) = a (B(X,Y )θ(Z) + B(X,Z)θ(Y ))

+ b
(

η(Y )g(φX,Z) + η(Z)g(φX, Y )
)

+ (∇XB)(Y,Z)trAN

+ B(Y,Z)(X.trAN ) − (∇XB)(ANY,Z).(3.43)

Also, for a lightlike η-Einstein hypersurface M , that is, the Ricci tensor Ric

tensor satisfies Ric(X,Y ) = k1g(X,Y )+k2η(X)η(Y ), the functions k1 and k2

are not necessarily constant on M . Since M is tangent the structure vector
field ξ in an indefinite Sasakian manifold, k1 and k2 satisfy

k1 + k2 = 2(n − 1).(3.44)

Theorem 4. Let M be weakly Ricci symmetric lightlike η-Einstein (or Ein-

stein) hypersurface of an indefinite Sasakian manifold M
2n+1

(n > 1) with
ξ ∈ TM . Then the 1-forms α and β satisfy α + β = 0.

Proof. Suppose that M is a (WRS)2n lightlike η-Einstein hypersurfaces of

an indefinite Sasakian manifold M
2n+1

(n > 1) with ξ ∈ TM . Since M is
η-Einstein, Ric(Y,Z) = k1g(X,Y ) + k2η(X)η(Y ). So, from (3.42) and using
(2.11), we obtain

k1 (B(X,Y )θ(Z) + B(X,Z)θ(Y )) + k2 (η(Z)(∇Xη)Y + η(Y )(∇Xη)Z)

+(∇Xk1)g(Y,Z) + (∇Xk2)η(Y )η(Z) = α(X) (k1g(Y,Z) + k2η(Y )η(Z))

+β(Y ) (k1g(X,Z) + k2η(X)η(Z)) + γ(Z) (k1g(Y,X) + k2η(Y )η(X)) .(3.45)
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Putting Z = ξ in (3.45) and using (3.44), we have

−k1u(X)θ(Y ) + k2(∇Xη)Y = (k1 + k2)α(X)η(Y ) + (k1 + k2)β(Y )η(X)

+ γ(ξ) (k1g(Y,X) + k2η(Y )η(X)) .(3.46)

Again, taking X = ξ in (3.46) and using the fact that k1 + k2 6= 0 (n > 1), we
get α(ξ)η(Y ) + β(Y ) + γ(ξ)η(Y ) = 0, that is,

β(Y ) = −(α(ξ) + γ(ξ))η(Y ).(3.47)

On the other hand, by taking X = V in (3.46), we have k2(∇V η)Y =
(k1 + k2)α(V )η(Y ) + k1γ(ξ)u(Y ) which implies, by taking Y = U , γ(ξ) = 0.
Use this and (3.47) in (3.46), we get −k1u(X)θ(Y ) + k2(∇Xη)Y = (k1 +
k2) (α(X) − α(ξ)η(X)) η(Y ), that is

−k1u(X)θ(Y ) + k2(∇Xη)Y = (k1 + k2) (α(X) + β(X)) η(Y )

which implies, for Y = ξ, α(X) = −β(X) and the proof is complete.

Example 4. Let M be a hypersurface of R
5 (indefinite Sasakian manifold

defined in the Example 3) given by

x4 = x2, x3 > 0,

where (x1, ..., x5) is a local coordinate system for R
5. By proceeding as in

Example 3, M is a totally geodesic lightlike hypersurface of R
5 having a

local quasi-orthogonal field of frames {U1, U2 = E, U3, ξ, N}, where U1 =
∂

∂x1
, E = ∂

∂x2
+ ∂

∂x4
, U3 = ∂

∂x3
, ξ = ∂

∂x5
, N = 1

2

(

− ∂
∂x2

+ ∂
∂x4

)

along M .

Using (3.28), M is η-Einstein. This means that the induced Ricci tensor on
M is symmetric and it is given by Ric(X,Y ) = ag(X,Y )− bη(X)η(Y ), where
nonzero constants a and b satisfy a − b = 2. The non-vanishing components
of the induced Ricci tensor on M are given by

Ric(U1, U1) = ax2
3 − a, Ric(U3, U3) = a,

Ric(ξ, ξ) = 2, Ric(U1, ξ) = −ax3.(3.48)

Using (3.43) and a direct calculation, it is easy to check that, for any X, Y ,
Z ∈ Γ(TM),

(∇XRic)(Y,Z) = α(X)Ric(Y,Z) + β(Y )Ric(X,Z)

+ γ(Z)Ric(Y,X),(3.49)

where the associated 1-forms α, β and γ are defined explicitly by

α(ξ) = β(ξ) = γ(ξ) = 0, α(U1) = β(U1) = γ(U1) = 0,

α(U3) = β(U3) = γ(U3) = 0, α(E) = −β(E) =
b

ax3
, γ(E) = 0.(3.50)

The associated 1-forms α, β and γ are not zero simultaneously and α+β = 0.
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Note that a lightlike Einstein hypersurface of a 3-dimensional indefinite
Sasakian manifold, tangent to the structure vector field ξ, is Ricci flat. So,
that hypersurface cannot be (WRS)2.

A non-zero Ricci tensor Ric of lightlike hypersurface M is said to be cyclic
parallel if C∇Ric = 0, namely, for any X, Y , Z ∈ Γ(TM),

(∇XRic)(Y,Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0.(3.51)

Let M admits a cyclic parallel Ricci tensor. Then, we have

0 = (∇XRic)(Y,Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y )

= α(X)Ric(Y,Z) + (β(X) + γ(X))Ric(Z, Y )

+ α(Y )Ric(Z,X) + (γ(Y ) + β(Y ))Ric(X,Z)

+ α(Z)Ric(X,Y ) + (γ(Z) + β(Z))Ric(Y,X).(3.52)

Taking Z = ξ in (3.52) and using (3.29) and (3.31)

α(X) {2(n − 1)η(Y ) − u(Y )trAN + u(ANY )}

+(β(X) + γ(X)) {2(n − 1)η(Y ) − u(Y )trAN − B(AN ξ, Y )}

+α(Y ) {2(n − 1)η(X) − u(X)trAN − B(ANξ,X)}

+(γ(Y ) + β(Y )) {2(n − 1)η(X) − u(X)trAN + u(ANX)}

+α(ξ)Ric(X,Y ) + (γ(ξ) + β(ξ))Ric(Y,X) = 0.(3.53)

Again, taking Y = ξ in (3.53), using (3.11), (3.29) and (3.31), we have

(2n − 3)(α(X) + β(X) + γ(X)) + (α(ξ) + β(ξ) + γ(ξ)) {4(n − 1)η(X)

−2u(X)trAN + u(ANX) − B(ANξ,X)} = 0.(3.54)

Putting X = ξ in (3.54) and using (3.10), we get 3(2n−3)(α(ξ)+β(ξ)+γ(ξ)) =
0, that is

α(ξ) + β(ξ) + γ(ξ) = 0.(3.55)

Using (3.55) in (3.54), we have,

α(X) + β(X) + γ(X) = 0, ∀X ∈ Γ(TM).(3.56)

Therefore, we have

Theorem 5. There exist no weakly Ricci symmetric screen locally (or globally)

conformal lightlike hypersurfaces M of indefinite Sasakian manifolds M
2n+1

with ξ ∈ TM and cyclic parallel Ricci tensor if α + β + γ is not everywhere
zero.
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By Theorem 4 and definition (WRS)2n, it is easy to see that there are
no weakly Ricci symmetric lightlike Einstein hypersurfaces, tangent to the
structure vector field ξ, with cyclic parallel Ricci tensor.

If in (3.42) the 1-form α is replaced by 2α and β and γ are equal to α, then
we have

(∇XRic)(Y,Z) = 2α(X)Ric(Y,Z) + α(Y )Ric(X,Z)

+ α(Z)Ric(Y,X),(3.57)

where α is a non-zero 1-form defined by α(X) = g(X, ρ). A submanifold
which satisfies (3.57) is called a special weakly Ricci symmetric submanifold
and denoted by (SWRS)2n.

Theorem 6. There exist no special weakly Ricci symmetric screen locally (or
globally) conformal (or Einstein) lightlike hypersurfaces M of an indefinite

Sasakian manifold M
2n+1

with ξ ∈ TM and cyclic parallel Ricci tensor.

Proof. Suppose that M is a special weakly Ricci symmetric screen locally
(or globally) conformal (or Einstein) lightlike hypersurface M of an indefinite

Sasakian manifold M
2n+1

with ξ ∈ TM . If M admits a cyclic parallel Ricci
tensor, then, from (3.56), we have 2α(X) + α(X) + α(X) = 0, ∀ X ∈ Γ(TM),
that is α(X) = 0 which contradicts the definition of (SWRS)2n.

From the differential geometry of lightlike hypersurfaces, we recall the fol-
lowing result. The submanifold M is (D ⊥ 〈ξ〉, D ′)-mixed totally geodesic if
for any X ∈ Γ(D ⊥ 〈ξ〉), Y ∈ Γ(D′), B(X,Y ) = 0. The Latter reduces to
B(X,U) = 0, since the distribution D is of rank 1 and spanned by U .

Theorem 7. Let M be a special weakly Ricci symmetric screen locally (or glob-

ally) conformal lightlike hypersurface of an indefinite Sasakian space (M
2n+1

(c),
n > 1) of constant curvature c, with ξ ∈ TM . Then, M cannot be η-Einstein
(or Einstein). Moreover, if the trace of AN satisfies the partial differential
equation ξ · trAN − τ(ξ)trAN = 0, M cannot be (D ⊥ 〈ξ〉, D′)-mixed totally
geodesic.

Proof. Suppose that special weakly Ricci symmetric screen locally (or globally)
conformal lightlike hypersurface M is η-Einstein (or Einstein). Then, from
Theorem 4, for any M ∈ Γ(TM), 2α(X) = −α(X), that is α(X) = 0 which is
inadmissible by the definition of (SWRS)2n. So M cannot be Einstein.

Suppose now that M is (D ⊥ 〈ξ〉, D′)-mixed totally geodesic.Since M is
a special weakly Ricci lightlike hypersurface, so, by the use of of (3.57) we
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obtain

(∇XRic)(Y, ξ) = 2α(X)Ric(Y, ξ) + α(Y )Ric(X, ξ) + α(ξ)Ric(Y,X)

= 2(2n − 1)α(X)η(Y ) + (2n − 1)α(Y )η(X)

− (2α(X)u(Y ) + α(Y )u(X)) trAN + 2α(X)u(AN Y )

+ α(Y )u(ANX) + α(ξ)Ric(Y,X).(3.58)

Replacing X with ξ and using (3.11), (3.58) becomes

(∇ξRic)(Y, ξ) = 2(2n − 1)α(ξ)η(Y ) + 2(n − 1)α(Y )

− 2α(ξ)u(Y )trAN + 2α(ξ)u(ANY )

+ α(ξ) ((2n − 1)η(Y ) − u(Y )trAN + u(ANY ))

= 3(2n − 1)α(ξ)η(Y ) + 2(n − 1)α(Y )

− 3α(ξ)u(Y )trAN + 3α(ξ)u(ANY ).(3.59)

On the other hand, using φξ = φξ = 0,

(∇ξRic)(Y, ξ) = ξ · Ric(Y, ξ) − Ric(∇ξY, ξ) − Ric(Y,∇ξξ)

= 2(n − 1)ξ · η(Y ) − ξ · u(Y )trAN − u(Y )ξ · trAN

+ ξ · u(ANY ) − (2n − 1)η(∇ξY ) + u(∇ξY )trAN − u(AN∇ξY )

= ξ · u(ANY ) − g(∇ξV, Y )trAN − u(Y )ξ · trAN − u(AN∇ξY )

= u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · u(ANY ) − u(AN∇ξY ).(3.60)

From (3.59) and (3.60), we obtain

3(2n − 1)α(ξ)η(Y ) + 2(n − 1)α(Y ) − 3α(ξ)u(Y )trAN + 3α(ξ)u(AN Y )

= u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · u(ANY ) − u(AN∇ξY ).(3.61)

Substituting Y with ξ in (3.61), we obtain 8(n − 1)α(ξ) = 0. Since n > 1, we
have

α(ξ) = 0.(3.62)

Taking (3.62) in (3.61),

2(n − 1)α(Y ) = u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · u(ANY )

− u(AN∇ξY ).(3.63)

Since M is a (D ⊥ 〈ξ〉, D′)-mixed-totally geodesic, then, by Theorem 1, for
any Y ∈ Γ(D), ANY ∈ Γ(φ(TM⊥) ⊥ D0). Moreover, for any Y ∈ Γ(D),
u(Y ) = 0 and since the distribution D is invariant under φ, using (3.10), we
have, g(∇ξY, V ) = g(A∗

Eξ, φY ) = −u(φY ) = 0, that is, ∇ξY ∈ Γ(D ⊥ 〈ξ〉).
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As g(∇ξY, ξ) = 0, then ∇ξY ∈ Γ(D) and AN∇ξY ∈ Γ(φ(TM⊥) ⊥ D0). So
(3.63) becomes 2(n − 1)α(Y ) = 0, ∀Y ∈ Γ(D) and since n > 1,

α(Y ) = 0, ∀Y ∈ Γ(D).(3.64)

Next, we compute α(U). Using (3.11) and (3.16), the right hand side of (3.63)
is reduced to

u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · u(ANY ) − u(AN∇ξY )

= u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · C(Y, V ) − C(∇ξY, V )

= u(Y )(τ(ξ)trAN − ξ · trAN) + ξ · B(Y,U) − B(∇ξY,U)

= u(Y )(τ(ξ)trAN − ξ · trAN) + (LξB)(Y,U) + B(φY,U) + B(∇ξU, Y )

= u(Y )(τ(ξ)trAN − ξ · trAN) − τ(ξ)B(Y,U) + B(φY,U) + B(∇ξU, Y ).(3.65)

From Lemma 2, we obtain

∇ξU = −

2n−4
∑

i=1

C(ξ, φFi)

g(Fi, Fi)
Fi − θ(ξ)ξ + C(ξ, U)E + τ(ξ)U

= −
2n−4
∑

i=1

g(AN ξ, φFi)

g(Fi, Fi)
Fi + C(ξ, U)E + τ(ξ)U.(3.66)

As M is a (D ⊥ 〈ξ〉, D′)-mixed totally geodesic, again by Theorem 1, ANξ ∈
Γ(φ(TM⊥ ⊥ D0 ⊥ 〈ξ〉). Writing

ANξ = v(AN ξ)V +

2n−4
∑

i=1

µiFi + η(AN ξ)ξ,

we have g(AN ξ, φFi) = µig(Fi, φFi) = 0, since g(Fi, φFi) = −g(φFi, Fi) =
−g(Fi, φFi), i.e. 2g(Fi, φFi) = 0. So (3.66) becomes

∇ξU = C(ξ, U)E + τ(ξ)U(3.67)

and if the trace trAN satisfies the partial differential equation ξ · trAN −
τ(ξ)trAN = 0, with the aid of (3.67) and B(E, ·) = 0, (3.65) becomes

2(n − 1)α(Y ) = B(φY,U),∀ Y ∈ Γ(TM).(3.68)

As n > 1 and since φU = 0, so by taking Y = U in (3.68), we obtain

α(U) = 0,(3.69)

From (3.62), (3.64) and (3.69), α(Y ) = 0, ∀Y ∈ Γ(TM) which is inadmissi-
ble by the definition of (SWRS)2n. Thus a special weakly Ricci symmetric
lightlike hypersurface M cannot be a (D ⊥ 〈ξ〉, D ′)-mixed totally geodesic.
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Some particular cases of lightlike submanifolds of indefinite Sasakian man-
ifolds have been studied by Duggal and Sahin in [6]. They showed that in a
contact screen Cauchy-Riemann (SCR)-lightlike submanifolds or irrotational
screen real lightlike submanifold of an indefinite Sasakian manifold, the min-
imality notion is equivalent to the trace-free of the shape operator AN with
respect to g restricted to S(TM). Therefore, there exist lightlike hypersurfaces
of indefinite Sasakian manifolds whose the trace of AN satisfies the partial dif-
ferential equation above.

Finally, we note that Theorems 5, 6 and 7 are also valid for any lightlike
hypersurface M of an indefinite Sasakian manifold, tangent to the structure
vector field ξ and whose dτ (or τ) vanishes locally (or globally) on M or shape
operator AN symmetric with respect to its second fundamental form.
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