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Abstract. In this paper we give a sharp minimum degree condition for a
2-connected star-free graph to have a 2-factor containing specified edges. Let
G be a 2-connected K1 n-free graph with minimum degree n+d and I C E(G).
If one of the followings holds, then G has a 2-factor which contains every edge
inl: )n=3d>1 I <2and |[V(G)| >8if |[I| =2;i) n =4,d > 1,
[I| <2 and |V(G)| > 11if |I| = 2;iii)) n > 5,d > 1 and |I| < 1;iv) n > 5,
d>|(vVAn =3 +1)/2] and |I| < 2.
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All graphs considered are only finite undirected graphs without loops and
multiple edges. A graph is called K ,-free if it contains no K, as an induced
subgraph. We call a spanning r-regular subgraph of a graph an r-factor.

There have been many results on the existence of 2-factors in star-free
graphs. In [4], the following theorem is shown.

Theorem 1 (Ota and Tokuda [4]). Let n > 3 be an integer and G be a
K1 ,-free graph. If the minimum degree of G is at least 2n — 2, then G has a
2-factor.

Recently in [1], the minimum degree condition in Theorem 1 was improved
for 2-connected graphs.

Theorem 2 (Aldred et al. [1]). Let n > 3 be an integer and G be a 2-connected
K ,-free graph. If the minimum degree of G is at least n, then G has a 2-
factor.

The object of this paper is to prove the following theorem, which considers
the existence of a 2-factor containing specified edges.
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204 O. FOURTOUNELLI ET AL.

Theorem 3. Let G be a 2-connected K ,-free graph with minimum degree
n+d and I C E(G). If one of the following holds, then G has a 2-factor
which contains every edge in I.

)n=3,d>1,|I <2 and |[V(G)| > 8 if |I| = 2;
i) n=4,d>1, |I| <2 and |V(G)| > 11 if |I| = 2;
iit) n>5,d>1and|I| <1;

VI =341
N)n>&d>{—ﬁiiiﬁ

and |I] < 2.
Some examples which show the sharpness of this result are given later.

We must mention at this point that the following result was obtained re-
cently [3], related also to 2-factors with given properties in claw-free graphs.

Theorem 4. Let G be a 2-connected K1 3-free graph with minimum degree at
least 4. For every pair of edges e1,ea of G the graph G* = G — {e1,ea} has a
2-factor.

Here we prepare some terminology and notation used in this paper. Let
G be a graph. For a vertex v in G, we denote by Ng(v) and dg(v) the
neighborhood and the degree of v, respectively. Let S and T be disjoint
subsets of V(G). We denote |J,cr(Nag(v) N'S) by Ng(T'). The number of
edges joining S and T is denoted by eq(S,T"). We define Hg(S,T) = {C' |
C' is a component of G — (SUT), eq(V(C),T) =1 (mod 2)} and hg(S,T) =
|Ha(S,T)|. We often identify a subgraph H of G with its vertex set V(H). For
example, eq(V(H),T) is often denoted by eq(H,T'). Moreover, for a vertex
x, we sometimes denote {x} by & when there is no fear of confusion. We refer
the reader to [2] for basic terminology and notation not defined here.

In our proof of Theorem 3, we use the following theorem, which is a special
case of Tutte’s f-factor Theorem [5].

Theorem 5 (Tutte [5]). A graph G has a 2-factor if and only if

0c(8,T) =25+ Y (da-s(z) —2) — ha(S,T) > 0
z€T

for any disjoint subsets S and T of V(G).
Note that, for any disjoint subsets S and T" of V(G), we have
(1) 8¢ (S, T) =0 (mod 2)

since ), crdg-s(z) = hq(S,T) (mod 2).
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Let G be a graph which has no 2-factor. If a pair of disjoint subsets (S, T') of
V(G) is chosen so that |S|+|7"| is minimum among those satisfying (5,7 <
0, then we call it a minimal barrier of G (Note that the existence of a minimal
barrier is guaranteed by Theorem 5). We also use the following lemmas in the
proof of Theorem 3.

Lemma 1 (Aldred et al. [1]). Let G be a graph which has no 2-factor and
let (S,T) be a minimal barrier of G. Then T is independent, and dg_s(x) =
H{C € Ha(S,T) | eg(x,C) > 0} for every x € T.

Lemma 2. Let G be a graph which has no 2-factor and let (S,T) be a minimal
barrier of G. Then for every y € S, dg(y) > 2.

Proof. Suppose that there exists y € S such that dg(y) < 2. Define S' =
S\ {y}. Note that

21| = 25| — 2,
ha(S",T) > ha(S,T) — [Na(y) \ (SUT)| and

D (do—gr(x) —2) = > (dg-s(x) —2) + [Na(y) N T).

z€T z€T

Since dg(y) < 2, |[Na(y) \ (SUT)| + |Ng(y) N T| < 2. Therefore, it follows
that

0a(S",T) < 06(S8,T) =2+ [Na(y) \ (SUT)| + [Na(y) N T
<6q(S,T) <0,

which contradicts that (S,T") is a minimal barrier. O

Proof of Theorem 3. We prove by induction on |I|. If |I| = 0, then Theorem 2
implies the assertion in every case i) —iv). Hence we consider the case |I| = p,
where 1 < p < 2. By way of contradiction, suppose that G’ is the graph
which satisfies the assumption of Theorem 3 and none of its 2-factor contains
I C E(G). Let I ={e; | 1 <i < p}. For a subset E' of E(G'), Let G'(E")
be the graph obtained from G’ after the subdivision of each edge in E’. (If E’
is an emptyset, then G'(E’) = G'.) Especially, let G = G'(I) and we denote
F =V(G)\V(G') = {vi | 1 <i < p}, where each v; corresponds to the
original edge e; in G’. Note that G is 2-connected.

Since there is no 2-factor of G’ which contains I, G' has no 2-factor. Let
(S,T) be a minimal barrier of G and let U = V/(G) \ (SUT). Then by Lemma
1, T is an independent set in G.

Claim 1. FCT.
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Proof. By Lemma 2, F NS = (). Hence it suffices to prove FNU = (). Assume
the contrary, and let v; € U for some i, 1 < i < p. Let G" = G'(I \ {e;})
(Note that we can also make G” by contracting an edge incident to v; in G,
and hence S, C V(G")). By the induction hypothesis, there is a 2-factor
in G’ which contains every edge of I\ {e;}. Hence G has a 2-factor, and it
follows from Theorem 5 that dg (S,T") > 0.

Assume Ng(v;)NT = 0, then since Y (dgr—s(x)—2) = > cp(da—s(z)—
2) and hgr(S,T) = hg(S,T), it holds that 6gv(S,T) = 0c(S,T) < 0, a
contradiction. Hence there exists a; € Ng(v;) NT. Let b; be another neighbor
of v; in G, and let C' be the component of G — (S UT) which contains v;.

If b; € S, then since C' ¢ Hen (S, T), it holds that hg (S, T) = hg(S,T)—1.
Moreover, > r(dgr_s(x) —2) = > r(dg—s(xz) —2) — 1. Thus it follows
that dgv (S, T) = dc(S,T) — 14+ 1 = §c(S,T) < 0, a contradiction. Next, if
b; € T, then C consists of exactly one vertex v;. Hence eq(C,T) = 2. This
implies that C' ¢ Hg(S,T), which contradicts Lemma 1. Finally, if b; € U,

then hgn(S,T) = hq(S,T) and > p(dgr_s(x) —2) = > cr(da—s(x) — 2).
Hence 0¢»(S,T) = 0¢(S,T) < 0, a contradiction. O

Following the proof in [1], we now prepare some settings. Let U = Ha(S,T),
and let

Uy ={C el eq(T,C) =1},
Uzg = {O cu | eg(T, C) > 3},
Uy = |J v(C) and
Celq

Uss= |J VI(O).
CEU23

Note that, by the definition of hq(S,T), hq(S,T) = |Ui| + [U>3].

For every C' € Uy, Ng(T)NC consists of precisely one vertex, say wo. Now
we define

Ut ={C ey | Ng(S)NC = {wc}}
Ut =uy \ U,

Then for every C' € U3, it follows that Ng(S) N C \ {wc} # 0. Let ve be a
vertex in Ng(S) N C \ {wc}, and let yo be a vertex in Ng(ve).
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For every x € T, we define the following sets:

Ulr) = {C et} | eqle,C) = 1)

UR(r) = {C €U | eqle,C) = 1)

Bi(x) = fwey | C €Ul (z), y € Ns(ue))
Es(z) = {voyc | C € Ui (z)};

Es(z) ={zy |y € SN Ng(z)};

Di(z) = Ei(x) U Ea(x);

Dy(z) = Es(x) U E3(x).

Note that D;(x) N Dj(z') = 0 for every z,2’ € T with x # 2/ and 4,5 € {1,2}.
Let @ be the set of all mappings from 7'\ F to {1,2}, and let

D={ |J Dywla)|oc®
€T\ F

Moreover, let

D' =] By(x).

zeF

Then the following claim holds.
Claim 2. |D|+ |D'| < (n—1)|S| for every D € D.

Proof. Suppose that |D|+ |D’| > (n—1)|S| for some D € D. Then there
exists y € S which is incident with n edges of D U D', say yz1,...,yz,. Since
Es(x)N(DUD’) =0 for every x € F, it follows that none of z; is a vertex of
F. Therefore, yz1,...,yz, are edges in G’. Since G’ is K p-free, z;z; € E(G’)
for some i and j. Moreover, since E1(x) N (DU D) = () for every x € F, none
of z; is adjacent to a vertex of F' in G, and hence we have z;z; € E(G).

By the construction of D and D’, z;,z; € T UU;. If both of z; and z;
are in Uy, then they belong to distinct components of U; by the definition
of Ey and FE3, and hence they cannot be adjacent in G. Thus {z;,z2;} N
T # (. Without loss of generality, we may assume z; € T. Then z; € U;
because T' is independent. Let C' be the component that contains z;, then
C € U (z) UUE(z). If C € U?(z), then by the construction of D and D,
zj = vc. However, it follows from the definition of ve that z2; ¢ E(G), a
contradiction. Consequently C' € U{(z;) and z; = we. Now yz; € Fs(2;)
and yz; € Eq(z;). However, if D contains an edge of E3(%;), then D cannot
contain any edge of Ej(z;) by the definition of Dy and Ds. Moreover, D’
cannot contain any edge of F1(z;) or F3(z;). This contradicts the assumption
that yz;,yz; € DUD'. O
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Suppose that there exists C' € U{ such that |V (C)| > 2. Then for every
z € V(C)\ {wc}, z is not adjacent to any vertex in 7' since C' € U;, and
z is not adjacent to any vertex in S by the definition of U]. Hence G —
{wc} is disconnected, which contradicts the assumption that G is 2-connected.
Therefore, we have |V (C)| = 1 for every C € U{. Since F € T, every vertex
in U has degree at least n + d in G. Hence we have

(2) eq(S,C) >n+d—1>n for every C € Uj.
For every x € T'\ F, it follows from Lemma 1 that

\Ull(a:)] + |Z/{12(a:)] +eq(z,S) + eq(x,Us3) =dg(z) > n+d.

Hence,
(3) Ui ()] = 1, or
(4) UE ()] + eq(x, S) + eq(x,Uss) >n +d.

Let Ty = {x € T\ F' | z satisfies (3)} and To =T\ (Th U F). If z € Ty, we
define D(z) = D;(x), and if x € Ty, we define D(x) = Da(x). Then if z € T7,
it follows from (2) that

[D(@)] + e (,Uss) = [Ex(2)| + |Ea(2)] + eq (2, Uss)
(5) > Uty (2)| + U ()] + ec (2, Us3)
(6) > n+ Ut (2)| + ez, Uss),

and if x € Ty it follows from (4) that
|D(@)| + ec(x, Usz) = [Ez(2)] + [E3(x)] + eq(r, Uss)
= [Uf ()] + ec (@, S) + ea(z, Uzs)

(7) >n+d > n+l.

Moreover, let T>3 = {z € T\ F | eq(z,U>3) > 1}. Then, by the above
inequalities,

(8) |D(z)| + eq(z,Us3) > n + 1 holds for every x € T>3.
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Let D = e\ p D(2). It follows from (6), (7) and (8) that

[D| +eq(T,Uz3) = [D] + eq(T \ F,Uz3) + e (F, U>3)

= Y (ID(2)| + eq(x,Us3)) + eq(F.Us3)
z€T\F

= ) (ID(@)| + ea(z, Uss))

2€T55
+ Y (D) +ec(x,Usz)) + eq(F, Uss)
z€(T\F)\T>3
> (n+ D[T>3] +n[(T\ F)\ T3] + eq(F,U>s3)
=n|T\ F| +[T>3] + ec(F,U>3)
(9) > n(|T| = 2) +[T>3] + eq(F,U>3).

On the other hand, by the definition we have eq(T, Us3) > 3|U>3| and eq (T, Uy)
= [t4]. Hence h¢(S,T) = [Uh| + [Uss| < eq(T,Ur) + teq(T,Uss). Therefore,
it follows from (1) and Lemma 1 that

-2 >6¢(S,T)
=2|S|+ > (dg-s(z) — 2) — ha(S,T)
zeT
=2|S| - 2T + Y da-s(z) — ha(S,T)

zeT
= 2|S| — 2|T‘ + eg(T, Ul) + €G(T, Uzg) — hg(S, T)

> 218] - 27| + Zea(T, Uss),
which implies
(10) n|T| > n|S| + geg(T, Uss) +n.
Moreover, Claim 2 yields
(11) (n—1)[S| > D[+ [D’].
Taking sum of (9), (10) and (11), we have

n—3

(12) 0> S|+ |T>3| + eq(F,Us3) + |D'| + eq(T,Us3) —n.

Claim 3. |5]| > 1.
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Proof. Assume |S| = 0. Then U; = 0, because G is 2-connected. Since T is
independent, eq(F,Us>3) = 2|F|, and hence Us3 # (. Let C € U>3. Then,
since eq(7T,C) > 3 and |F| < 2, it follows from Lemma 1 that there exists a
vertex z € T'\ F.

Considering the neighbor of =, we obtain [{>3]| > n+1 from Lemma 1. This
yields e (T, Us3) > 3(n+1). Therefore, if n > 4, 223eq (T, Us3) > (n—3)(n+
1) > n+ 1 > n, which contradicts (12). On the other hand, if n = 3, it holds
from Lemma 1 that eg(T, U23) — €G(F U {.Z'}, U23) > 3|Z/[Z3| — (4 + ’U23|) =
2[U>3] —4 > 2(n + 1) —4 > 0. Hence there exists 2’ € T\ (F U {x}). This
implies |T>3| > 2, and hence |T>3|+eq(F,U>3) > 242 > n, which contradicts
(12). O

If U=3 # 0, then it holds that "T_?’eg(T, Us3) > n—3, and Lemma 1 implies
that |T>3| + eq(F,Us>3) > 3. Since |S| > 1, this contradicts (12). Therefore
we have U23 = @, which implies |T23‘ = €G(F, Uzg) = €G(T, U23) =0. It
follows from (9) and (11) that (n —1)|S| > n|T'| —2n, which implies 2n —|T| >
(mn =0T = |S|). If|T| —|S| > 2, then 2n — |T'| < 2n — (|S]+2) < 2n—3
and (n — 1)(|T| — |S]) > 2n — 2, a contradiction. Thus |T| — |S| < 1. Now
|T| > |S| 4 1 holds by (10), and hence |T'| = |S| + 1.

Assume |F| = 1, then it follows from (6) and (7) that |[D| > |T'\ F|-n =
(IT] = 1)n = n|S| > (n — 1)|S|, which contradicts Claim 2. This implies
|F| =2, and hence we may assume that |I| = 2 and G’ satisfies i), ii) or iv).

Claim 4. |S]| > 2.

Proof. Assume |S| = 1. Since G is 2-connected, G — S is connected. Then,
since T' is independent and |T'| = 2, there exists a component C of G— (SUT)
such that eq(C,T) > 2. The fact that Us3 = () yields C' ¢ H(S,T'), which
contradicts Lemma 1. O

Now we divide the rest of the proof.
Case 1. G’ satisfies i) or ii).

Note that (12) implies |S| < n. We consider the following cases with regard
to |S| and n.

Case la. |S|=2.

Assume that there exists C' € U (z) for some x € T. Then (2) implies that
INc(2) N'S| > n > 3, where z is the only vertex in C. This contradicts the
assumption of this case. Hence we have Ui = ), and so T} = (). Since Us3 = 0,
it follows from (4) that [UZ(z)| + eq(x,S) > n + 1 holds for every z € T'\ F,
and hence

(13) ID| > (n+ DT\ F|l=n+1)(S|+1—-|F|])=n+1
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Now assume that eq(F,U;) = 0. Then Ng(v;) C S for i = 1,2, because
Us>3 = (). However, since |S| = 2, this contradicts the construction of G from
G'. Therefore, eq(F,U;) > 1. Since U] = (), there exists C' € UZ(v;) for some
v; € F, and hence |D’| > 1. Without loss of generality, we may assume that
Ce U12 (2}1).

Case la-i). G’ satisfies 1).

In this case |[D|+|D'| > (n+1)+1 =5 > (n — 1)|S|, which contradicts
Claim 2.

Case 1a-ii). G' satisfies ii).

In this case, by (13), |[D| > n+1 =5 = (n—1)|S| — 1. Since |D’| > 1,
Claim 2 yields |D| = 5, and hence |D'| = 1. Since Ui = Us3 = ) and
Uz (v1)| < |D'] = 1, we obtain eg(vi,S) = 1. Let S = {y1,y2}, where
v1y1 € E(G). Since G is 2-connected, G — {y1} is connected. By the fact that
Ng(v1) = {y1,wc} and Ng(V(C))NT = {v1}, it follows that y, is adjacent
to some vertex z in V(C).

Now we have |D| = 5 and |S| = 2, and hence some vertex y; € S is adjacent
to at least 3 edges of D, say vy;21,¥y:22 and y;z3. If ¢ = 1, then let z4 = wce,
and if ¢ = 2, then let z4 = z. Then in either case it follows that y;z; € E(G’)
for every j, 1 < j < 4. Moreover, since |[Ng(vj) N {z1,22,23,24}| < 1 for j =
1 and 2, {21, 22, 23, 24} is an independent set in G’. This contradicts that G’
is K 4-free.

Case 1b. |S| = 3.
Case 1b-i). G’ satisfies i).

In this case, by Claim 2, |D| < 2|S| = 6. Since eg(z,Us3) = 0 for every
x € T, it follows from (6) and (7) that D(z) > 3 for every z € T\ F.
Moreover, since [T\ F| = |T| =2 = |S|+1 -2 = 2, D(z) = 3 holds for
every x € T'\ F. Now it follows from (7) that 7'\ F' = T, and hence by (5),
Ui (x)] =1 and [UZ(z)| = 0 holds for every z € T\ F.

Let 1 and 23 be the two vertices of T'\ F and let U (z;) = {C;} fori = 1,2.
We already know that each C} consists of precisely one vertex, say z;. Since
|S| = 3, it follows from (2) that every vertex in S is adjacent to both z; and
Z9.

Assume that there exists a component C of G — (S UT') which is not C
or Cy. Since U>3 = (), Lemma 1 implies that eq(7T,C) < 1. Since G is 2-
connected, there exists y € S and z € V(C) such that yz € E(G). Now
yz1,Y22,yz € E(G'") because {z1,29,2} N F = (). Moreover, since Cy, Cy €
Ui (z1) UUL (z2), neither 21 nor 2z can be adjacent to a vertex in F. Hence
221,222, 2122 ¢ E(G'), which contradicts that G’ is K 3-free.
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Therefore C7 and Cy are the only components in G — (SUT) . Now
we have V(G') = SU (T \ F) U {z1,22}, |S| = 3 and |T'\ F| = 2. Hence
[V(G")| =|S|+|T \ F|+ |{#1,22}| = 7, a contradiction.

Case 1b-ii). G’ satisfies ii).

Assume that there exists C € U] (x) for some x € T. Then (2) implies
that |[Ng(z) N S| > 4, where z is the only vertex in C. This contradicts
the assumption of this case. Therefore, { = ), and hence Ty = ). Since
ec(x,Us3) = 0 for every x € T, it follows from (7) that D(z) > 5 for every
x € T\ F. Moreover, since [T\ F|=|T|-2=|S|+1—-2=2,|D|+ |D'| >
5T\ F| > 10 > (n — 1)|S|, which contradicts Claim 2.

Case 1c. |S| =4.

Note that this case occurs only when G’ satisfies ii), because |S| < n. Now
by Claim 2, |D| < 3|S| = 12. Since eg(z,Us3) = 0 for every z € T, it
follows from (6) and (7) that D(z) > 4 for every x € T'\ F. Moreover, since
IT\F|=|T|—2=|S|4+1—-2=3, D(x) =4 holds for every z € T'\ F. Now it
follows from (7) that T\ F' = Ty, and hence by (6), [U{(z)| = 1 and |UZ(z)| =0
holds for every z € T'\ F.

Let x1,72 and z3 be three vertices of T\ F and let Ui (x;) = {C;} for
i =1,2,3. We already know that each C; consists of precisely one vertex, say
zi. Since |S| = 4, it follows from (2) that every vertex in S is adjacent to all
of z1, 20 and z3.

Assume that there exists a component C' of G — (SUT') which is not Cp, C
or C3. Then by Lemma 1 and the fact that Us3 = 0, eq(T,C) < 1 holds.
Since G is 2-connected, there exists y € S and z € V(C) such that yz € E(G).
Now yz1,yz2,y23,yz € E(G’) because {z1, 22, 23,2} N F = (). Moreover, since
C1,C9 and C5 € Ull, none of 21,29 and z3 can be adjacent to a vertex in F.
Hence {z, 21, 22, 23} is an independent set in G’, which contradicts that G’ is
K 4-free.

Therefore C1,Cy and Cj5 are the only components in G — (S UT). Now
we have V(G') = SU (T \ F) U {z1, 22,23}, |S| = 4 and |T \ F| = 3. Hence
V(G| = |S|+|T\ F| + |{z1, 22, 23}| = 10, a contradiction. This completes
the proof of Case 1.

Case 2. G' satisfies iv).

Since |T'| = |S|+1 > 3, there exists a vertex in T\ F'. Let x be a vertex in T\ F’
and let Ng(x)NU = {z1,22,...,2}. Since T is independent, {z1, z2,...,2;} N
F = {), and hence zzj,z29,...22 € E(G'). Recall Usg = (. Tt follows
from Lemma 1 that 21, 29,...,2 belong to distinct components in U;. Thus
zizj ¢ E(G) for every i and j. Now it is clear that {z1,22,...2z} N F = 0,
and {21, 22,...2} N Ng(F) = () since every z; belongs to a component in U;.
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Therefore, {21, 22, . .. 2/} is an independent set in G’, and thus {x, 21, 29, ..., 21}
induces a star of size | = |[Ng(x) NU| in G'. Since G’ is K ,-free, it follows
that |[Ng(z) NU| <n —1 for every z € T \ F. Therefore, we obtain

(14) |S| > dg(x) — |[Ng(z)NU|>n+d—(n—1)>d+1.

Note that d > 2 holds because n > 5. Assume that there exists C' € U{ ()
for some x € T'. Then (2) implies that [Ng(2)NS| >n+d—1>n+1, where
z is the only vertex in C. However (12) yields |S| < n, a contradiction. Thus
we have Ui = (), and so Ty = (. Therefore, it follows from (7) and (14) that

D] = (n+d)(IT'\ F)
= (n+d)(IT] -2)
= (n+d)(IS] - 1)
= (=15 =1+ (d+ 15 -1)
=n-=D[S|= -1+ d+1)(5]-1)
> (n=1[S[=(n—=1)+(d+1)d
2(n—1)|S|—(n—1)+<{7@+1J—|—1> {7@“J

:(n_1)|5|_(n_1)+qiv4”_23+1J +1) Qi“l”;?’_lJ +1>
Vin—=3+1 VAn-3-1
2 2

>n—1)8 - (n—1)+

4dn —3 -1
= (n=D)IS| = (n— 1)+ ———
= (n— 19|,
which contradicts Claim 2. This completes the proof of Theorem 3. |

Here we give some examples which show that Theorem 3 is in some sense
best possible.

Example I. We will show that Theorem 3 doesn’t hold for the graphs with
connectivity 1. Let Hy, Hy be complete graphs of order r, where r > n4+d—+ 1.
We construct a graph G1 by adding an edge e; which joins H; and Hy. Clearly
G is a connected K ,-free graph and its minimum degree is at least n + d.
However, there is no 2-factor of G containing the edge e;. Moreover, if we add
two more edges eo and ez which join H; and He, we will construct a graph
G which is 2-connected, and it doesn’t have a 2-factor containing all of e1, ez
and e3. This example shows that Theorem 3 doesn’t hold for |I| > 3.

Example II. We will show that Theorem 3 doesn’t hold for the graphs with
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minimum degree n. Let n > 3 and r > n. Let G2 be the graph such that

V(G2) = {xi, 95,2 |1 <i <r}and
E(G2) = {yizj,yizj | j —1€{0,1,...n— 2} (mod r)}
U {ziz | 1 <i<r}U{yiya}.

Then Gy is an (n — 1)-connected K ,,-free graph with minimum degree n. We
construct the graph G by subdividing e; = y1y2 as in the proof of Theorem
3yandlet S ={y; |1 <i<r}and T = {x; |1 < i <r}U{v}, then we
have §¢(S,T) = —2. Hence G has no 2-factor, which implies that G5 has no
2-factor containing ej.

Example ITI. We will show that, in case of n = 3 or 4 and |I| = 2, Theorem
3 doesn’t hold for the graphs with 3n — 2 vertices whose minimum degree is
n+1. Let 8" ={y1,...,yn}, T" = {z1,...,2pn—1} and U' = {21,..., 21}
Let G5 be the graph such that

V(G3) =S UT'uU’ and
E(G3) ={w |u,v e SU{uw |ue S veT'UU U {zz |1 <i<n-—1}.

Then G35 is a 2-connected K ,-free graph with minimum degree n. We con-

struct the graph G by subdividing e; = y1y2 and es = ysy3 as in the proof of
Theorem 3, and let S = S" and T' = T" U {v1,v2}, then we have

5a(S,T) = 2[5 + ) (da-s(x) — 2) — ha(S,T)

zeT
=2S| - 2T + Y da-s(z) — ha(S,T)
zeT
=2n—-2n—-14+2)+(n—-1)—(n—-1)

= —2.

Hence G has no 2-factor, which implies that G5 has no 2-factor containing e
and es.

Example IV. Let

{\/4n—3+1J
s0= | F—5—| - L

We will show that Theorem 3 doesn’t hold for the graphs with minimum degree
n + sg, in case of n > 7. LetC:{C’iJHSiSSO, 1<j<n-—1} be a set
] J

of sufficiently large complete graphs. From each C, we choose one vertex wi'.
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Y Y2 Yi Ysog  Yso+1

Figure 1: Edges around C},- - ,ont

2

Let G4 be the graph such that

V(G4):{yi|1<i<30+1}u{xi|1<i<80}U(U V(0)> and
ceC

E(Gy) ={yy;j |1 <i<j<so+1}U{yiz; |1 <i<so+1, 1<5<sp}

U {zw! |1 <i<sp, 1<j<n—1}U<UE(C)>

cec
U {elys 1 e V(CD), 1205 < 50

U {Zgyi\szV(Cij), 1 <1< s, so+1§j§n—1—so}
U {zgysOH\ZiEV(Cij), 1 <i < s, n—soﬁjgn—l}.

(See Figure 1.) Note that n > 2s¢ + 2 holds when n > 7. This implies that
so+1<n—-—1-sg.
Let S ={y; |1 <i<sp+1}and T = {a; | 1 < i < sp}. Then,

the neighborhood of y; (1 < ¢ < s¢) is contained in S UT and n — sg — 1
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components which are elements of C. Since zy € E(G4) for every x € T and
y € S, the maximum number of the size of an independent set in Ng,(y;) is
n—so— 14 |T| =n — 1. Therefore, there is no induced K, with center y;
for 1 <4 < sp.

The neighborhood of ys, 11 is contained in SUT and s¢? components which
are elements of C'. Hence the maximum number of the size of an independent

set in Ng, (Ysg+1) 1S

so”> +|T| = so(so+ 1) = <{@J - 1) L@J

2 2
<\/4n—3—1 Vin —3+1 1
. =n —
- 2 2 ’

and so there is no induced K1, with center ys,41.

For any i with 1 < i < so, Ng,(2;) = SU{w! | 1 < j < n—1}. Since
every y € S has a neighbor in {wi | 1 <j<n-—1}, the maximum number of
the size of an independent set in Ng, (z;) is |{wf |1<ji<n—-1}=n-1.
Therefore, there is no induced Ky, with center z; for 1 <i < s.

By the above observation, it follows that G4 is a 2-connected K ,-free
graph with minimum degree n+ sq. We construct the graph G by subdividing
e1 = y1y2 and es = yoy3 as in the proof of Theorem 3 and let S’ = S and
T" = TU{v1,v2} (Note that so > 2 holds in case of n > 7, and hence |S| > 3).
Then we have 65(S’,T7") = —2. Hence G has no 2-factor, which implies that
(4 has no 2-factor containing e; and es.

Example V. If n =25 or 6, then
{\/4n—3+1J _s
— s | =2

We will show that, in case of n = 5 or 6, Theorem 3 doesn’t hold for the
graphs with minimum degree n+ 1. Let C = {C’ZJ |1<i<2 1<j<4}bea
set of sufficiently large complete graphs. From each Cij , we choose one vertex
wf Let G5 be the graph such that

V(G4) = {y1,y2,y3, 71, 02} U (U V(C)> and

CceC
E(Gy) ={yiy; |1 <i<j<3yU{yr; | 1<i<3, 1<j<2}

U {zw! [1<i<2, 1<j<4}U(UE(C)>

ceC
U {Zgyi\zgewcg), 1<i<2, 1§j§3}

U {zfyg\ngV(Cij), 1§i<2}.
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I\

Ci cy o e ¢ 8 G Cy

Figure 2: Example V.

(See Figure 2.) Then G5 is a K g-free graph with minimum degree 7. Let
S" ={y1,y2,y3} and T’ = {x1,22}. We construct the graph G by subdividing
e1 = y1y2 and es = yoy3 as in the proof of Theorem 3 and let S = S’ and
T = T U {v1,v2}, then we have d5(S,T) = —2. Hence G has no 2-factor,
which implies that G5 has no 2-factor containing e; and es. By removing the
components C and C5 from G5, we obtain a K 5-free graph with minimum
degree 6 which has no 2-factor containing e; and es.
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