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Abstract. We study the propagation of singularities for a system of semilinear
wave equations satisfying the null condition in one space dimension. We show
that if a solution (u,v) to the system is in Hj,.(2) N H},;(0, 2o, 70,&0), then
(u,v) € H.,(T') as long as 3/2 < s < r < 25 — 1, where Q C R? is an open set
and I is a null bicharacteristic of O passing through (0, zo, 70, o).
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§1. Introduction

In this paper, we consider the propagation of singularities of solutions to the
following system of semilinear wave equations with the null condition in one
space dimension,

(1.1)

where (t,7) € R?, u(t,z), v(t,x), ug(z), ui(z), vo(r) and vy (z) are real valued
functions, h;(u,v) are polynomials of u and v for j =1,2,...,8 and Qo, Q1
are the null forms

(1.2) Qo(f,9) = (0:1)(0rg) — (921)(0zg)
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and

(1.3) Q1(f,9) = (9:f)(029) — (02.f)(0rg)-

We assume that 3/2 < s < 2, initial data ug and vg are in H*(R) and u; and
vy are in H¥71(R).

Notation. (£) and (7, &) denote (14 [£]?)Y/2 and (14 |7]? + |€]?)/? respectively.
If Q2 C R™is open, H; (£2) is the standard Sobolev space of distributions u such
that (€)*¢u € L*(R") for all ¢ € C§°(Q). Let (x0,&) € O x (RP\{0}). We say
that v is in microlocally H" at (xo,&p) and write u € H] (o, &o) if there exists
a ¢ € C°(R™) with ¢(xp) = 1 and a conic neighborhood K of &, in R™\{0}
such that (§)"xx (€ )]@(5 )| € L2(R™), where xx is the characteristic function
of K. If T is a closed conic set in €2 x (R¢\{0}), we say that u € HJ,(I') if
we H (x,€) for all (x,£) € T'. Let p(x,§) is a characteristic polynomial of
differential operator P of order m and homogeneous of degree m in £. For a
point (xg, &) with p(xg, &) = 0, the null bicharacteristic through (z¢, &) is the
curve defined by fli—i = 2_1507 % = —% with z(0) = zo, £(0) = &. Throughout
this paper, Cs serves as a generalized positive constant depending only on s if
the precise value of which is not needed.

In the case of the linear wave equation Cu = 0, Hérmander [9] has shown
that the wave front set of u propagates along the null bicharacteristic for [.
Generally, in the case of nonlinear wave equations, such a result cannot be
obtained. However, it is known that if we consider the microlocal Sobolev
regularity and assume the suitable range of the Sobolev exponent, then a
phenomenon similar to the linear case is observed. In [20], Rauch first analyzed
such result for the solutions to OJu = f(u) where f is a polynomial of u. Let
feC™>, QCR"beanopenset,u € Hj (Q)NH], (to, z0,70,&0) be a solution
to

(1.4) Ou = f(u, Du)

and (tg, o, 70, o) is a point in the null bicharacteristic I' C Q2 x R™ of (J. Bony
[7] and Beals-Reed [6] have shown that « is in H] , at all points of I" as long
as for n/2+1 < s < r < 2s—1—n/2 by the different way, respectively. For
a second order strictly hyperbolic differential operator ps(z, D), Beals [5] has
shown that solutions v € Hj () N H] ,(x0,&0) to pa(x, D)u = f(u, Du) is in
H , at all points of a null bicharacteristic of py starting from (xg, &) as long
as for n/2+1 < s < r < 3s —n — 2 by using a simple commutator lemma,
Rauch’s lemma and the standard calculus of pseudo differential operators.
The technique used in Beals [5] plays an important role in this paper. In [18],
Lingi Liu has shown that the same result holds in the case of n/2 +1 < s =
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r < 3s—mn—1 for Ou = f(u, Du) by using a particular kind of weighted
Sobolev spaces. In the case of a system, H.Michael [19] has shown that for
U= (u1,...,upn) € H} (Q)NH] (x0,&) which are solutions to p(z, D)U =
GU) (G € C*), Uisin H; , at all points of the null bicharacteristic of I" as
long as for n/2 < s < r < 3s —n+ 1. On the other hand, if r is sufficiently
large, new singularities are observed (refer to [3], [4], [21] and [22]). We are
interested in the threshold of r and s. Although numerous attempts have
been made to study these analysis, the threshold of r has not been determined
exactly. In [11] and [12], we consider the case which nonlinearity satisfying the
null condition. The null condition is defined by Klainerman [14]. Klainerman
introduced the null condition as a sufficient condition for a global existence of
smooth solutions to Ou = F(u,u’,u”), which is defined as follows.

Definition 1.1. (Klainerman [14]) Let F(u,v1,...,v,) a real valued function,
smoothly defined in a neighborhood of the origin in R x R™. We say that
F(u, Du) (where Du denote the first partial derivatives of u) satisfies the null
condition if, for any u, v and any vector X = (Xi,..., X,) such that X? —
S o X2 =0, the following identity holds;

n
O*F
ij=1 "

The attempt to lead the global and local existence theorem has been studied
by a lot of people who have improved the null condition (refer to [1], [2], [8],
[10], [13], [16], [17] and [23]). The null condition of semilinear wave equation
which we consider are restricted to (1.1). In [12], we improved a lower bound
of the threshold of s and r in the case that the nonlinear term satisfies the null
condition. We have shown that if n/2 < s < r < 3s —n then u is in H) , at
all points of a null bicharacteristic of [J. The key of the proof is to make the
Cole-Hopf type transformation to w. This transformation makes nonlinearity
of (1.4) change to a polynomial of first degree with respect to Du. Then,
we can apply the result of Beals [5] directly. This feature is obtained when
nonlinearity satisfies the null condition.

The result of this paper is an extension of [12] to the system (1.1) and
we show that the same result is true for a time local solution (u,v) of the
system (1.1) as long as 3/2 < s < r < 2s — 1. In the case of the system (1.1),
the Cole-Hopf type transformation doesn’t work. To avoid this problem, we
estimate the microlocal regularity of the solution in the function space used by
Klainerman and Machedon [15]. Firstly, we construct a time local solution of
the initial value problem (1.1) in the function space associated to O introduce
n [15]. Secondly, we prove a propagation of a singularities to the constructed
solution in the above function space by using the idea of Beals [5].
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In order to state the main results precisely, we define several function
spaces. We put

(1.6)
feH: (R?) | Ya(t) € C§°(R) such that a(t)f € H*(R?),
X® = fli=o € H*(R), Oufli=0 € H*'(R),
HDf”)qfl <

with norm

(L.7) 1 lxe = 1 bzl 19eFlezollsms + 10 o
and |[Fllx; = [{D2)Fll ..

Proposition 1.2. Let 3/2 < s < 2. Then for any ug, vo € H® and uq,
vi € H51, there exists a positive constant T and a unique time local solution
(u,v) of the initial value problem (1.1) satisfying

(1.8) (u,v) € {X* N L=([=T,T]; Hy) } x {X* 0 L>=([-T,T]; Hy)}-
Our main result is the following.

Theorem 1.3. Let 3/2 < s < 2 and (u,v) € {X* N L>®([-T,T];HS)} x
{X* N L®([-T,T); H:)} be a time local solution constructed in Proposition
1.2. IfT CR?, X (Rig\{O}) denotes a null bicharacteristic of O and (u,v) €
H;d(ou Zo, 70, 50) X HZ@Z(O) Lo, 70, 50) fOT a pO’l/ﬂt (Ou Zo, 70, 50) on F? then (U, ’U) €
H! (L) x Hy (T) for |t| <T as long as r < 2s — 1.

Remark 1.4. For the case of s > 2, the same result holds but this case is
treated in Beals [5]. So we do not treat this case.

Remark 1.5. Simple calculation shows that the null bicharacteristic of U
through the point (0,20,70,&) € Rf, x (Rz’g\{O}) with 19 = +[&| is the
straight line I' = {(t,x,70,&0) | © = x0 — (&0/70)t}.

In section 2, we prepare the null form estimate which is necessary for prov-
ing the existence of a time local solution. In section 3, we prove the existence

of a time local solution. In section 4, we prove a propagation of a singularity
theorem.

§2. Estimate for the Null form

In this section, we give the estimates for the X 15_1 norm of the null forms.
From the definition (1.2) and (1.3) of the null forms, we can rewrite

21)  Qolu,v) = %{(at +0p)u- (9 — Op)v + (B — D) - (9y + Op)v}
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and
1
(2.2) Q1(u,v) = 5{(8t — Op)u - (O + Op)v — (O + Op)u - (O — Oy)v}.
Let a(t) € C§°(R) such that a(t) = 1 for [t| < 1/2, a(t) = 0 for |t| > 1 and

0 < a(t) <1 and put ar(t) = a(t/T) for T > 0. The following lemma is
prepared in order to prove Proposition 2.2.

Lemma 2.1. Let f,g € H*"Y(R) for 3/2 < s <2. Then
(2.3) laz(t)f (@ +t)g(z = )l xs-1 < CVT || fll gsrllgll -
where C is a constant depending on s and a(t).

Proof. Since s —1>1/2, fg € H*"1(R). Hence we have

lar(®)f (@ + gz = Ol -1 < [[ar @) [[{D2)* 7 (f@ + Dl = 1)

L3
< Cs llar @l 2 171l o219l grs—
< CVTlal g2 1| Il gro=1 9]l o1
Putting C' = Csl|a||z2, we have the conclusion. [

Proposition 2.2. Let (u,v) € X° x X® for 3/2 < s <2. Then we have
(2.4) lar (1) Q(u, v)|| -1 < CT[Jullxs[[v]l x>,

where Q(u,v) stands either Qo(u,v) or Q1(u,v), T" = max{T*?,T,T"/?} and
C' is a constant depending on s and a(t).

Proof. We prove only the case of Qo(u,u), since the other cases can be proved
similarly. We put u(0,z) = ug(z), du(0,z) = ui(z) and fo(t,z) = {uo(z +
t)+uo(z —t)} + 3 fwftt u1(y)dy. By the density argument, we have

T

ar(t)(0¢ £ 0z)u = ar(t) (0 £ 0z) fo + 2ar(t) /Ot Ou(a,r £t F a)da

holds in L7 (R, H:"1(R)). Putting fo+ = (0; £ 9,) fo, ux = (9 + 8)u and

Uy = 2f0t Ou(a, x £t F a)da, we have

oz Qo(u, ) o

< Nar@y@i— oo + iy fo -l et + oz fosles + laz fo s follxit.
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We only show that

(2.5) lazsi |l < CT¥2all 2 [ Dull, -

since the other terms can be estimated similarly. By Lemma 2.1 and the
Schwarz inequality, we obtain

(2.6)  llar(t)utu_| s
T (T
<Cs// HaT(t)<D$>s*1{Du(a,:U+t—a)Du(ﬂ,x—t+ﬁ)}HL2 dadp
0Jo b
T (T
< CS/O/O VTlal| 22 [|Du(e, )| o [|Ou(B, )| o1 dad 3
< CST3/2HGHL2||DU||§¢1-

Similarly, we obtain

@7 lar(®fosfollxer < CTY2alla (ol g+ o)

(2.8) laz ()t fo, -l xs-1 < CsTlall L2 (uoll s + lluall grs-)IBul] 5=

and

2.9 Mlar(®)uforllxs-r < CsTlall L2 (uoll s + lluall s~ [Bull xs-1-

By (2.6), (2.7), (2.8) and (2.9), we have the conclusion. [

§3. Existence of solutions

Let
Xo =Af € X2 [ [[fle=ollgrs + [10cfle=oll gro—1 < p/8, B[ xs-1 < p}
and
pr ={f € L=([=TT]; Hy) | [ fllv; < p}

with || fllys = [ fllLe(-1,75;m5)- We define a mapping M formally as follows

t

(3.1) M(u,v) :t<%§zz;> -

t
fo+ /0 Ut — a)ar(a)A(u, v; a, x)do

t
go + / U(t — a)ar(a)B(u,v; a, z)do
0
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where U is the evolution operator for [J deﬁned by U(t)yy(z) = [ "y dy,
folt, ac) Mug(z+t)+ug(a—t) }+3 [Z uy(y)dy, go(t,x) = 2w (:z—l—t)+v0(a:—
O} + 5 [ vi(y)dy with u(0,z) = ug(x), 3tu(0 z) = ui(z), v(0,2) = vo(x)
and 8tv(0 x) =v1(z), ar(t) is a function defined in section 2,
A(u,v;t, x)

= h1(u,v)Qo(u, u) + ha(u, v)Qo(u,v) + ha(u,v)Qo(v,v) + ha(u,v)Q1 (u,v)
and
B(u,v;t, x)

= hs(u,v)Qo(u,u) + he(u, v)Qo(u,v) + h7(u,v)Qo(v,v) + hs(u, v)Q1(u,v).

We show that the mapping M is a contraction mapping on (X, ﬂY;T) x (X;N
Y;T) for sufficiently small 7" > 0. To prove this, we use the following lemma.

Lemma 3.1. Let (u,v) € (X, NY)7) x (X;NY ) for 3/2 < s < 2. Then

we have

) k
(32 [OM(w, o)y < OT' S Yl ol (ullxe + ol x)?,
0<j+k<n

where My ({ = 1,2) is the mapping defined in (3.1), T' = maz{T%/?,T,T"/?},
C' is a constant depending on s, a(t) and h; and n is the mazimum of orders
ofhi (i=1,2,...,8).

Proof. From the definition (3.1) of the mapping M and the triangle inequality,
we have

IBM (u, v) || yo-1= [laz () Au, v t, ) || s
< llaz (t)ha (u, v)Qo(u, w) || xs=17 [laz () he (u, v) Qo (u, V)| -1
+ llar (D)hs(u, v)Qo(v, )| -1+ llar (H)ha(u, v)Q1 (u, V)| x -1

)
)

We put h;(u,v) = Zogj+k;§m cg.f;gujvk. By Proposition 2.2 and the assumption

s —1>1/2, we have
llaz (€)1 (u, v) Qo (u, u)|| o1
< Cs

(1,0) g+ o () Qo ) g |
[-T,T]

Jar (50w ) ;-

(=7,7]

j k
<o Yl ol lulke.

0<j+k<m

< Cs

(U, U)HH;_I I
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where C is a constant depending on s, a(t) and hy. Similarly, we have

j k
laz (t)h2(u, 0)Qo(u, v) |l -1 < CoT" Y Hlullye 0]l lullxs [[ollx-,
0<j+k<n2

j k
lar (t)ha(u, 0)Qo (v, ) o1 < C5T' 37 Jfulls ol [0l
0<j+k<ng

and

j k
llaz ()P (u, v)Q1 (1, v)[| 51 < C4T > lullys 0lYs el xs vl xs
0<j+k<na

where C; are constants depending on s, a(t) and h; (i = 2,3,4). If we put
n = maxn; and C' = max C;, then we obtain
1<i<4 1<i<4
j k
07 (1, 0) g1 < CT' 3l ol (lullxce + [oll ).
0<j+k<n

Similarly, we obtain

j k
|00, 0)l|yes < OT' S [fullds ol (lullxe + ollx)?.
0<j+k<n

Lemma 3.2. Under the same assumptions in Lemma 3.1, we have

(3.3) HMI(UaU)HY;
< CT" Y lullyy lloliy; (lullxs + lollxe)? + luol s + 2 llun | e
T T
0<j+k<n
and
(3.4) HM2(U7U)HY;

j k
<CT' > lullizg 1o/l (ullxs + lvllxe)? + llvoll s+ 2 lloall a1,
0<j+k<n

where C' are constants depending on s, a(t) and h; (i =1,2,...,8).
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Proof. From the definition (3.1) of the mapping M and the triangle inequality,
we have

t
HMl(u,v)Hsz = f0+/0 Ut — a)ar(a)A(u, v; o, x)do

Loo([-T\T);Hg)

t
< ol s raryansy + C (‘ /O U(t - a)ar(a) Alu, v; a,z)da

Leo([=T\T;L3)
¢

+ H|DI\S/ U(t — a)ar(a)A(u, v; a, z)da
0

Loo([T,TLLz)) ’

By change of variables and the Schwarz inequality, we obtain

‘ /otU(t — ajar(a)A(u, v; o, 7)da
da

/
0 [2

/ [ L ar@) A 50+ ) dyo
O(

T
2 sup |t — a! lar(a) A(u, v; a, @) 12 dex
€[0T ‘

Le([-TT}L3)

IN

r+t—o
| ar@at gy
z—(t—a)

IN

Loo[~T.T)

IN

Loo[~T,T)

<2 sup |t~ alVT|lar() Au, v;t, 2)] yams

«€[0,T

Lo[~T.T)
< 4T3/2HaT(t)A(U, v; t, x)”xffl

and

t
\Dgg\s/ Ut — a)ar(a)A(u, v; a, x)do
0

Le([-TT)L3)

t
< H/\Dx\s_laT(a)(A(u,v;a,:z—i—t—a)—A(u,v;oz,x—t—i—oz))da
0 L Loo[—T,T]
T
< 2/ H|D$|S_1aT(a)A(u,v;a,x)| 2 da
0 “ Loo[—T,T]
g2ﬁ|yaT(t)A(u,v;t,x)uxf,l.
By a similar calculation for fo = ${uo(z+1t) +uo(z —t)} + 3 f$+t y)dy, we

obtain

[ foll oo (= ms) < llwoll s + 2 Jun [l grs—1 + 27 [Jua || grs—1-
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By Lemma 3.1, we have (3.3). Similarly, we obtain (3.4). [

Lemma 3.3. Let (u,v),(%,0) € (X, NY, ) x (X;NY)p) for 3/2 < s <2,
h(u,v) is a polynomial of degree n with respect to w and v. Then we have

(35) llaz(t){h(u,0)Q(u,v) — h(@, D)Q(E )} | yo-
< O { (K (u,@,0) Ju = ally, + K (v,8,8) []o = 2lly,.) lullx- ol x:

+h(llallys [19llys) (lu = allxsflollxs + el xs[lv - 17HX5)}

and
t
(3.6) ‘ / U(t — a)ar(a){h(u,v)Q(u,v) — h(a,v)Q(u, ) }da
0 Y
< CT{ (K (u,,0) Ju = ally; + K (v,8,8) []o = 7lly;. ) lullxe o]l x
Bl 190y (e = @lxllollxe + allxe o = 3llx<)
where

K1) = 3 Il I+ I el IRl -+,
StTysn

T' = maz{T3? T, T?}, Q(u,v) stands either Qo(u,v) or Q1(u,v) and C is

a constant depending on s and h.

Proof. Since 3/2 < s <2, we have

(3.7 llar(t){h(u,v)Q(u,v) — h(u, )Q(ﬂ,@)}HXig_l
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Putting h(u,v) = 3 o<1 j<n ¢ ju'v?, we have
(3-8) 1A (u, v) = h(@, 0)|y
1oty 0) = B )y + (i v) = b )y

IN

IN

(w—a) Y cijol (W™ 4+

1<i+j<n v
T

+ ||(v — ) Z cigtt (v 5T
1<itj<n e
T

< €, maxc [ei] (K (,0) [u = iy, + K (0,8.3) o = 3lly, ).

By Proposition 2.2, we have

(3.9) lar (H{Qu. v) — Qi #)} ] 51
< Nlar ()@ — i) | -1 + oz (DQ(i, v — )] o1
< O (llu — allx-lollx= + lallx: o - 3llx+).

Therefore the conclusion is obtained combining (3.7), (3.8) and (3.9). Similarly
we can prove (3.6). |

Proof of Proposition 1.2. We show that the nonlinear map M defined in
(3.1) is a contraction mapping from (X7 NY}7) x (X;NY]7) to itself for
sufficiently small 7' > 0. That is, for any (u,v),(4,9) € (X;NY;7) x (X;N
Y. 1), we show that

(3.10) (M (u,v), Ma(u,v)) € (X;NY,p) x (X;NY)p)

and
(3.11) M (u,v) = M(@, 0)||xs + [ M (u,v) = M(a,0)[ly;

< ) = @Dl + 5 1 v) = ()

The contraction mapping principle yields from (3.10) and (3.11) that there is
a fixed point of (X; MY 7) x (X, NYJ7). This gives the solution of (1.1).

It is obvious that Mj(u,v)|i=0 = uo(z) and 9; M (u,v)|t=0 = ui(x). So we
have that || My (u,v)|i=o|lzs + |0:M1(u, v)|t=0 |l grs—1 < p/8 for (u,v) € (X3 N

Y7 r) X (X;NYJr). By Lemma 3.1 and Lemma 3.2, we have

IOMi (u,0) g1 < CT' 37 /1442
0<j+k<n
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and

k+2
HMI(U’U)”YTSS T’ Z P e
0<j+k<n
If we take sufficiently small 7' > 0, we obtain M (u,v) € X, N Y. Similarly,
we obtain Ms(u,v) € X7 NY 7. Hence we have (3.10).

Similarly, we can prove (3.11) for sufficiently small 7" > 0 by Lemma 3.1,
Lemma 3.2 and Lemma 3.3. [ |

84. Propagation of Singularities

Let ¢(x) be a C§° function satisfying ¢ = 1 near xg and x(7,&) be smooth,
homogeneous of degree 0 in |(7,£)| > € for some e > 0, with conic support,
X = 1 on conic neighborhood of (79,&p). We consider the operator P with its
symbol p(t,z,7,&) = p(x + (§/7)t)x(7,§) , which is defined by

(4.1) Pf:/ p(t,x,T,f)f(T,ﬁ)ei(tT+$E)de§.
R2

Simple calculation yields that the symbol of the commutator [(J, P] = OP— PO
is (€2 /72 —1)¢" (x4 (£/7)t)x, which is a symbol of pseudo differential operator
of order 0.

In order to prove Theorem 1.3, we multiply the operator P to the both
sides of the equations (1.1) and use the energy estimates. We prepare several
lemmas to prove the main theorem. The following well-known result will be
used frequently.

Lemma 4.1. (Rauch and Reed [21]) Suppose that G(§,n) may be decomposed
into finitely many pieces, i.e., G =, Gi(§,n), each of which satisfies either

(4.2) sup/\Gi|2d7] < oo or Sup/|Gi\2d§ < 00.
3 7

If f,g € L? and h(¢) = fG(f,n)f(f — n)g(n)dn, then we have ||h||2 <
Cllfllz2llgllz2-

Lemma 4.2. Let P be the operator defined in (4.1). Suppose that f,g,h € H?,
Of,0g € H! and 3/2 < s < 2. Then, for any 0 < e < s — 1, we have

[P, h(t,x) (0 + Op) f(Or — 0.)](0y £ 0z)g € HS 2t
and

[ P, h(t,2)(0; — 02) (O + 0)] (8 & D) g € HS2Fe.



PROPAGATION OF SINGULARITIES FOR A SYSTEM OF WAVE EQUATIONS 261

Remark 4.3. To estimate for K defined in the following proof, the inequality

1 C
(43) Aﬂﬁﬂx—aYﬂ+m—6de<Owﬁa—my‘wrr>l

15 used frequently.

Proof. Assume that p depends only on 7 and £ (the general case requires
some obvious modifications). Let fy = (0y £ 0,)f and g+ = (0 £ 0,)g. For
simplicity, we put n = (7,€), ' = (7/,£’). Then

Fiuo [P, (hF-) (01 + 091
—iplo) [ B G =) + (€ = N0 — o

~ i [ RGN =)+ (& = €0}l = )3 o = ')
=i [ RF Gt — plr = O} = 1)+ (€ = ) — )i

Wiite 01(n) = {(m)* (1 + v + ENFAT-(n) and 601) = {(n)*~ (1 + |7 —
€))}g+ (n), then simple calculation yields that 1,6, € L?. Thus

mr*“fmnR0ﬁ4¢%+@m%4=/ﬁam#wuﬁwxn—#mm
where

(m* > |p(n) —p(n — )| - (T — ) + (£ — &)
)t =)L+ P+ DA+ (r =) = (€= E))

By Lemma 4.1, it suffices to divide K into finitely many pieces K; such that

K (n,n)| =

(4.4) sup/\Ki\an < oo or Sup/\Ki|2dn/ < 0.
n n

[r— e ¢

(i) For |n'| > Inl/2, |n —n'| > |nl/2 and 5

<+,

C
e+ |(r =)= (=€)

r—r'+¢—¢|
2

K| <

(i) For |n'| = |n[/2, [n—n'| = |n[/2 and

<|r+¢,

C
s+ 7+ DA+ (T =7) = (€=

K| <
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() For /| > [al/2, In — ') < Inl/2 ana T8 <oty (e,
K< e

(i) For /| > [nl/2, In — ') < Inl/2 ana =" EEE < oje g

S i (EAC R (e e e r
(¥) For | < pol/2 and TS < 2 e s (o) — pln — )] <
')/ (n),

e e el
(vi) For | < [nl/2 and T=TFEZE <) s (o) — i — )| <
')/ (n),
K| <

C
)y @+ + DA+ [(r =) = (€= &))

Therefore, in all the cases, (4.4) holds since € < s — 1. Here, we used Holder’s
inequality and (4.3) in the case of (ii), (iv) and (vi). It is similar in the case
of [P, (hf-)(8s + 9x)lg, [P, (hf+)(0 — 0x)lg+ and [P, (hfs)(0 — 8;)]g-. N

Proposition 4.4. Let 3/2 < s < 2. Suppose that (u,v) is a solution of the
initial value problem (1.1) in (X, NY ') x (X7 NY ] 7) for some T > 0 with
ug(), vo(x) € H® and ui(z), vi(z) € H"L. Then ar(t)Q(u,v) € H*~1(R?),
where Q(u,v) stands either Qo(u,v) or Q1(u,v).

Proof. Because of the fact that
lar()Qo(:0) o1 < lar()Qo(w0) L xz-1 + [[{De)*2(Dar()Qo(w0)]|

and the fact that |lar(t)Qo(u,v) ||Xlsf1 < oo from Proposition 2.2, it suffices to
show that

H (D) 2(Dy)ar(t)Qo(u,v) HL%I < 0.



PROPAGATION OF SINGULARITIES FOR A SYSTEM OF WAVE EQUATIONS 263

For the solution v and v of (1.1), we write u = fo + u and v = gg + v, where

x+t
folt z) = %{uo(x 1)+ uo(e — )} + % / wr (y)dy,

r—t

x4+t
go(t,x) = %{vo(:z +1t)+vo(z—t)} + % /t v1(y)dy,

t
u= /0 Ut — a)ar(t)A(u, v; o, x)do

and
t
o= [ Ut~ Bart)Blu,vi 6.2)d5.
0

Then we have Qo(u,v) = Qo(fo,90) + Qo(fo,?) + Qo(g0,u) + Qo(w,v). We
show that only

(4'5) H<Dx>s_2<Dt>aT(t)Q0(av mHLf,I < 00,

since the other terms can be estimated similarly. From Leibniz rule and the
triangle inequality, we have

|{D2)*"*(Dy)ar (t)Qo(4, E)HL?,I
< llar (1)Qo(@, B) ;-1 + [[{D2)*"*(Dear (1) Qo (@, D) 15
+ [[(D2)*2ar () (DiQo (@ 0)) | 5
Since Proposition 2.2 shows that |
lar (£)Qo (. )|l ;-1 <00 and [[(Da)* *(Dsar()Qo(@ D) 2 < oo,

we only show
H <Dx>572aT(t)(Dth(ﬁ, 5)) Hsz < 0.

For simplicity, we write A(u,v;a,x) = A(a, z), B(u,v;a,z) = B(a,x). From
(2.1), we have

Qo(u,v) = 2/ / ar(a)ar(B){A(e,x +t — a)B(B,x —t + [3)
0o Jo
+ A,z —t + )B(B,x +t — 8)}dadS
and
0:Qo(u,v) = 2/0 /0 ar(a)ar(B)0{Ala,z +t — o) B(B,z —t + )

+ Alo,x — t + @) B(B,x + t — 8)}dadp
+ 2ap(t)(B(t, 2)0,0 + A(t, 2)0,0).
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It follows that

H(Dﬁs_?ay(t) /O t /0 tay(a)aT(ﬂ)at{A(oz, z+t—a)B(6, x—t+ ) }dodf

L%I
T pT ’

S AAa’]"(a)aT(/B)H<Dx>s_2aT(t)atA(a7x—'_t_a)B(/B’x_t—’_ﬂ)HL%,;«dadﬁ
T T

< [ [art@an(®lDrorarttAta. a+t—a)B(s.0-t+ 4} ; dods

T,T

+ [ [ ant@en @Dy *Oart) Ao+ t-B(8,2—t4+5) | 1y dadd
0J0 ,

= Il + .[2.

Applying Lemma 4.1 as in the proof of Lemma 4.2, we have
T T
B0 [ [ 1Al g B rdadd < Al Bl

and

T T
B<Co [ [ 1A g | Bl dod8 < Ol 1Bl

where C] and Cy are constants depending on s and ar. Since
t
oiu = / ar(a){Ala,z +t—a) + Al —t + o) Hda
0

and .
07 = [ ar((BE.x+t-5)+ BlBa~t+ )5,
0
the same calculation as the above yields

(D) 2arOTBE ) 5 < ClAlL 1Bl

and
H<D$>s—2aT(t)8ﬁA(t,:v)Hng < CHB||X§71 HAHY73 .

Therefore the proof is completed. [

Lemma 4.5. Let 3/2 < s < 2. Suppose that P is the operator defined in (4.1)
and (u,v) is a solution of the initial value problem (1.1) in (X;NY 7) x (X;N



PROPAGATION OF SINGULARITIES FOR A SYSTEM OF WAVE EQUATIONS 265

Y;T) for someT > 0. If0<d <T and 0 < e < s—1, then, for [t| <T -9,
we have

(46) [|as®As, 24 (P(3s + .)h(u,v)Q(u,v) (¢~ )

L?
t,x

< Cilllullxes lolles lullyg  0lly) || as A5, Pustt = £,
ia

+ Colllullxe, Iolxe lullyg ol s DAL, HePostt — 2| |

t,x

+ Ca([lullxs, [[vllxs, lullye s lvllys),

where ux = (0 £ 0z )u, v+ = (Op + 9y )v, Ci([lullxs, [[v]l x5, [[ullys s [[olly) (=
1,2,3) are constants depending on ||ul| xs, ||v| x=, HuHY73 and HU”Y; and Q(u,v)
stands either Qo(u,v) or Q1(u,v).

Proof. 1t is enough to consider only the case Q(u,v) = Qo(u,v). Let b(t) €
C§° with suppb C {|t| < T} and b =1 for |t] < § + &', where &' is a positive
constant satisfying |t| < 0’ < T — 4. Then

(A7) [as@A; (PO % 0)h(u,v)Qo(u, ) (¢~ 1)

L2
t,x

= ot = Das @852 (P@s + 02w, 0)Qow,v) (¢ = )|

L?
t,x

< ‘b(t — Dag(D)A; > (PhausQo(u,v)) (t — f)( L2
+[b(t = Dag(B)A7 > (Phav+Qo(u, v))(t — fg’\gthg
+ b(t—f)aa(f)Af’;2+e(PhQ(uaUi))(t_E)‘ 2 ’I
+[|b(t = Dag(DAT > (PhQ(ux, v)(t f)( L:

t,x

as long as |t| < ¢’, where h; (j = 1,2) are partial derivatives of h. Here, we
have with [A, B] = AB — BA,

(4.8) b(t — Bas ()3 (PhiusQo(u, v))(t — 1)
= [b(t — D)as (D), A7 TV (Phius Qo(u,v))(t — )
+ A3 2 ag(D)[b(t — 1), Pl (71 Qou, v)us) (t — )
+ NS < as ()P, (b Qo)) (¢ — F)]u(t — F)
+ Af,;%eaa(f)(hleo(% v))(t — 1) (Pug)(t — ).
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Since [b(t —t)as(t), A§;2+E] and [b, P| are of order s —3+ € and —1 respectively
and fgh € H37>7V for f,g,h € H*"'(R?) and any v > 0, thus for the first
and second terms of the right hand side of (4.8), we have

H [b(t = Das(D), A > (PhiusQo(u, v)) (t - f)( L <0
and
| Az a5 (it — D), P Qo v)uz)(t D), < oo

In the same way, as the proof of Lemma 4.2, for the third term of the right
hand side of (4.8) we have

|

Now, we estimate the forth term of (4.8). For simplicity, we put n = (7,¢&)
and ' = (7,¢). Then

t,x

A3+ as (B) ([P, (bl Qou, 0))(t = D)) (¢ — )]

L?
t,x

(n)* 2T Fy o [(h1bQo(u, v)) (t — B)as () Pux(t — T)] (n)
= /K1(n,n’)9§1)(77/)9t(2) (n—n")dr,

where 0.(n) = () ~'F; , [ bQo (u, v) (t— )], 07 ) = ()4 ;. [as (F) Puc (¢ —

s—2+€
E)] and ’Kl(n7n/)| = <n/>s—§7z7>7 _ 77/>s—1+e

A3 (habQo(w, ) (¢ — Das(D)(Puz)(t — D)
< 16 ez 1102z,

< C"|h1bQo(u, v) || o
% ([lasDag HePuse - )

. By Lemma 4.1, we have

L?
i

,T

e as (8] P (t — f)(

e

5—
L2 t,x 2
t,x

t,x

as long as 0 < € < s — 1. Thus we obtain

(49) ||b(t = Das DAL (PhiusQolu. )t = )

L?
t,x

‘a(g(f)Ag;HePui(t _ 5)‘

< Y (lullxces follxes Tlys s lollys) .

t,x

+ Colllullxcs, l[ollxes, ullyg s [[vlly)-
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Since Qo(u,v+) = 1/2{u4(0y — Oz)vs + u_(0; + 0, )v+ }, we have

(4.10) 2 [b(t = Das(DAL 2 (PRQ(u, v4)) (¢ — )

2
L; .,

< ot = DasDAL > (Phuwy (0, — 02)0s) (¢ — )

L2

t,x

+ Hb(t — Dag(DAL, 2 (Phu_ (9 + 0,)v+) (t — )

2

In the same way as the estimates of (4.8), we have
(4.11) b(t = B)as (DAL (Phuy (9 — aJvs) (t — F)
= [b(t — Das (D), A3 (Phu. (9 — 0, )vs ) (¢ — )
+ A3 ag(®)([b(t — 1), Plhus (9 — 0a)vs) (t — 1)
+ At§;2+€a5(£) [P,b(t — t)hu (8 — Oy)]vs
— NS 2 (bhu ) (t — B)las(E), O + O] (Pos) (t — F)
— A7 PP (bush) (= 1)(0; + Do)as(D)(Pos) (1 — 1)

and first, second and fourth terms of the right hand side of (4.11) are in
Ltgx. By Lemma 4.2, third term is in Ltgx. Now, we estimate the fifth term

of (4.11). Putting 61 (n) = (n)*~1(1 + |7 — &) F,[(bhu )(t — D], 67 (n) =
()= 1+ F; las(f) Py (t — 1)) and

()| + ¢
)= =) e+ |(F = 7) = (€= €&))

[ Ko (n, )| =
we have
()T, (s h)(t — D(O; + O )as(D)(Pos)(t — D] (n)
= / Ks(n, )0, ()01 (n = 'y
By Lemma 4.1, we have

|

3 4
< C116: 152 167112

A2 (busch) (= £)(95 + 02 )as(F) (Poa) (t — )

L2
t,x

< CR| s (s || o=+ [[05b wse || s + [[0(8) D] gra—v)
X (Ha(;(f)Az;HEPvi(t . f)HLg v H [AS24, a5(D)] Pos(t — 1)

L2 )
t,x
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Therefore we obtain

(4.12) Hb(t — Dag(B)AL, (Phu (0 — Oy)vs) (t - 5)‘

2
Lie

‘ag(f)Az;QJreri (t— E)‘

< Ca(llullxss [lvllxss lullyg s l1vllyg)

L2
t,x

+ Cilllullxs [lvllxs, lullys s [ollys)-

y (4.9) and (4.12), we have the conclusion. [
Now, we prove the main theorem.

Proof of Theorem 1.3. Since (0;+0;) or (0y—0,) is elliptic near I', it suffices
to show that (0; +9;)u, (0 £ 0;)v € H' (L) for |t| < T. Let ug = (8; £0,)u
and vy = (0 £ 9, )v. Multiplying (9; + 0,) to the both sides of (1.1), we have

(4.13) Ouy = (0 + 0,)A(u, v),

where

(4.14) A(u,v)
=h1(u,v)Qo (u,u)+ha(u,0)Qo(u,v)+hz(u,0)Qo(v,v)+ha(u,v)Q1 (u,v).
Applying the operator P defined in (4.1) to the both sides of (4.13), We have

(4.15) DPui :[D, P]ui + PDui
=[0, Plux + P(0; £ 05)A(u,v).

Let
AT 28 = |1 ~AT728 Al
E(t;u,v) = Ha(; i Puy (t — )‘ i + Haa(t) » o Puy (t —t) i
) 5 _ 112
+|as@®Ar 2Puse =), +||as®Ar 2oPoste— D)
> i - 2 ’
+Ha5( JAT 20 Pvi(t—t)HLg +Hag(t)Agngvi(t—t)‘Lg :
t,x tx

where A = (D) and 0 < 6 < T. Let ¢ € C°(R), [p(z)dr = 1, p,(z) =
lgo(i) and put ug = @, * ug, Uy = @y * ur, V5 = @, * vo and vy = @, * V1.
Let (uy,v,) be a smooth solution of uw = fy(t,x) + fo (t — a)ar(a)(p, *
Auy,vy))da, vy, = g§(t,x) + fo — a)ar(a)(py * B(uw,vw))da where
fe(to) = Mug(a+ 1) + (o — )} | LI )y, g () = L (e +
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t)+ug(x—1t)}+ 5 f vt 1Y (y)dy. Using the same technique as in the proof of
Lemma 3.2 and Lemma 3 3 we have

llu — uyl|xs — 0, Hu—uw||Y1§—>0 as w — 0.

Hence ||uy||xs < Cllullxs and ||Juy||xs < Cljv]|xs for 0 < Yw < 1. Similarly,
we have [|uy||xs < Cl|ul|xs and ||vy | xs < C||lv||xs. By the calculus of pseudo
differential operators and the Schwarz inequality, we have

1dE(t; uy,vy,)

2
~Relas ()AL, 0Py s (t — 1), as (DAL, 20 Puy < (t — 1))
+ Re(as (DAL 20 (Pues 1t — 1)), a5 ())A7, 2 Pug (& — 1))
~ Refas (i )Af@QDva,i(t—t),ag( AL 20,(Pua(t — 1)
+ Relag(D)A],20(Puy +(t — 1)), ag(D)A] 2 Puy 1 (t — )
< [as®720Puc (¢ - D) H H 5(E)A§7$285(Puw¢(t—f))‘Ltg

+ [Jas(BAz 200 (Pug it - t)) HL as®)A7 2 Puc it — )|
t,x

2
L; .

+ || as(B)AT- O P, 4 (¢ - 5)‘

: ‘a5(t~)A£;2ag(PUw,i(t - f))\

Lz, Lz,
+ | as(AL 200 (P 4 ( 5))‘ o ‘a(;(f)Angvwi(t — f)‘ p
t,x t,x
1 T\ AT—2 N N\ AT—2 ~ 112
<5 [Jas @872 0Pu - t)‘ Lt Ha(;(t)Ag’w OPu, 4 (t —t)( ;
t,x t,x

+ 3E(t; uy, vy,),

where u,, + = (0¢ & 01)Uw, Vo, + = (0r £ 0z)vy,. By (4.15) we have

as®A; 2P (¢ - )| ;
t,x
< H%(E)Ag’j[m, Plug,+(t — f)( ;
+ sz 2P0+ 0 A e - )

Since r < 2s — 1 and [, P] is of order 0 ,

~ ~ 112
as®87 210, Pl (¢ — 1)

L?
t,x
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By (4.14), Lemma 4.5 and the triangle inequality, we have

(4.16)

2

Ha(;(f)Ag’jP(at + 9,) A, 0,)(f — t)(

L2
t,x

< (cl Ha(g(f)AE;lPuwi(t - t~)HLg—I—CgHa(;(f)A;;vawi(t - 5)‘

2
L2+C3)
t,x

for § <T,|t| <T -6 and r < 2s — 1, where C; (i = 1,2,3,4,5) are positive
constants depending on ||u|| xs, ||v| xs, HuHY; and Hv||YTS Therefore we obtain

S C4E(t; Uy y Uw) + 05

dE(t; uy,v,)

228 < OBty ) + Ch

By Gronwall’s inequality, we have
’ C’ ,
E(t, uw,v0) < et {E(O’Uwva) + 6?(1 - G_Clt)} .
1

Taking the limit of the above inequality as w — 0, we have

/

/ C !’
E(t;u,v) < et {E(O,u,v) + 6?(1 — eclt)} < 00
1
since F(0;u,v) < co. Hence Puy € H"~! for |t| < T—4. If we take sufficiently
small § > 0, then we have Pug € H"~! for |[t| < T and r < 2s — 1. Hence we
have uy € H'H(T) for |t| < T. Similarly, we have vy € H'}(T) for |t| < T.
Therefore we have (u,v) € H, ,(I') x H] (') for [t| < T and r < 2s — 1. |
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