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Abstract. In the present investigation, we obtain some subordination and
superordination results involving Hadamard product for certain normalized an-
alytic functions in the open unit disk. Our results extend corresponding previ-
ously known results.
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§1. Introduction

Let H be the class of analytic functions in U := {z : |z| < 1} and H(a, n) be
the subclass of H consisting of functions of the form

f(z) = a+ anz
n + an+1z

n+1 + · · · .

Let A be the subclass of H consisting of functions of the form

f(z) = z +

∞∑

n=2

anz
n.

Let p, h ∈ H and let φ(r, s, t; z) : C
3×U → C. If p and φ(p(z), zp′(z), z2p′′(z); z)

are univalent and if p satisfies the second order superordination

(1.1) h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z),

then p is a solution of the differential superordination (1.1). (If f is subordi-
nate to F , then F is superordinate to f .) An analytic function q is called a
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subordinant if q ≺ p for all p satisfying (1.1). A univalent subordinant q̃ that
satisfies q ≺ q̃ for all subordinants q of (1.1) is said to be the best subordinant.
Recently Miller and Mocanu[12] obtained conditions on h, q and φ for which
the following implication holds:

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).

For two functions f(z) = z +
∑

∞

n=2 anz
n and g(z) = z +

∑
∞

n=2 bnz
n, the

Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) := z +

∞∑

n=2

anbnz
n =: (g ∗ f)(z).

For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ {0,−1,−2, . . .} (j = 1, 2, . . . m), the
generalized hypergeometric function lFm(α1, . . . , αl;β1, . . . , βm; z) is defined by
the infinite series

lFm(α1, . . . , αl;β1, . . . , βm; z) :=

∞∑

n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)n

zn

n!

(l ≤ m+ 1; l,m ∈ N0 := {0, 1, 2, . . .}),

where (a)n is the Pochhammer symbol defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

{
1, (n = 0);
a(a+ 1)(a + 2) . . . (a+ n− 1), (n ∈ N := {1, 2, 3 . . .}).

Corresponding to the function

h(α1, . . . , αl;β1, . . . , βm; z) := z lFm(α1, . . . , αl;β1, . . . , βm; z),

the Dziok-Srivastava operator [6] (see also [7, 20]) H l
m(α1, . . . , αl;β1, . . . , βm)

is defined by the Hadamard product

H l
m(α1, . . . , αl;β1, . . . , βm)f(z) := h(α1, . . . , αl;β1, . . . , βm; z) ∗ f(z)

= z +

∞∑

n=2

(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1

anz
n

(n− 1)!
.(1.2)

For brevity, we write

H l
m[α1]f(z) := H l

m(α1, . . . , αl;β1, . . . , βm)f(z).

It is easy to verify from (1.2) that

(1.3) z(H l
m[α1]f(z))′ = α1H

l
m[α1 + 1]f(z) − (α1 − 1)H l

m[α1]f(z).



DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS 239

Special cases of the Dziok-Srivastava linear operator includes the Hohlov
linear operator [8], the Carlson-Shaffer linear operator L(a, c) [5], the Ruscheweyh
derivative operator Dn [18], the generalized Bernardi-Libera-Livingston linear
integral operator (cf. [2], [9], [10]) and the Srivastava-Owa fractional derivative
operators (cf. [16], [17]).

Using the results of Miller and Mocanu[12], Bulboacă [4] considered certain
classes of first order differential superordinations as well as superordination-
preserving integral operators (see [3]). Recently many authors [1, 13, 14, 19]
have used the results of Bulboacă [4] and shown some sufficient conditions
applying first order differential subordinations and superordinations.

The main object of the present paper is to find sufficient condition for
certain normalized analytic functions f(z) in U such that (f ∗ Ψ)(z) 6= 0 and
f to satisfy

q1(z) ≺
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
≺ q2(z),

where q1, q2 are given univalent functions in U and Φ(z) = z +
∞∑
n=2

λnz
n,

Ψ(z) = z +
∞∑
n=2

µnz
n are analytic functions in U with λn ≥ 0, µn ≥ 0 and

λn ≥ µn. Further the results are extended to Dziok-Srivastava linear operator.
Also we obtain number of known results as special cases.

§2. Subordination and Superordination Results

For our present investigation, we shall need the following:

Definition 2.1. [12] Denote by Q, the set of all functions f that are analytic
and injective on U −E(f), where

E(f) = {ζ ∈ ∂U : lim
z→ζ

f(z) = ∞}

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U −E(f).

Lemma 2.2. [11] Let q be univalent in the unit disk U and θ and φ be analytic

in a domain D containing q(U) with φ(w) 6= 0 when w ∈ q(U). Set

ψ(z) := zq′(z)φ(q(z)) and h(z) := θ(q(z)) + ψ(z).

Suppose that

1. ψ(z) is starlike univalent in U and

2. Re
{
zh′(z)
ψ(z)

}
> 0 for z ∈ U .
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If p is analytic with p(0) = q(0), p(U) ⊆ D and

(2.1) θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)),

then

p(z) ≺ q(z)

and q is the best dominant.

Lemma 2.3. [4] Let q be convex univalent in the unit disk U and ϑ and ϕ be

analytic in a domain D containing q(U). Suppose that

1. Re {ϑ′(q(z))/ϕ(q(z))} > 0 for z ∈ U and

2. ψ(z) = zq′(z)ϕ(q(z)) is starlike univalent in U .

If p(z) ∈ H[q(0), 1]∩Q, with p(U) ⊆ D, and ϑ(p(z)) + zp′(z)ϕ(p(z)) is univa-

lent in U and

(2.2) ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)),

then q(z) ≺ p(z) and q is the best subordinant.

Using Lemma 2.2, we first prove the following theorem.

Theorem 2.4. Let Φ,Ψ ∈ A, γ 6= 0 and α, β be the complex numbers and

q(z) be convex univalent in U with q(0) = 1. Further assume that

(2.3) Re

{
βq(z)

γ
−
zq′(z)

q(z)
+

(
1 +

zq′′(z)

q′(z)

)}
> 0 (z ∈ U).

If f ∈ A satisfies

Υ1(f, Φ,Ψ, α, β, γ) ≺ α+ βq(z) + γ
zq′(z)

q(z)
,(2.4)

where

Υ1(f, Φ,Ψ, α, β, γ) := α+ β
(f ∗ Φ)(z)

(f ∗ Ψ)(z)

+ γ

[
z(f ∗ Φ)′(z)

(f ∗ Φ)(z)
−
z(f ∗ Ψ)′(z)

(f ∗ Ψ)(z)

]
,(2.5)

(f ∗ Φ)(z) 6= 0 and (f ∗ Ψ)(z) 6= 0, then

(f ∗ Φ)(z)

(f ∗ Ψ)(z)
≺ q(z)

and q is the best dominant.
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Proof. Define the function p(z) by

(2.6) p(z) :=
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
(z ∈ U).

Then the function p(z) is analytic in U and p(0) = 1. Therefore, by making
use of (2.6), we obtain

α+ β
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
+ γ

[
z(f ∗ Φ)′(z)

(f ∗ Φ)(z)
−
z(f ∗ Ψ)′(z)

(f ∗ Ψ)(z)

]
= α+ βp(z) + γ

zp′(z)

p(z)
.

By using (2.7) in (2.4), we have

(2.7) α+ βp(z) + γ
zp′(z)

p(z)
≺ α+ βq(z) + γ

zq′(z)

q(z)
.

By setting

θ(w) := α+ βω and φ(ω) :=
γ

ω
,

it can be easily observed that θ(w) and φ(w) are analytic in C−{0} and that
φ(w) 6= 0. Hence the result now follows by an application of Lemma 2.2.

Taking p(z) = Hl
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Ψ)(z)
and p(z) = Hl

m[α1](f∗Φ)(z)
Hl

m[α1+1](f∗Ψ)(z)
respectively we

obtain the following two theorems.

Theorem 2.5. Let Φ,Ψ ∈ A, γ 6= 0 and α, β be the complex numbers and

q(z) be convex univalent in ∆ with q(0) = 1. Further assume that (2.3) holds

true. If f ∈ A satisfies

Υ2(f, Φ,Ψ, α, β, γ) ≺ α+ βq(z) + γ
zq′(z)

q(z)
,(2.8)

where

Υ2(f, Φ,Ψ, α, β, γ) :=




α+ βH
l
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Ψ)(z)

+γ
[
(α1 + 1)H

l
m [α1+2](f∗Φ)(z)
Hl

m[α1](f∗Φ)(z)
− α1

Hl
m[α1+1](f∗Ψ)(z)
Hl

m[α1](f∗Ψ)(z)
− 1

]
,

(2.9)

then
H l
m[α1 + 1](f ∗ Φ)(z)

H l
m[α1](f ∗ Ψ)(z)

≺ q(z)

and q is the best dominant.
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Theorem 2.6. Let Φ,Ψ ∈ A, γ 6= 0 and α, β be the complex numbers and

q(z) be convex univalent in ∆ with q(0) = 1. Further assume that (2.3) holds

true. If f ∈ A satisfies

Υ3(f, Φ,Ψ, α, β, γ) ≺ α+ βq(z) + γ
zq′(z)

q(z)
,(2.10)

where

Υ3(f, Φ,Ψ, α, β, γ) :=




α+ β Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

+γ
[
α1

Hl
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Φ)(z)
− (α1 + 1)H

l
m[α1+2](f∗Ψ)(z)

Hl
m[α1+1](f∗Ψ)(z)

+ 1
]
,

(2.11)

then

H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗ Ψ)(z)

≺ q(z)

and q is the best dominant.

When l = 2, m = 1, α1 = a, α2 = 1 and β1 = c in Theorem 2.5 and Theorem
2.6, we state the following corollaries for Carlson-Shaffer linear operator L(a, c)
[5].

Corollary 2.7. Let Φ,Ψ ∈ A, γ 6= 0 and α, β be the complex numbers and

q(z) be convex univalent in ∆ with q(0) = 1. Further assume that (2.3) holds

true. If f ∈ A satisfies

Υ4(f, Φ,Ψ, α, β, γ) ≺ α+ βq(z) + γ
zq′(z)

q(z)
,(2.12)

where

Υ4(f, Φ,Ψ, α, β, γ) :=





α+ β L(a+1,c)(f∗Φ)(z)
L(a,c)(f∗Ψ)(z)

+γ
[
(a+ 1)L(a+2,c)(f∗Φ)(z)

L(a,c)(f∗Φ)(z) − aL(a+1,c)(f∗Ψ)(z)
L(a,c)(f∗Ψ)(z) − 1

]
,

(2.13)

then
L(a+ 1, c)(f ∗ Φ)(z)

L(a, c)(f ∗ Ψ)(z)
≺ q(z)

and q is the best dominant.
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Corollary 2.8. Let Φ,Ψ ∈ A, γ 6= 0 and α, β be the complex numbers and

q(z) be convex univalent in ∆ with q(0) = 1. Further assume that (2.3) holds

true. If f ∈ A satisfies

Υ5(f, Φ,Ψ, α, β, γ) ≺ α+ βq(z) + γ
zq′(z)

q(z)
,(2.14)

where

Υ5(f, Φ,Ψ, α, β, γ) :=





α+ β L(a,c)(f∗Φ)(z)
L(a+1,c)(f∗Ψ)(z)

+γ
[
aL(a+1,c)(f∗Φ)(z)

L(a,c)(f∗Φ)(z) − (a+ 1)L(a+2,c)(f∗Ψ)(z)
L(a+1,c)(f∗Ψ)(z) + 1

]
,

(2.15)

then
L(a, c)(f ∗ Φ)(z)

L(a+ 1, c)(f ∗ Ψ)(z)
≺ q(z)

and q is the best dominant.

By fixing Φ(z) = z
(1−z)2

and Ψ(z) = z
1−z in Theorem 2.4, we obtain the

following corollary.

Corollary 2.9. Let γ 6= 0, α, β be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

α+ (β − γ)
zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)
≺ α+ βq(z) + γ

zq′(z)

q(z)
,

then
zf ′(z)

f(z)
≺ q(z)

and q is the best dominant.

Specializing the values of α = 1, β = 0, q(z) = 1
(1−z)2b (b ∈ C − {0}),

γ = 1
b
, Φ(z) = z

1−z and Ψ(z) = z in Theorem 2.4, we have the following
corollary as stated in [21].

Corollary 2.10. Let b be a non zero complex number. If f ∈ A and

1 +
1

b

[
zf ′(z)

f(z)
− 1

]
≺

1 + z

1 − z
,

then
f(z)

z
≺

1

(1 − z)2b

and 1
(1−z)2b is the best dominant.
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Similarly for α = 1, β = 0, γ = 1
b
, q(z) = 1

(1−z)2b (b ∈ C − {0}), Φ(z) =
z

(1−z)2
and Ψ(z) = z in Theorem 2.4, we have the following corollary as stated

in [21].

Corollary 2.11. Let b be a non zero complex number. If f ∈ A and

1 +
1

b

[
zf ′′(z)

f ′(z)

]
≺

1 + z

1 − z
,

then

f ′(z) ≺
1

(1 − z)2b

and 1
(1−z)2b

is the best dominant.

Remark 2.12. For the choices Φ(z) = z
(1−z)2

, Ψ(z) = z
(1−z) , α = 0, β > −1,

γ = 1 and q(z) = k
k+z (k > 1) in Theorem 2.4, we get the result obtained by

Obradovic et.al., [15].

By taking l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Theorem 2.5 and
Theorem 2.6, we state the following corollaries.

Corollary 2.13. Let Φ,Ψ ∈ A, γ 6= 0, α, β be the complex numbers and q be

convex univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

(α+ γ) + β
z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)
+ γ

[
z(f ∗ Φ)′′(z)

(f ∗ Φ)′(z)
−
z(f ∗ Ψ)′(z)

(f ∗ Ψ)(z)

]

≺ α+ βq(z) + γ
zq′(z)

q(z)

with (f ∗ Ψ)(z) 6= 0 and (f ∗ Φ)′(z) 6= 0, then

z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)
≺ q(z)

and q is the best dominant.

Corollary 2.14. Let Φ,Ψ ∈ A and γ 6= 0, α, β be the complex numbers. Let q
be convex univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

(α− γ) + β
(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)
+ γ

[
z(f ∗ Φ)′(z)

(f ∗ Φ)(z)
−
z(f ∗ Ψ)′′(z)

(f ∗ Ψ)′(z)

]

≺ α+ βq(z) + γ
zq′(z)

q(z)

with (f ∗ Φ)(z) 6= 0 and (f ∗ Ψ)′(z) 6= 0, then

(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)
≺ q(z)

and q is the best dominant.
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By fixing Φ(z) = z
1−z and Ψ(z) = z

1−z in Theorem 2.5 and Theorem 2.6 we
obtain the following corollaries.

Corollary 2.15. Let γ 6= 0, α, β be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

α+ β
H l
m[α1 + 1]f(z)

H l
m[α1]f(z)

+ γ

[
(α1 + 1)

H l
m[α1 + 2]f(z)

H l
m[α1]f(z)

− α1
H l
m[α1 + 1]f(z)

H l
m[α1]f(z)

− 1

]

≺ α+ βq(z) + γ
zq′(z)

q(z)
,

then
H l
m[α1 + 1]f(z)

H l
m[α1]f(z)

≺ q(z)

and q is the best dominant.

Corollary 2.16. Let γ 6= 0, α, β be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

α+ β
H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

+ γ

[
α1
H l
m[α1 + 1]f(z)

H l
m[α1]f(z)

− (α1 + 1)
H l
m[α1 + 2]f(z)

H l
m[α1 + 1]f(z)

+ 1

]

≺ α+ βq(z) + γ
zq′(z)

q(z)
,

then
H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

≺ q(z)

and q is the best dominant.

By fixing Φ(z) = z
1−z and Ψ(z) = z

1−z in Corollary 2.13, Corollary 2.14 and
also l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Corollary 2.15, Corollary 2.16
we obtain the following corollaries.

Corollary 2.17. Let γ 6= 0, α, β be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

(α+ γ) + β
zf ′(z)

f(z)
+ γ

[
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]
≺ α+ βq(z) + γ

zq′(z)

q(z)
,
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then
zf ′(z)

f(z)
≺ q(z)

and q is the best dominant.

Corollary 2.18. Let γ 6= 0, α, β be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

α+ β
f(z)

zf ′(z)
− γ

[
1 +

zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]
≺ α+ βq(z) + γ

zq′(z)

q(z)
,

then
f(z)

zf ′(z)
≺ q(z)

and q is the best dominant.

Theorem 2.19. Let Φ,Ψ ∈ A and γ 6= 0, α, β be the complex numbers. Let

q be convex univalent in U with q(0) = 1. Assume that

(2.16) Re {γβq(z)} > 0.

Let f ∈ A, (f∗Φ)(z)
(f∗Ψ)(z) ∈ H[q(0), 1] ∩Q. Let Υ1(f,Φ,Ψ, α, β, γ) be univalent in U

and

(2.17) α+ βq(z) + γ
zq′(z)

q(z)
≺ Υ1(f,Φ,Ψ, α, β, γ),

where Υ1(f,Φ,Ψ, α, β, γ) is given by (2.5) with (f ∗Φ)(z) 6= 0 and (f ∗Ψ)(z) 6=
0, then

q(z) ≺
(f ∗ Φ)(z)

(f ∗ Ψ)(z)

and q is the best subordinant.

Proof. Define the function p(z) by

(2.18) p(z) :=
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
.

Simple computation from (2.18), we get,

Υ1(f,Φ,Ψ, α, β, γ) = α+ βp(z) + γ
zp′(z)

p(z)
,

then

α+ βq(z) + γ
zq′(z)

q(z)
≺ α+ βp(z) + γ

zp′(z)

p(z)
.
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By setting ϑ(ω) = α+ βω and φ(ω) = γ
ω
, it is easily observed that ϑ(ω) is

analytic in C. Also, φ(ω) is analytic in C − {0} and that φ(ω) 6= 0.

Since q(z) is convex univalent function, it follows that

Re

{
ϑ′(q(z))

φ(q(z))

}
= <{γβq(z)} > 0, z ∈ U.

Now Theorem 2.19 follows by applying Lemma 2.3.

Theorem 2.20. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex num-

bers. Let q be convex univalent in U with q(0) = 1. Assume that (2.16) holds

true. Let f ∈ A, H
l
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Ψ)(z)
∈ H[q(0), 1] ∩ Q. Let Υ2(f,Φ,Ψ, α, β, γ) be

univalent in U and

(2.19) α+ βq(z) + γ
zq′(z)

q(z)
≺ Υ2(f,Φ,Ψ, α, β, γ),

where Υ2(f,Φ,Ψ, α, β, γ) is given by (2.9), then

q(z) ≺
H l
m[α1 + 1](f ∗ Φ)(z)

H l
m[α1](f ∗ Ψ)(z)

and q is the best subordinant.

Theorem 2.21. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex num-

bers. Let q be convex univalent in U with q(0) = 1. Assume that (2.16) holds

true. Let f ∈ A, Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

∈ H[q(0), 1] ∩Q. Let Υ3(f,Φ,Ψ, α, β, γ) be

univalent in U and

(2.20) α+ βq(z) + γ
zq′(z)

q(z)
≺ Υ2(f,Φ,Ψ, α, β, γ),

where Υ3(f,Φ,Ψ, α, β, γ) is given by (2.11), then

q(z) ≺
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗ Ψ)(z)

and q is the best subordinant.

For the Choices of p(z) = Hl
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Ψ)(z)
and p(z) = Hl

m[α1](f∗Φ)(z)
Hl

m[α1+1](f∗Ψ)(z)
, the

proofs of Theorem 2.20 and Theorem 2.21 are lines similar to the proof of
Theorem 2.19, so we omitted the proofs of Theorems 2.20 and 2.21.

When l = 2, m = 1, α1 = a, α2 = 1 and β1 = c in Theorem 2.20 and
Theorem 2.21, we state the following corollary.
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Corollary 2.22. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A
and

α+ βq(z) + γ
zq′(z)

q(z)
≺ Υ4(f,Φ,Ψ, α, β, γ),

where Υ4(f,Φ,Ψ, α, β, γ) is given by (2.13), then

q(z) ≺
L(a+ 1, c)(f ∗ Φ)(z)

L(a, c)(f ∗ Ψ)(z)

and q is the best subordinant.

Corollary 2.23. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A
and

α+ βq(z) + γ
zq′(z)

q(z)
≺ Υ5(f,Φ,Ψ, α, β, γ),

where Υ5(f,Φ,Ψ, α, β, γ) is given by (2.15), then

q(z) ≺
L(a, c)(f ∗ Φ)(z)

L(a+ 1, c)(f ∗ Ψ)(z)

and q is the best subordinant.

When l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Theorem 2.20 and
Theorem 2.21, we derive the following corollaries.

Corollary 2.24. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A
and

α+ βq(z) + γ
zq′(z)

q(z)
≺ (α+ γ) + β

z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)
+ γ

[
z(f ∗ Φ)′′(z)

(f ∗ Φ)′(z)
−
z(f ∗ Ψ)′(z)

(f ∗ Ψ)(z)

]

with (f ∗ Ψ)(z) 6= 0 and (f ∗ Φ)′(z) 6= 0, then

q(z) ≺
z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)

and q is the best subordinant.

Corollary 2.25. Let Φ,Ψ ∈ A. Let γ 6= 0, α and β be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A
and

α+ βq(z) + γ
zq′(z)

q(z)
≺ (α− γ) + β

(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)
+ γ

[
z(f ∗ Φ)′(z)

(f ∗ Φ)(z)
−
z(f ∗ Ψ)′′(z)

(f ∗ Ψ)′(z)

]
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with (f ∗ Φ)(z) 6= 0 and (f ∗ Ψ)′(z) 6= 0, then

q(z) ≺
(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)

and q is the best subordinant.

By Taking l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Theorem 2.20 and
Theorem 2.21 and by fixing Φ(z) = Ψ(z) = z

1−z in Corollary 2.24 and 2.25,
we obtain the following corollaries.

Corollary 2.26. Let γ 6= 0, α and β be the complex numbers. Let q be convex

univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A and

α+ βq(z) + γ
zq′(z)

q(z)
≺ (α+ γ) + β

zf ′(z)

f(z)
+ γ

[
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]
,

then

q(z) ≺
zf ′(z)

f(z)

and q is the best subordinant.

Corollary 2.27. Let γ 6= 0, α and β be the complex numbers. Let q be convex

univalent in U with q(0) = 1 and (2.16) holds true. If f ∈ A and

α+ βq(z) + γ
zq′(z)

q(z)
≺ α+ β

f(z)

zf ′(z)
− γ

[
1 +

zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]
,

then

q(z) ≺
f(z)

zf ′(z)

and q is the best subordinant.

We Conclude this paper by stating the following sandwich results.

§3. Sandwich Results

Theorem 3.1. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
(f∗Φ)(z)
(f∗Ψ)(z) ∈ H[1, 1] ∩ Q and Υ1(f,Φ,Ψ, α, β, γ) is

univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ Υ1(f,Φ,Ψ, α, β, γ) ≺ α+ βq2(z) + γ

zq′2(z)

q2(z)
,
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where Υ1(f,Φ,Ψ, α, β, γ) is given by (2.5) with (f ∗Φ)(z) 6= 0 and (f ∗Ψ)(z) 6=
0, then

q1(z) ≺
(f ∗ Φ)(z)

(f ∗ Ψ)(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By taking q1(z) = 1+A1z
1+B1z

(−1 ≤ B1 < A1 ≤ 1) and q2(z) = 1+A2z
1+B2z

(−1 ≤
B2 < A2 ≤ 1) in Theorem 3.1 we obtain the following result.

Corollary 3.2. Let Φ,Ψ ∈ A. If f ∈ A, (f∗Φ)(z)
(f∗Ψ)(z) ∈ H[1, 1] ∩Q and

Υ1(f,Φ,Ψ, α, β, γ) is univalent in U. Further

α+ β

(
1 +A1z

1 +B1z

)
+

γ(A1 −B1)z

(1 +A1z)(1 +B1z)

≺ Υ1(f,Φ,Ψ, α, β, γ)

≺ α+ β

(
1 +A2z

1 +B2z

)
+

γ(A2 −B2)z

(1 +A2z)(1 +B2z)

where Υ1(f,Φ,Ψ, α, β, γ) is given by (2.5) with (f ∗Φ)(z) 6= 0 and (f ∗Ψ)(z) 6=
0, then

1 +A1z

1 +B1z
≺

(f ∗ Φ)(z)

(f ∗ Ψ)(z)
≺

1 +A2z

1 +B2z

and 1+A1z
1+B1z

, 1+A2z
1+B2z

are respectively the best subordinant and best dominant.

Theorem 3.3. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
Hl

m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Ψ)(z)
∈ H[1, 1]∩Q and Υ2(f,Φ,Ψ, α, β, γ)

is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ Υ2(f,Φ,Ψ, α, β, γ) ≺ α+ βq2(z) + γ

zq′2(z)

q2(z)
,

where Υ2(f,Φ,Ψ, α, β, γ) is given by (2.9), then

q1(z) ≺
H l
m[α1 + 1](f ∗ Φ)(z)

H l
m[α1](f ∗ Ψ)(z)

≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

Theorem 3.4. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
Hl

m[α1](f∗Φ)(z)
Hl

m[α1+1](f∗Ψ)(z)
∈ H[1, 1]∩Q and Υ3(f,Φ,Ψ, α, β, γ)

is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ Υ3(f,Φ,Ψ, α, β, γ) ≺ α+ βq2(z) + γ

zq′2(z)

q2(z)
,
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where Υ3(f,Φ,Ψ, α, β, γ) is given by (2.11), then

q1(z) ≺
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗ Ψ)(z)

≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.7 and 2.22, we state the following corollary.

Corollary 3.5. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
L(a+1,c)(f∗Φ)(z)
L(a,c)(f∗Ψ)(z) ∈ H[1, 1]∩Q and Υ4(f,Φ,Ψ, α, β, γ)

is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ Υ4(f,Φ,Ψ, α, β, γ) ≺ α+ βq2(z) + γ

zq′2(z)

q2(z)
,

where Υ4(f,Φ,Ψ, α, β, γ) is given by (2.13), then

q1(z) ≺
L(a+ 1, c)(f ∗ Φ)(z)

L(a, c)(f ∗ Ψ)(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.8 and 2.23, we state the following corollary.

Corollary 3.6. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
L(a,c)(f∗Φ)(z)

L(a+1,c)(f∗Ψ)(z) ∈ H[1, 1]∩Q and Υ5(f,Φ,Ψ, α, β, γ)
is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ Υ5(f,Φ,Ψ, α, β, γ) ≺ α+ βq2(z) + γ

zq′2(z)

q2(z)
,

where Υ5(f,Φ,Ψ, α, β, γ) is given by (2.15), then

q1(z) ≺
L(a, c)(f ∗ Φ)(z)

L(a+ 1, c)(f ∗ Ψ)(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.13 and 2.24, we state the following corollary.

Corollary 3.7. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies
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(2.16). Moreover suppose
z(f∗Φ)′(z)
(f∗Ψ)(z) ∈ H[1, 1] ∩Q and (α + γ) + β z(f∗Φ)′(z)

(f∗Ψ)(z) +

γ
[
z(f∗Φ)′′(z)
(f∗Φ)′(z) − z(f∗Ψ)′(z)

(f∗Ψ)(z)

]
is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)

≺ (α+ γ) + β
z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)
+ γ

[
z(f ∗ Φ)′′(z)

(f ∗ Φ)′(z)
−
z(f ∗ Ψ)′(z)

(f ∗ Ψ)(z)

]

≺ α+ βq2(z) + γ
zq′2(z)

q2(z)
,

with (f ∗ Ψ)(z) 6= 0 and (f ∗ Φ)′(z) 6= 0, then

q1(z) ≺
z(f ∗ Φ)′(z)

(f ∗ Ψ)(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.14 and 2.25, we state the following corollary.

Corollary 3.8. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be

the complex numbers. Let Φ,Ψ ∈ A. Suppose q2 satisfies (2.3) and q1 satisfies

(2.16). Moreover suppose
(f∗Φ)(z)
z(f∗Ψ)′(z) ∈ H[1, 1] ∩Q and (α − γ) + β (f∗Φ)(z)

z(f∗Ψ)′(z) +

γ
[
z(f∗Φ)′(z)
(f∗Φ)(z) − z(f∗Ψ)′′(z)

(f∗Ψ)′(z)

]
is univalent in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)

≺ (α− γ) + β
(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)
+ γ

[
z(f ∗ Φ)′(z)

(f ∗ Φ)(z)
−
z(f ∗ Ψ)′′(z)

(f ∗ Ψ)′(z)

]

≺ α+ βq2(z) + γ
zq′2(z)

q2(z)
,

with (f ∗ Φ)(z) 6= 0 and (f ∗ Ψ)′(z) 6= 0, then

q1(z) ≺
(f ∗ Φ)(z)

z(f ∗ Ψ)′(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.17 and 2.26, we state the following corollary.

Corollary 3.9. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be the

complex numbers. Suppose q2 satisfies (2.3) and q1 satisfies (2.16). Moreover
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suppose
zf ′(z)
f(z) ∈ H[1, 1]∩Q and (α+γ)+β zf

′(z)
f(z) +γ

[
zf ′′(z)
f ′(z) − zf ′(z)

f(z)

]
is univalent

in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ (α+ γ) + β

zf ′(z)

f(z)
+ γ

[
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]

≺ α+ βq2(z) + γ
zq′2(z)

q2(z)
,

then

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.

By making use of Corollaries 2.18 and 2.27, we state the following corollary.

Corollary 3.10. Let q1 and q2 be convex univalent in U, γ 6= 0 and α, β be the

complex numbers. Suppose q2 satisfies (2.3) and q1 satisfies (2.16). Moreover

suppose
f(z)
zf ′(z) ∈ H[1, 1]∩Q and α+β f(z)

zf ′(z)−γ
[
1 + zf ′′(z)

f ′(z) − zf ′(z)
f(z)

]
is univalent

in U. If f ∈ A satisfies

α+ βq1(z) + γ
zq′1(z)

q1(z)
≺ α+ β

f(z)

zf ′(z)
− γ

[
1 +

zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)

]

≺ α+ βq2(z) + γ
zq′2(z)

q2(z)
,

then

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.
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