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Abstract. We consider a quarter-symmetric metric connection in a Kenmotsu
manifold. We investigate the curvature tensor and the Ricci tensor of a Ken-
motsu manifold with respect to the quarter-symmetric metric connection. We
show that the scalar curvature of an n-dimensional locally symmetric Kenmotsu
manifold with respect to the quarter-symmetric metric connection is equal to
n(l —n). Furthermore, we obtain the non-existence of generalized recurrent,
¢p-recurrent and pseudosymmetric Kenmotsu manifolds with respect to quarter-
symmetric metric connection.
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Introduction

A linear connection V in a Riemannian manifold M is said to be quarter-
symmetric connection [7] if the torsion tensor of the connection V

(0.1) T(X,Y)=VxY —VyX — [X,Y]
satisfies
(0.2) T(X,Y) =n(Y)eX —n(X)pY,

where 7 is a 1-form and ¢ is a (1,1) tensor field. A linear connection V is
called a metric connection with respect to a Riemannian metric g of M, if and
only if

(0.3) (Vxg)(Y, Z) =0,
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where XY, Z € x(M) are arbitrary vector fields on M. A linear connection
V satisfying (0.2) and (0.3) is called a quarter-symmetric metric connection
[7]. If we change pX by X then the connection is called a semi-symmetric
metric connection [13]. In [11], M. M. Tripathi and N. Kakkar, in [5] the
third named author and G. Pathak studied semi-symmetric metric connection
in a Kenmotsu manifold. In [12], M. M. Tripathi studied semi-symmetric
non-metric connection in a Kenmotsu manifold.

A non-flat n-dimensional Riemannian manifold M, n > 3, is called gener-
alized recurrent [4] if its curvature tensor R satisfies the condition

0.4)  (VxR)(Y, Z)W = a(X)R(Y, Z)W + B(X)[g(Z, W)Y — g(Y,W)Z],

where V is the Levi-Civita connection and a and 3 are two 1-forms, (3 # 0).
If 3 =0 and o # 0 then M is called recurrent. In [10], the second author
studied generalized recurrent Kenmotsu manifolds.

A non-flat n-dimensional Riemannian manifold M, n > 3, is called -
recurrent [6] if its curvature tensor R satisfies the condition

(0.5) P (VxR)(Y,Z)W) = a(X)R(Y, Z)W,

where @ is a (1, 1)-tensor field and « is a non-zero 1-form. In [1], A. Basar1 and
C. Murathan studied more general case of p-recurrent Kenmotsu manifolds as
generalized ¢-recurrent Kenmotsu manifolds.

A non-flat n-dimensional Riemannian manifold (M, g), n > 3, is called
pseudosymmetric if there exists a 1-form « on M such that

0.6 (VxR)(Y,Z, W) =2a(X)R(Y,Z)W + a(Y)R(X, Z)W
(0.6) +a(Z)R(Y, X)W + a(W)R(Y, 2)X + g(R(Y, Z)W, X)A,
where X, Y, Z, W € x(M) are arbitrary vector fields and « is a non-zero 1-form
on M. A € x(M) is the vector field corresponding through g to the 1-form
a which is given by ¢g(X,A) = a(X) [3]. If VR = 0 then M is called locally
symmetric [9].

In the present paper, we study quarter-symmetric metric connection in
a Kenmotsu manifold. The paper is organized as follows: In Section 1, we
give a brief account of Kenmotsu manifolds. In Section 2, we investigate the
curvature tensor and the Ricci tensor of a Kenmotsu manifold with respect
to the quarter-symmetric metric connection. In Section 3, we investigate the
scalar curvature of a locally symmetric Kenmotsu manifolds with respect to the
quarter-symmetric metric connection. In Section 4, we consider generalized
recurrent, ¢-recurrent and pseudosymmetric Kenmotsu manifolds with respect
to the quarter-symmetric metric connection. We obtain the non-existence of
these type manifolds.



QUARTER-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD 299

§1. Kenmotsu Manifolds

Let M be an n = (2m + 1)-dimensional almost contact metric manifold with
an almost contact metric structure (¢, &, 7, ¢g) consisting of a (1,1) tensor field
p, a vector field ¢, a 1-form 1 and a Riemannian metric g on M satisfying

v§ =0,
(1.2) nop =0,
n) =1,
(1.3) P’ X = —X +n(X)E,
9(X, &) = n(X),

9(pX,0Y) = g(X,Y) = n(X)n(Y),
for all vector fields X,Y on M. If an almost contact metric manifold satisfies
(1.6) (Vxe)Y = g(eX,Y)§ —n(Y)pX

then M is called a Kenmotsu manifold [8], where V is the Levi-Civita connec-
tion of g. From the above equations it follows that

(1.7) Vx& =X —n(X),
and
(1.8) (Vxn)Y = g(X,Y) —n(X)n(Y).

Moreover the curvature tensor R and the Ricci tensor S satisfy

(1.9) R(X,Y)E = n(X)Y —n(Y)X
and
(1.10) S(X, &) = —(n—1n(X),

(see [8]). A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of
¢ equals —2dn ® &) but not Sasakian. Moreover, it is also not compact since
from the equation (1.7) we get divé =n — 1. In [8], K. Kenmotsu showed (1)
that locally a Kenmotsu manifold is a warped product I x ¢ N of an interval
I and a Kihler manifold N with warping function f (t) = se!, where s is a
nonzero constant; and (2) that a Kenmotsu manifold of constant (-sectional
curvature is a space of constant curvature —1, and so it is locally hyperbolic
space.
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§2. Curvature Tensor

Let V be a linear connection and V be a Levi-Civita connection of an almost
contact metric manifold M such that

(2.1) VxY =VxY +U(X,Y),

where U is a tensor of type (1,1). For V to be a quarter-symmetric metric
connection in M, we have

(2.2) U(X,Y) = %[T(X, V) + T (X,Y) + T (Y, X)],
where
(2'3) g(Tl(va)?Z) :g(T(Z,X),Y),

(see [7]). From (0.2) and (2.3) we get

(2.4) T'(X,Y) = g(pV, X)§ — n(X)pY
and by making use of (0.1) and (2.4) in (2.2) we obtain
(2.5) U(X,Y) = —n(X)pY.

Hence a quarter-symmetric metric connection V in a Kenmotsu manifold is
given by

(2.6) VxY = VxY — n(X)pY.

Let R and R be the curvature tensors of V and V of a Kenmotsu manifold,
respectively. In view of (2.6) and (1.7), we obtain

R(X,Y)Z = R(X,Y)Z +n(X)(Vye)Z —n(Y)(Vx¥)Z,

which in view of (1.6) we get

R(X,Y)Z = R(X,Y)Z +n(X)g(¢Y, Z)§ —n(Y)g(pX, Z)¢
(2.7) —n(X)n(Z)pY +n(Y)n(Z2)pX.

A relation between the curvature tensor of M with respect to the quarter-
symmetric metric connection V and Levi-Civita connection V is given by the
equation (2.7). So from (2.7) and (1.9) we have

(2.8) R(X,6Y = g(X,Y)¢ —n(Y)X — g(pX,Y)E +n(Y)pX,

(2.9) R(X,Y)§ =n(X)Y —n(Y)X —n(X)eY +n(Y)pX
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and
(2.10) R(& X)€ = X = n(X)8 — oX.
Taking the inner product of (2.7) with W, we have

ﬁ(Xv Ya Za W) = R(X7Y7 Za W) +77(X)77(W)g(90}/7 Z)
—n(Y)n(W)g(pX, Z) —n(X)n(Z)g(eY, W)
(2.11) +n(Y)n(Z2)g(eX,W).

Contracting (2.11) over X and W, we obtain
(2.12) S(Y,2) = S(Y, Z) + 9(¢Y. 2),

where S and S are the Ricci tensors of the connections V and V, respectively.
So in a Kenmotsu manifold, the Ricci tensor of the quarter-symmetric metric
connection is not symmetric. Again, contracting (2.12) over Y and Z, we get

(2.13) F=r

where 7 and 7 are the scalar curvatures of the connections V and V, respec-
tively. So we have the following theorem:

Theorem 1. For a Kenmotsu manifold M with the quarter-symmetric metric
connection V

(a) The curvature tensor R is given by (2.7),

(b) The Ricci tensor S is given by (2.12),

(c) R(X,Y.Z,W) + R(X,Y, W, Z) =0,

(d) ﬁ(X Y,Z, W)+ R(Y,X,Z,W) =0,

(©) S(Y,€) = 5(4,6) = (1= (¥,

(1) 7
(

g) T he chcz tensor S is not symmetric.

§3. Locally symmetric Kenmotsu manifolds with respect to the
quarter-symmetric metric connection

In this section, we consider locally symmetric Kenmotsu manifold with respect
to the quarter-symmetric metric connection V. We have the following theorem:

Theorem 2. Let M be a locally symmetric Kenmotsu manifold with respect
to the quarter-symmetric metric connection V. Then the scalar curvature of
the Levi-Civita connection of M is equal to n(1 —n).
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Proof. Assume that M is a locally symmetric Kenmotsu manifold with respect
to the quarter-symmetric metric connection V. Then (VxR)(Y,Z)W = 0. So
by a suitable contraction of this equation we have

(VxS)(Z, W) =VxS(Z,W) = S(VxZ,W)—5(Z,NxW)=0.
Taking W = £ in above equation we have
(VxS)(2.€) = Vx5(2,€) = S(VxZ.€) = 5(Z,Vx€) = 0.
By making use of (1.7), (1.10), (2.6) and (2.12) we get
(1 - n)g(X, Z) — S(X,Z) - g(9Z, X) = 0.
Then contracting the last equation over X and Z we obtain
r=n(l—n).

Thus the proof of the theorem is completed. O

84. Non-existence of certain kinds of Kenmotsu manifolds with
respect to the quarter-symmetric metric connection

Theorem 3. There is no generalized recurrent Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection V.

Proof. Suppose that there exists a generalized recurrent Kenmotsu manifold
M with respect to the quarter-symmetric metric connection V. Then from
(0.4), we have

(41)  (VxR)(Y,Z)W = a(X)R(Y, Z)W + B(X)[g(Z, W)Y — g(Y,W)Z]

for all vector fields X,Y, Z, W on M. Putting Y = W = ¢ in (4.1) we have
(VxR)(, 2)€ = a(X)R(E Z2)E + B(X)n(2)E — 7).

By making use of (2.7) and (1.9) we get

(4.2) (VxR)(& 2)¢ = [B(X) — A X){n(2)¢ — Z} — o X)Z.

On the other hand, in view of (1.7), (1.9), (2.6), (2.8), (2.9) and (2.10) we
have

(4.3) (VxR)(& Z)¢ = 0.
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Hence comparing the right hand sides of the equations (4.2) and (4.3) we
obtain

(4.4) [B(X) — (X){n(2)§ = Z} — a(X)pZ = 0.
Replacing Z by ¢Z in (4.4) we get
(4.5) [B(X) — a(X)lpZ + a(X){n(2)¢ — Z} = 0.
From (4.4) and (4.5) we have

(X)) + [B(X) — a(X)]* =0,

which implies that & = § = 0. This contradicts 3 # 0. Therefore the statement
of this theorem follows. O

Theorem 4. There is no p-recurrent Kenmotsu manifold with respect to the
quarter-symmetric metric connection V.

Proof. Suppose that there exists a p-recurrent Kenmotsu manifold M with
respect to the quarter-symmetric metric connection V. Then from (0.5), we
have

P(VxR)(Y, Z)W) = a(X)R(Y, Z)W
for all vector fields X,Y, Z, W on M. Using (1.3) we get
(4.6) ~(VxR)(Y, 2)W + n((Vx R)(Y, Z)W)§ = a(X)R(Y, Z)W.
Replacing Y and W with ¢ in (4.6) we have
(4.7) —(VxR)(& Z2)E+ (VX R)(€, 2)§)€ = a(X)R(E, Z)E.

On the other hand, from (4.3) we have (VxR)(¢, Z)€ = 0. So the equation
(4.7) turns into N
a(X)R(E,Z2)€ = 0.

Then by virtue of (2.10), it is obvious that
a(X)[Z —oZ —n(2)¢] = 0,

which implies a(X) = 0 for any vector field X on M. This contradicts a # 0.
Therefore the statement of this theorem follows. O

Theorem 5. There is no pseudosymmetric Kenmotsu manifold with respect
to the quarter-symmetric metric connection V.
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Proof. Suppose that there exists a pseudosymmetric Kenmotsu manifold M
with respect to the quarter-symmetric metric connection V. Then from (0.6)
we have

(VXR)(Y,2)W = 20(X)R(Y,2)W +a(Y)R(X,Z)W + a(Z)R(Y, X)W
(4.8) +a(W)R(Y,Z)X + g(R(Y, Z)W, X)A.
So by a suitable contraction of (4.8) we get
(VxS)(2,W) = 206( )S(Z,W) + (R(X, Z)W)
a(Z)S(X, W)+ (W)S(Z, X)
a(R(W,X)Z) + a(§)n(X)g(eZ, W)
+77(X)77( Ja(eW) — a(§)n(W)g(Z, X)
(4.9) = n(Z)n(W)a(pX).
Taking W = ¢ in (4.9) and using (1.10), (2.8), (2.9) and (2.12) we obtain
(Vx8)(Z,€) = =20l X)n(Z) + (2 = n)n(X )l Z) = n(X)a(p2)
(4.10) +a(§)g(X,Z) +a(§)S(X, 2).

On the other hand, by the covariant differentiation of the Ricci tensor S with
respect to the quarter-symmetric metric connection V, we have

(4.11) (VxS)2Z, W) =VxS(Z,W)—-S(NxZ,W)—S(ZVxW).
So putting W = £ in (4.11) and using (2.12), (2.6) and (1.7) we get
(4.12) (Vx8)(Z,€) = (1 - n)g(X,2) - S(X, Z) - 9(X,¢2).

Then comparing the right hand sides of the equations (4.10) and (4.12), we
obtain

(1 =n)g(X,2) = 5(X,2) - g(X,9Z)
= —2na(X)n(Z) + (2 = n)n(X)a(Z) — n(X)a(pZ)
+a(§)g(X, Z2) + a§)S(X, Z).
Replacing X and Z with £ in above equation we find (since n > 3)

(4.13) a(é) =0.

Now we show that o = 0 holds for any vector field on M. Taking Z = ¢ in
(4.9) and using (4.13) we get

(VxS)(E,W) = 2a(X)S(E, W) + a(R(X, )W)

o(W)S(€, X) - a(R(W, X))
(4.14) +n(X)aleW) —n(W )( X).
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By the use of (1.10), (2.8), (2.9), (4.11) and (4.13) in (4.14) we obtain

(1 —n)g(X,W) - S(X,W) _g((vaW)

(4.15) = 2na(X)n(W) + (2 = n)a(W)n(X) + n(X)a(eW).

Taking W = ¢ in (4.15) we find a(X) = 0 for every vector field X on M,
which implies that « = 0 on M. This contradicts to the definition of pseu-
dosymmetry. Thus our theorem is proved. O
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