Quarter-symmetric metric connection in a Kenmotsu manifold

Sibel Sular, Cihan Özgür and Uday Chand De

(Received March 13, 2008; Revised September 15, 2008)

Abstract. We consider a quarter-symmetric metric connection in a Kenmotsu manifold. We investigate the curvature tensor and the Ricci tensor of a Kenmotsu manifold with respect to the quarter-symmetric metric connection. We show that the scalar curvature of an n-dimensional locally symmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection is equal to n(1-n). Furthermore, we obtain the non-existence of generalized recurrent, φ -recurrent and pseudosymmetric Kenmotsu manifolds with respect to quarter-symmetric metric connection.

AMS 2000 Mathematics Subject Classification. 53C05, 53D15.

Key words and phrases. Quarter-symmetric metric connection, Kenmotsu manifold, locally symmetric manifold, generalized recurrent manifold, φ -recurrent manifold, pseudosymmetric manifold.

Introduction

A linear connection $\widetilde{\nabla}$ in a Riemannian manifold M is said to be quarter-symmetric connection [7] if the torsion tensor of the connection $\widetilde{\nabla}$

(0.1)
$$T(X,Y) = \widetilde{\nabla}_X Y - \widetilde{\nabla}_Y X - [X,Y]$$

satisfies

(0.2)
$$T(X,Y) = \eta(Y)\varphi X - \eta(X)\varphi Y,$$

where η is a 1-form and φ is a (1,1) tensor field. A linear connection $\widetilde{\nabla}$ is called a metric connection with respect to a Riemannian metric g of M, if and only if

(0.3)
$$(\widetilde{\nabla}_X g)(Y, Z) = 0,$$

where $X, Y, Z \in \chi(M)$ are arbitrary vector fields on M. A linear connection $\widetilde{\nabla}$ satisfying (0.2) and (0.3) is called a *quarter-symmetric metric connection* [7]. If we change φX by X then the connection is called a *semi-symmetric metric connection* [13]. In [11], M. M. Tripathi and N. Kakkar, in [5] the third named author and G. Pathak studied semi-symmetric metric connection in a Kenmotsu manifold. In [12], M. M. Tripathi studied semi-symmetric non-metric connection in a Kenmotsu manifold.

A non-flat n-dimensional Riemannian manifold M, n > 3, is called *generalized recurrent* [4] if its curvature tensor R satisfies the condition

$$(0.4) \quad (\nabla_X R)(Y, Z)W = \alpha(X)R(Y, Z)W + \beta(X)[g(Z, W)Y - g(Y, W)Z],$$

where ∇ is the Levi-Civita connection and α and β are two 1-forms, ($\beta \neq 0$). If $\beta = 0$ and $\alpha \neq 0$ then M is called *recurrent*. In [10], the second author studied generalized recurrent Kenmotsu manifolds.

A non-flat n-dimensional Riemannian manifold M, n > 3, is called φ recurrent [6] if its curvature tensor R satisfies the condition

(0.5)
$$\varphi^2((\nabla_X R)(Y, Z)W) = \alpha(X)R(Y, Z)W,$$

where φ is a (1, 1)-tensor field and α is a non-zero 1-form. In [1], A. Başarı and C. Murathan studied more general case of φ -recurrent Kenmotsu manifolds as generalized φ -recurrent Kenmotsu manifolds.

A non-flat n-dimensional Riemannian manifold (M, g), n > 3, is called pseudosymmetric if there exists a 1-form α on M such that

(0.6)
$$(\nabla_X R)(Y, Z, W) = 2\alpha(X)R(Y, Z)W + \alpha(Y)R(X, Z)W + \alpha(Z)R(Y, X)W + \alpha(W)R(Y, Z)X + g(R(Y, Z)W, X)A,$$

where $X, Y, Z, W \in \chi(M)$ are arbitrary vector fields and α is a non-zero 1-form on M. $A \in \chi(M)$ is the vector field corresponding through g to the 1-form α which is given by $g(X, A) = \alpha(X)$ [3]. If $\nabla R = 0$ then M is called *locally symmetric* [9].

In the present paper, we study quarter-symmetric metric connection in a Kenmotsu manifold. The paper is organized as follows: In Section 1, we give a brief account of Kenmotsu manifolds. In Section 2, we investigate the curvature tensor and the Ricci tensor of a Kenmotsu manifold with respect to the quarter-symmetric metric connection. In Section 3, we investigate the scalar curvature of a locally symmetric Kenmotsu manifolds with respect to the quarter-symmetric metric connection. In Section 4, we consider generalized recurrent, φ -recurrent and pseudosymmetric Kenmotsu manifolds with respect to the quarter-symmetric metric connection. We obtain the non-existence of these type manifolds.

§1. Kenmotsu Manifolds

Let M be an n = (2m + 1)-dimensional almost contact metric manifold with an almost contact metric structure (φ, ξ, η, g) consisting of a (1,1) tensor field φ , a vector field ξ , a 1-form η and a Riemannian metric g on M satisfying

$$\eta \circ \varphi = 0,$$

$$\eta(\xi) = 1$$
,

$$(1.4) g(X,\xi) = \eta(X),$$

(1.5)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for all vector fields X, Y on M. If an almost contact metric manifold satisfies

(1.6)
$$(\nabla_X \varphi) Y = g(\varphi X, Y) \xi - \eta(Y) \varphi X$$

then M is called a Kenmotsu manifold [8], where ∇ is the Levi-Civita connection of g. From the above equations it follows that

(1.7)
$$\nabla_X \xi = X - \eta(X)\xi,$$

and

$$(1.8) \qquad (\nabla_X \eta) Y = g(X, Y) - \eta(X) \eta(Y).$$

Moreover the curvature tensor R and the Ricci tensor S satisfy

$$(1.9) R(X,Y)\xi = \eta(X)Y - \eta(Y)X$$

and

$$(1.10) S(X,\xi) = -(n-1)\eta(X),$$

(see [8]). A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of φ equals $-2d\eta \otimes \xi$) but not Sasakian. Moreover, it is also not compact since from the equation (1.7) we get $\operatorname{div} \xi = n-1$. In [8], K. Kenmotsu showed (1) that locally a Kenmotsu manifold is a warped product $I \times_f N$ of an interval I and a Kähler manifold N with warping function $f(t) = se^t$, where s is a nonzero constant; and (2) that a Kenmotsu manifold of constant φ -sectional curvature is a space of constant curvature -1, and so it is locally hyperbolic space.

§2. Curvature Tensor

Let $\widetilde{\nabla}$ be a linear connection and ∇ be a Levi-Civita connection of an almost contact metric manifold M such that

(2.1)
$$\widetilde{\nabla}_X Y = \nabla_X Y + U(X, Y),$$

where U is a tensor of type (1,1). For $\widetilde{\nabla}$ to be a quarter-symmetric metric connection in M, we have

(2.2)
$$U(X,Y) = \frac{1}{2}[T(X,Y) + T'(X,Y) + T'(Y,X)],$$

where

(2.3)
$$g(T'(X,Y),Z) = g(T(Z,X),Y),$$

(see [7]). From (0.2) and (2.3) we get

(2.4)
$$T'(X,Y) = g(\varphi Y, X)\xi - \eta(X)\varphi Y$$

and by making use of (0.1) and (2.4) in (2.2) we obtain

(2.5)
$$U(X,Y) = -\eta(X)\varphi Y.$$

Hence a quarter-symmetric metric connection $\widetilde{\nabla}$ in a Kenmotsu manifold is given by

(2.6)
$$\widetilde{\nabla}_X Y = \nabla_X Y - \eta(X) \varphi Y.$$

Let R and \widetilde{R} be the curvature tensors of ∇ and $\widetilde{\nabla}$ of a Kenmotsu manifold, respectively. In view of (2.6) and (1.7), we obtain

$$\widetilde{R}(X,Y)Z = R(X,Y)Z + \eta(X)(\nabla_Y \varphi)Z - \eta(Y)(\nabla_X \varphi)Z,$$

which in view of (1.6) we get

(2.7)
$$\widetilde{R}(X,Y)Z = R(X,Y)Z + \eta(X)g(\varphi Y,Z)\xi - \eta(Y)g(\varphi X,Z)\xi - \eta(X)\eta(Z)\varphi Y + \eta(Y)\eta(Z)\varphi X.$$

A relation between the curvature tensor of M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$ and Levi-Civita connection ∇ is given by the equation (2.7). So from (2.7) and (1.9) we have

(2.8)
$$\widetilde{R}(X,\xi)Y = g(X,Y)\xi - \eta(Y)X - g(\varphi X,Y)\xi + \eta(Y)\varphi X,$$

(2.9)
$$\widetilde{R}(X,Y)\xi = \eta(X)Y - \eta(Y)X - \eta(X)\varphi Y + \eta(Y)\varphi X$$

and

(2.10)
$$\widetilde{R}(\xi, X)\xi = X - \eta(X)\xi - \varphi X.$$

Taking the inner product of (2.7) with W, we have

$$\widetilde{R}(X,Y,Z,W) = R(X,Y,Z,W) + \eta(X)\eta(W)g(\varphi Y,Z)$$

$$-\eta(Y)\eta(W)g(\varphi X,Z) - \eta(X)\eta(Z)g(\varphi Y,W)$$

$$+\eta(Y)\eta(Z)g(\varphi X,W).$$
(2.11)

Contracting (2.11) over X and W, we obtain

(2.12)
$$\widetilde{S}(Y,Z) = S(Y,Z) + g(\varphi Y,Z),$$

where \widetilde{S} and S are the Ricci tensors of the connections $\widetilde{\nabla}$ and ∇ , respectively. So in a Kenmotsu manifold, the Ricci tensor of the quarter-symmetric metric connection is not symmetric. Again, contracting (2.12) over Y and Z, we get

$$(2.13) \widetilde{r} = r,$$

where \widetilde{r} and r are the scalar curvatures of the connections $\widetilde{\nabla}$ and ∇ , respectively. So we have the following theorem:

Theorem 1. For a Kenmotsu manifold M with the quarter-symmetric metric connection $\widetilde{\nabla}$

- (a) The curvature tensor \widetilde{R} is given by (2.7),
- (b) The Ricci tensor \tilde{S} is given by (2.12),
- (c) $\widetilde{R}(X, Y, Z, W) + \widetilde{R}(X, Y, W, Z) = 0$,
- (d) $\widetilde{R}(X, Y, Z, W) + \widetilde{R}(Y, X, Z, W) = 0$,
- (e) $\widetilde{S}(Y,\xi) = S(Y,\xi) = (1-n)\eta(Y),$
- (f) $\widetilde{r} = r$,
- (g) The Ricci tensor \widetilde{S} is not symmetric.

§3. Locally symmetric Kenmotsu manifolds with respect to the quarter-symmetric metric connection

In this section, we consider locally symmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. We have the following theorem:

Theorem 2. Let M be a locally symmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then the scalar curvature of the Levi-Civita connection of M is equal to n(1-n).

Proof. Assume that M is a locally symmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then $(\widetilde{\nabla}_X \widetilde{R})(Y, Z)W = 0$. So by a suitable contraction of this equation we have

$$(\widetilde{\nabla}_X \widetilde{S})(Z, W) = \widetilde{\nabla}_X \widetilde{S}(Z, W) - \widetilde{S}(\widetilde{\nabla}_X Z, W) - \widetilde{S}(Z, \widetilde{\nabla}_X W) = 0.$$

Taking $W = \xi$ in above equation we have

$$(\widetilde{\nabla}_X \widetilde{S})(Z, \xi) = \widetilde{\nabla}_X \widetilde{S}(Z, \xi) - \widetilde{S}(\widetilde{\nabla}_X Z, \xi) - \widetilde{S}(Z, \widetilde{\nabla}_X \xi) = 0.$$

By making use of (1.7), (1.10), (2.6) and (2.12) we get

$$(1-n)g(X,Z) - S(X,Z) - g(\varphi Z,X) = 0.$$

Then contracting the last equation over X and Z we obtain

$$r = n(1 - n).$$

Thus the proof of the theorem is completed.

§4. Non-existence of certain kinds of Kenmotsu manifolds with respect to the quarter-symmetric metric connection

Theorem 3. There is no generalized recurrent Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$.

Proof. Suppose that there exists a generalized recurrent Kenmotsu manifold M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then from (0.4), we have

$$(4.1) \quad (\widetilde{\nabla}_X \widetilde{R})(Y, Z)W = \alpha(X)\widetilde{R}(Y, Z)W + \beta(X)[g(Z, W)Y - g(Y, W)Z]$$

for all vector fields X, Y, Z, W on M. Putting $Y = W = \xi$ in (4.1) we have

$$(\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi = \alpha(X)\widetilde{R}(\xi, Z)\xi + \beta(X)[\eta(Z)\xi - Z].$$

By making use of (2.7) and (1.9) we get

$$(4.2) \qquad (\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi = [\beta(X) - \alpha(X)]\{\eta(Z)\xi - Z\} - \alpha(X)\varphi Z.$$

On the other hand, in view of (1.7), (1.9), (2.6), (2.8), (2.9) and (2.10) we have

(4.3)
$$(\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi = 0.$$

Hence comparing the right hand sides of the equations (4.2) and (4.3) we obtain

$$[\beta(X) - \alpha(X)] \{ \eta(Z)\xi - Z \} - \alpha(X)\varphi Z = 0.$$

Replacing Z by φZ in (4.4) we get

$$[\beta(X) - \alpha(X)]\varphi Z + \alpha(X)\{\eta(Z)\xi - Z\} = 0.$$

From (4.4) and (4.5) we have

$$[\alpha(X)]^2 + [\beta(X) - \alpha(X)]^2 = 0,$$

which implies that $\alpha = \beta = 0$. This contradicts $\beta \neq 0$. Therefore the statement of this theorem follows.

Theorem 4. There is no φ -recurrent Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$.

Proof. Suppose that there exists a φ -recurrent Kenmotsu manifold M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then from (0.5), we have

$$\varphi^2((\widetilde{\nabla}_X \widetilde{R})(Y, Z)W) = \alpha(X)\widetilde{R}(Y, Z)W$$

for all vector fields X, Y, Z, W on M. Using (1.3) we get

$$(4.6) -(\widetilde{\nabla}_X \widetilde{R})(Y, Z)W + \eta((\widetilde{\nabla}_X \widetilde{R})(Y, Z)W)\xi = \alpha(X)\widetilde{R}(Y, Z)W.$$

Replacing Y and W with ξ in (4.6) we have

$$(4.7) -(\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi + \eta((\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi)\xi = \alpha(X)\widetilde{R}(\xi, Z)\xi.$$

On the other hand, from (4.3) we have $(\widetilde{\nabla}_X \widetilde{R})(\xi, Z)\xi = 0$. So the equation (4.7) turns into

$$\alpha(X)\widetilde{R}(\xi, Z)\xi = 0.$$

Then by virtue of (2.10), it is obvious that

$$\alpha(X)[Z - \varphi Z - \eta(Z)\xi] = 0,$$

which implies $\alpha(X) = 0$ for any vector field X on M. This contradicts $\alpha \neq 0$. Therefore the statement of this theorem follows.

Theorem 5. There is no pseudosymmetric Kenmotsu manifold with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$.

Proof. Suppose that there exists a pseudosymmetric Kenmotsu manifold M with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$. Then from (0.6) we have

$$(\widetilde{\nabla}_X \widetilde{R})(Y, Z)W = 2\alpha(X)\widetilde{R}(Y, Z)W + \alpha(Y)\widetilde{R}(X, Z)W + \alpha(Z)\widetilde{R}(Y, X)W + \alpha(W)\widetilde{R}(Y, Z)X + g(\widetilde{R}(Y, Z)W, X)A.$$

So by a suitable contraction of (4.8) we get

$$(\widetilde{\nabla}_{X}\widetilde{S})(Z,W) = 2\alpha(X)\widetilde{S}(Z,W) + \alpha(\widetilde{R}(X,Z)W)$$

$$+ \alpha(Z)\widetilde{S}(X,W) + \alpha(W)\widetilde{S}(Z,X)$$

$$- \alpha(R(W,X)Z) + \alpha(\xi)\eta(X)g(\varphi Z,W)$$

$$+ \eta(X)\eta(Z)\alpha(\varphi W) - \alpha(\xi)\eta(W)g(\varphi Z,X)$$

$$- \eta(Z)\eta(W)\alpha(\varphi X).$$

$$(4.9)$$

Taking $W = \xi$ in (4.9) and using (1.10), (2.8), (2.9) and (2.12) we obtain

$$(\widetilde{\nabla}_X \widetilde{S})(Z, \xi) = -2n\alpha(X)\eta(Z) + (2 - n)\eta(X)\alpha(Z) - \eta(X)\alpha(\varphi Z) + \alpha(\xi)g(X, Z) + \alpha(\xi)S(X, Z).$$
(4.10)

On the other hand, by the covariant differentiation of the Ricci tensor \widetilde{S} with respect to the quarter-symmetric metric connection $\widetilde{\nabla}$, we have

$$(4.11) \qquad (\widetilde{\nabla}_X \widetilde{S})(Z, W) = \widetilde{\nabla}_X \widetilde{S}(Z, W) - \widetilde{S}(\widetilde{\nabla}_X Z, W) - \widetilde{S}(Z, \widetilde{\nabla}_X W).$$

So putting $W = \xi$ in (4.11) and using (2.12), (2.6) and (1.7) we get

$$(4.12) \qquad (\widetilde{\nabla}_X \widetilde{S})(Z, \xi) = (1 - n)g(X, Z) - S(X, Z) - g(X, \varphi Z).$$

Then comparing the right hand sides of the equations (4.10) and (4.12), we obtain

$$(1-n)g(X,Z) - S(X,Z) - g(X,\varphi Z)$$

$$= -2n\alpha(X)\eta(Z) + (2-n)\eta(X)\alpha(Z) - \eta(X)\alpha(\varphi Z)$$

$$+ \alpha(\xi)g(X,Z) + \alpha(\xi)S(X,Z).$$

Replacing X and Z with ξ in above equation we find (since n > 3)

$$\alpha(\xi) = 0.$$

Now we show that $\alpha=0$ holds for any vector field on M. Taking $Z=\xi$ in (4.9) and using (4.13) we get

$$(\widetilde{\nabla}_X \widetilde{S})(\xi, W) = 2\alpha(X)\widetilde{S}(\xi, W) + \alpha(\widetilde{R}(X, \xi)W) + \alpha(W)\widetilde{S}(\xi, X) - \alpha(R(W, X)\xi) + \eta(X)\alpha(\varphi W) - \eta(W)\alpha(\varphi X).$$
(4.14)

By the use of (1.10), (2.8), (2.9), (4.11) and (4.13) in (4.14) we obtain

$$(1-n)g(X,W) - S(X,W) - g(\varphi X,W)$$

$$= -2n\alpha(X)\eta(W) + (2-n)\alpha(W)\eta(X) + \eta(X)\alpha(\varphi W).$$

Taking $W = \xi$ in (4.15) we find $\alpha(X) = 0$ for every vector field X on M, which implies that $\alpha = 0$ on M. This contradicts to the definition of pseudosymmetry. Thus our theorem is proved.

Acknowledgements

We are grateful to the referee and Chief Editor Professor Mutsuo Oka for careful reading of this paper and a number of helpful suggestions for improvement in the article.

References

- [1] A. Başarı and C. Murathan, On generalised φ-recurrent Kenmotsu manifolds, Süleyman Demirel Univ. Fen Derg., **3(1)**(2008), 91–97.
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
- [3] M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53–58.
- [4] U. C. De and N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7–11.
- [5] U. C. De and G. Pathak, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. **94** (2002), no. 4, 319–324.
- [6] U. C. De, A. A. Shaikh and S. Biswas, On ϕ -recurrent Sasakian manifolds, Novi Sad J. Math. **33** (2003), no. 2, 43–48.
- [7] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) **29** (1975), no. 3, 249–254.
- [8] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93–103.
- [9] B. O'Neill, Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.
- [10] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Applied Sciences Journal 2 (2007), 29–33.

- [11] M. M. Tripathi, On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71.
- [12] M. M. Tripathi, On a semi symmetric non-metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 93 (2001), no. 4, 323–330.
- [13] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586.

Sibel Sular

Department of Mathematics, Balıkesir University 10145, Balıkesir, TURKEY E-mail: csibel@balikesir.edu.tr

Cihan Özgür

Department of Mathematics, Balıkesir University 10145, Balıkesir, TURKEY

 $E ext{-}mail: cozgur@balikesir.edu.tr}$

Uday Chand De Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, INDIA E-mail: uc_de@yahoo.com