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Introduction

In 1999, H. Tamaru [7] investigated the local orbit types of the isotropy ac-
tions of compact semisimple Riemannian symmetric spaces. According to his
results, the set of all local orbit types can be determined in terms of the re-
stricted roots system. By Tamaru’s results, K. Kondo [3] completed the lists
of all local orbit types of linear isotropy representations of symmetric R-spaces
of low rank.

In this paper, we investigate the linear isotropy representations of semisim-
ple symmetric spaces in terms of the restricted root systems with respect
to maximal split abelian subspaces. Let G be a connected semisimple Lie
group. Let (G,H) be a semisimple symmetric pair, (g, h) be its infinitesimal
pair (which is also called a semisimple symmetric pair) and σ be an invo-
lution of g such that the set of all fixed points of σ coincides with h. If
we put q := {X ∈ g | σ(X) = −X}, we have an orthogonal decomposition
g = h + q with respect to the Killing form of g. Then the quotient space G/H
is a semisimple symmetric space, and its tangent space at eH is identified
with the subspace q. By this identification the linear isotropy representation
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coincides with the adjoint representation Ad of H on q, which is called an
s-representation. An element X ∈ q is said to be semisimple if the complexi-
fication ad(X)C of the endomorphism ad(X) of g is diagonalizable, where ad
is the adjoint representation of g. A semisimple element X ∈ q is said to be
hyperbolic (resp. elliptic) if any eigenvalue of ad(X)C is real (resp. pure imag-
inary). We call the orbit of the s-representation through an element X ∈ q a
hyperbolic orbit (resp. an elliptic orbit) if X is hyperbolic (resp. elliptic). Let
a be a maximal split abelian subspace of q (i.e., a maximal abelian subspace
of q which consists of only hyperbolic elements or only elliptic elements). In
this paper, we say that a is vector-type (resp. troidal-type) if a consists of only
hyperbolic elements (resp. elliptic elements). It is shown that a is vector-type
(resp. troidal-type) if and only if there exists a Cartan involution θ of g satis-
fying the following two conditions: (i) θ ◦σ = σ ◦ θ, (ii) a is a maximal abelian
subspace of p ∩ q (resp. k ∩ q), where p := Ker(θ + id) and k := Ker(θ − id).
Note that any vector-type maximal split abelian subspace is split in the sense
of [5]. Then the isotropy subalgebra of the Ad(H)-orbit through an element
of a can be expressed by means of the restricted root system ∆ of (g, h) with
respect to a. The theory of restricted root systems for semisimple symmetric
spaces is developed by W. Rossmann [6], T. Oshima and J. Sekiguchi [5]. In
this paper, we say that the isotropy subalgebra hX at a hyperbolic element
(resp. an elliptic element) X is hyperbolic principal (resp. elliptic principal) if
the local orbit type [hX ] is the smallest one in the set of all local orbit types
of hyperbolic orbits (resp. elliptic orbits) of the s-representation. A subset ∆ ′

of ∆ is called a closed subsystem if ∆′ satisfies the following two conditions:
(i) if λ, µ ∈ ∆′ and λ + µ ∈ ∆ then λ + µ ∈ ∆′, (ii) ∆′ = −∆′.

Theorem. Let ∆′ be a closed subsystem of ∆. Then there exists a semisimple

symmetric pair (g′, h′) which satisfies the following three conditions:

(i) g′ and h′ are subalgebras of g and h, respectively,

(ii) the restricted root system of (g′, h′) is isomorphic to ∆′,

(iii) the hyperbolic principal isotropy subalgebra of (g′, h′) is an ideal of the

centralizer zh(a) of a in h.

Remark 1. We use this theorem to determine local orbit types of the s-

representations of exceptional semisimple symmetric pairs in Section 3.

For any closed subsystem, we explicitly construct a semisimple symmetric
pair (g′, h′) as in Theorem in terms of the root system of the complexification
gC of g and the restricted root system ∆. Let ∆′ be a closed subsystem of
∆ and (g̃, h̃) be a semisimple symmetric pair. In this paper, we call (g̃, h̃) a
subsymmetric pair of (g, h) associated with ∆′ if (g̃, h̃) satisfies the conditions
(i)–(iii) as in Theorem.



LOCAL ORBIT TYPES OF S-REPRESENTATIONS 309

The organization of this paper is as follows. In Section 1, we give prelimi-
naries for the restricted root systems with respect to maximal split abelian sub-
spaces for semisimple symmetric pairs. In Section 2, we give a brief review of
properties of the isotropy subalgebras of hyperbolic orbits of s-representations.
In Subsection 2.1, we prove Theorem. In Section 3, we shall investigate the
local orbit types of orbits of the s-representations for the following nine excep-
tional semisimple symmetric pairs (Subsection 3.1–Subsection 3.9):(e6(6) , f4(4)),
(e6(2), sp(3, 1)), (e6(−26), sp(3, 1)), (e6(6), su

∗(6)+su(2)), (e6(−26), su
∗(6)+su(2)),

(e6(2), f4(4)), (e6(6) + e6(6), e6(6)), (eC6 , sp(6,C)) and (eC6 , e6(6)).

§1. Preliminaries

Let G be a connected semisimple Lie group and σ be an involution of G.
We denote by Gσ the set of all fixed points of σ and by (Gσ)0 its identity
component. For a closed subgroup H of G with (Gσ)0 ⊂ H ⊂ Gσ, the quotient
space G/H is a semisimple symmetric space. Let g and h be the Lie algebras of
G and H, respectively. We call both the pairs (G,H) and (g, h) the semisimple

symmetric pairs. We denote by AdG (resp. adg) the adjoint representation of
G (resp. g). For simplicity, we omit the subscripts G and g in the sequel. The
involution σ of G induces an involution of g, which is also denoted by the
same symbol σ. Then we have h = {X ∈ g |σ(X) = X} and an orthogonal
decomposition g = h + q with respect to the Killing form B of g, where
q := {X ∈ g |σ(X) = −X}. Then B restricted to q × q is nondegenerate and
Ad(H)-invariant. Since q is identified with the tangent space of G/H at eH,
the bilinear form on q × q determines a G-invariant nondegenerate metric on
G/H, where e is the identity element of G. Thus any semisimple symmetric
pair gives rise to a semisimple pseudo-Riemannian symmetric space. It follows
from Lemma 10.2 of [1] that there exists a Cartan involution θ of g commuting
with σ. Any such Cartan involution is Ad(H0)-conjugate to θ (Theorem 2.1,
Chapter IV of [4]). Let g = k + p be the Cartan decomposition corresponding
to θ, where k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}. Then we
have the simultaneous eigenspace decomposition g = k∩h+p∩h+k∩q+p∩q of
σ and θ. Since θ◦σ is an involution of g, we have an orthogonal decomposition
g = ha +qa, where ha := {X ∈ g | θ◦σ(X) = X} and qa := {X ∈ g | θ◦σ(X) =
−X}. Set gd := k ∩ h +

√
−1(p ∩ h) +

√
−1(k ∩ q) + p ∩ q(⊂ gC), where gC

denotes the complexification of g. With the bracket operation inherited from
gC, gd is another real form of gC. The restrictions of the complexifications
of σ and θ to gd are involutions of gd, which are also denoted by the same
symbols σ and θ, respectively. Note that σ is a Cartan involution of gd. We
put hd := {X ∈ gd | θ(X) = X} and qd := {X ∈ gd | θ(X) = −X}. Then we
have an orthogonal decomposition gd = hd+qd. The pair (g, ha) (resp. (gd, hd))
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is called the associated (resp. dual) symmetric pair of (g, h). For simplicity, we
write (g, h)a and (g, h)d instead of (g, ha) and (gd, hd), respectively.

Next, we recall the notion of the restricted root systems with respect to
maximal split abelian subspaces for semisimple symmetric spaces. An element
X ∈ q is said to be semisimple if the endomorphism ad(X)C is diagonalizable.
A semisimple element X ∈ q is said to be hyperbolic (resp. elliptic) if any
eigenvalue of ad(X)C is real (resp. pure imaginary). Let a be a maximal split
abelian subspace of q (i.e., a maximal abelian subspace of q which consists of
only hyperbolic elements or only elliptic elements). We say that a is vector-

type (resp. troidal-type) if all elements of a are hyperbolic (resp. elliptic). It
is known that a is vector-type (resp. troidal-type) if and only if there exists a
Cartan involution of g whose (−1)-eigenspace (resp. (+1)-eigenspace) contains
a. In the sequel, we assume that a is contained in p. For each element λ of
the dual space a∗ of a, we put gλ := {X ∈ g | [A,X] = λ(A)X, ∀A ∈ a}. Then
∆ := {λ ∈ a∗ \ {0} | gλ 6= {0}} is called the restricted root system with respect
to a. It follows from Theorem 5 of [6] that ∆ is a root system. All vector-type
maximal split abelian subspaces have the same dimension, so the split rank

of a semisimple symmetric pair is defined as the dimension of any vector-type
maximal split abelian subspace. Since all ad(A)’s (A ∈ a) are simultaneously
diagonalizable, we have a direct sum decomposition

g = g0 +
∑

λ∈∆

gλ,

which is called the restricted root space decomposition with respect to a.

Remark 2. (1) In general, a maximal abelian subspace of q may contain an

element which is not semisimple. However, it is known that any maximal

abelian subspace of q containing a maximal split abelian subspace consists of

only semisimple elements (see Lemma 2.2 of [5]).

(2) The restricted root system of (g, h) with respect to a troidal-type maximal

split abelian subspace coincides with that of (gad, h) with respect to a vector-type

maximal split abelian subspace.

For any λ, µ ∈ ∆ ∪ {0}, we have [gλ, gµ] ⊂ gλ+µ, σ(gλ) = g−λ and θ(gλ) =
g−λ. We denote by zh(a) (resp. zq(a)) the centralizer of a in h (resp. q). Note
that a coincides with zq(a) if and only if a is a maximal abelian subspace of q

(for example, in the case where G/H is a Riemannian symmetric space). We
put hλ := (gλ + g−λ) ∩ h and qλ := (gλ + g−λ) ∩ q for any λ ∈ ∆. In this
paper, we call the dimension of qλ and the pair (dim(p ∩ qλ),dim(k ∩ qλ)) the
multiplicity and the signature of λ, respectively. We denote by (m+(λ),m−(λ))
the signature of λ ∈ ∆.
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Lemma 1. Let ∆+ be the positive root system of ∆ with respect to some

lexicographic ordering of a∗. Then h and q are orthogonally decomposed as

h = zh(a) +
∑

λ∈∆+

hλ,

and

q = zq(a) +
∑

λ∈∆+

qλ,

respectively.

Proof. Since g0 is σ-invariant, we have g0 = zh(a)+zq(a). Similarly, gλ+g−λ =
hλ +qλ holds for any λ ∈ ∆+. Hence we obtain the orthogonal decompositions
of h and q as in the statement.

Finally, we explain how to construct two kinds of Satake diagrams of (g, h).
Let ap (resp. aq) be a maximal abelian subspace of p (resp. q) containing
a. By Lemma 2.4 of [5], ap + aq is an abelian subalgebra of g. Let ã be a
maximal abelian subalgebra of g containing ap + aq. It follows from Lemma
3.2, Chapter VI of [2] that ãC is a Cartan subalgebra of gC. We denote by R
the root system of gC with respect to ãC and by Aα (α ∈ R) the vector of ãC

defined by BC(A,Aα) = α(A) for all A ∈ ãC, where BC denotes the Killing
form of gC. We put (A1, . . . , Ar) is a basis of ãR(:= SpanR{Aα|α ∈ R}) such
that (A1, . . . , Am) is a basis of a and (Am+1, . . . , An) is a basis of

√
−1(k∩aq),

where r (resp. n) is the rank of gC (resp. (g, h)) and m is the split rank of
(g, h). Let Ψ(R) be a simple root system of R for the lexicographic ordering of
(ãR)∗ with respect to the above basis. We put Ψ(R)0 := {α ∈ Ψ(R) | ᾱ = 0},
where ·̄ denotes the restriction to a. Then we construct the Satake diagram of
(g, h, a) as follows. In Dynkin diagram of gC with respect to Ψ(R), every root
of Ψ(R)0 is denoted by a black circle • and every root of Ψ(R) \ Ψ(R)0 by a
white circle ◦. If α, β ∈ Ψ(R) \ Ψ(R)0 satisfy ᾱ = β̄, α and β are joined by
a curved arrow. Similarly, we construct the Satake diagram of (g, h, aq) from
the Dynkin diagram of gC.

§2. Isotropy subalgebras of orbits of s-representations

We shall use the notations of previous sections. The linear isotropy repre-
sentation of a semisimple pseudo-Riemannian symmetric space is called an
s-representation. By the identification TeHG/H ∼= q, the linear isotropy rep-
resentation of G/H coincides with the adjoint representation Ad of H on q.
The Ad(H)-orbit through an element X ∈ q is said to be hyperbolic (resp. ellip-
tic) if X is hyperbolic (resp. elliptic). We denote by HX the isotropy subgroup
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of H at X ∈ q. We denote by [hX ] the local orbit type of Ad(H)-orbit through
an element X, that is, [hX ] := {Ad(h)hX | h ∈ H}. In this paper, we say that
the isotropy subalgebra hX at a hyperbolic point X is hyperbolic principal

(abbreviated to h-principal) if [hX ] is the smallest local orbit type in the set
of all local orbit types of Ad(H)-orbits through hyperbolic elements of q. We
also say that the isotropy subalgebra hX at an elliptic element X is elliptic

principal (abbreviated to e-principal) if [hX ] is the smallest local orbit type in
the set of all local orbit types of Ad(H)-orbits through elliptic elements of q.
We note that the e-principal isotropy subalgebra of (g, h) coincides with the
h-principal isotropy subalgebra of (gad, h). We call that two orbits Ad(H)X1

and Ad(H)X2 are of the same orbit type if the isotropy subgroups HX1
and

HX2
are conjugate, and of the same local orbit type if the isotropy subalgebras

hX1
and hX2

are conjugate.

Proposition 2. If we put ∆A := {λ ∈ ∆ |λ(A) = 0} for any A ∈ a,

hA = zh(a) +
∑

λ∈∆A∩∆+

hλ.

Proof. It is clear that zh(a) is contained in hA. Let Zλ be any element of
hλ with λ(A) = 0. Then there exists Xλ ∈ gλ which satisfies the relation
Zλ = Xλ + σ(Xλ). Then we have [Zλ, A] = −λ(A)(Xλ − σ(Xλ)) = 0. Hence
the subspace hλ is contained in hA. Conversely, let Z be any element of hA.
From Lemma 1 we have Z = Z0 +

∑

λ∈∆+
Zλ for some Z0 ∈ zh(a), Zλ ∈ hλ.

Since [Z,A] = 0 holds, we have Zλ = 0 for all λ ∈ ∆+ with λ(A) 6= 0. Hence
the desired relation follows.

It follows from Proposition 2 that zh(a) is equal to the h-principal isotropy
subalgebra. Since any hyperbolic orbit meets the subspace a, the set of all
local orbit types of Ad(H)-orbits through hyperbolic elements of q coincides
with {[hA] | A ∈ a}. A subset ∆′ of ∆ is called a closed subsystem if the
following two properties hold:

(i) if λ, µ ∈ ∆′ and λ + µ ∈ ∆ then λ + µ ∈ ∆′,

(ii) ∆′ = −∆′.

We define the multiplicity and the signature of λ ∈ ∆′ by those of λ ∈ ∆,
respectively. It is clear that ∆A is a closed subsystem for all A ∈ a.

2.1. Proof of Theorem

In this subsection, we prove Theorem stated in Introduction.
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Proof of Theorem. Let aq and ap be maximal abelian subspaces of q and p

containing a, respectively. Let ã be a maximal abelian subalgebra of g con-
taining aq + ap. By imitating the proof of Lemma 2.2 of [5] we can show that
ã is invariant under σ and θ. Moreover, we have

ã = ã ∩ k ∩ h + ã ∩ p ∩ h + ã ∩ k ∩ q + ã ∩ p ∩ q

= ã ∩ k ∩ h + ap ∩ h + aq ∩ k + a.

Let R be the root system of gC with respect to ãC, gC
α be the root space for α ∈

R, and Aα the vector of ãC defined by BC(A,Aα) = α(A) for all A ∈ ãC, where
gC and BC are the complexifications of g and its Killing form, respectively.
We extend σ and θ to gC as C-linear involutions, which are also denoted by
the same symbols σ and θ, respectively. We put ãR := SpanR{Aα |α ∈ R}.
Then we have ãR =

√
−1(ã ∩ k ∩ h) + ap ∩ h +

√
−1(aq ∩ k) + a.

We put

R′ :=
{

α ∈ R | ᾱ ∈ ∆′ ∪ {0}
}

,

where ·̄ denotes the restriction to a. Since ∆′ is a closed subsystem of ∆, R′

is that of R. We put ã′
R

:= SpanR{Aα |α ∈ R′}. Then ã′
R

is invariant under
σ and θ. We put

ã′k∩h := (
√
−1ã′

R
) ∩ k ∩ h, ã′p∩h := ã′

R
∩ p ∩ h,

ã′k∩q := (
√
−1ã′

R
) ∩ k ∩ q, ã′p∩q := ã′

R
∩ p ∩ q,

and ã′ := ã′k∩h + ã′p∩h + ã′k∩q + ã′p∩q, which are subspaces of ã. Note that ã′p∩q

coincides with SpanR{Aλ |λ ∈ ∆′}, where the vector Aλ of a is defined by
B(Aλ, A) = λ(A) for all A ∈ a. We put

g′ := ã′ +
(

∑

α∈R such that ᾱ=0

gC

α

)

∩ g +
∑

λ∈∆′

gλ.

It is a subalgebra of g, and invariant under σ and θ. Therefore σ restricted to
g′ is an involution of g′. We put h′ := {X ∈ g′ |σ(X) = X} and q′ := {X ∈
g′ |σ(X) = −X}. To show that g′ is semisimple it suffices to show that it
has no center and is reductive in g. We denote by z′ the center of g′. Then
z′ is contained in ã′. For any α ∈ R′, we choose a nonzero vector Xα ∈ gC

α .
Then for any Z ∈ z′, 0 = [Z,Xα] = α(Z)Xα holds. The symmetric bilinear
form Bθ on g × g given by Bθ(X,Y ) := −B(X, θ(Y )) for any X,Y ∈ g is
positive definite. Then we have Bθ(Z,A) = 0 for all A ∈ ã′, i.e., Z = 0. From
Proposition 1.1.5.1 and Corollary 1.1.5.4 Chapter 1 of [8] we conclude that g ′

is semisimple.
Finally, we show that the pair (g′, h′) satisfies (ii) and (iii). It is clear that

the restricted root system of (g′, h′) with respect to ã′p∩q is isomorphic to ∆′.
It follows from the definition of (g′, h′) that its h-principal isotropy subalgebra
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coincides with ã′k∩h + ã′p∩h +(
∑

ᾱ=0 gC
α )∩h. Note that the h-principal isotropy

subalgebra of (g, h) coincides with ã ∩ k ∩ h + ap ∩ h + (
∑

ᾱ=0 gC
α ) ∩ h. Then

we can show that

[ã ∩ k ∩ h, (
∑

ᾱ=0 gC
α ) ∩ h] ⊂ (

∑

ᾱ=0 gC
α ) ∩ h,

[ap ∩ h, (
∑

ᾱ=0 gC
α ) ∩ h] ⊂ (

∑

ᾱ=0 gC
α ) ∩ h,

[ã′k∩h, (
∑

ᾱ=0 gC
α ) ∩ h] ⊂ (

∑

ᾱ=0 gC
α ) ∩ h,

[ã′p∩h, (
∑

ᾱ=0 gC
α ) ∩ h] ⊂ (

∑

ᾱ=0 gC
α ) ∩ h,

and

[(
∑

ᾱ=0 gC
α ) ∩ h, (

∑

ᾱ=0 gC
α ) ∩ h] ⊂ ã′k∩h + ã′p∩h + (

∑

ᾱ=0 gC
α ) ∩ h

hold. Hence (g′, h′) satisfies (iii).

Let ∆′ be a closed subsystem of ∆ and (g′, h′) be a semisimple symmetric
pair. We call (g′, h′) a subsymmetric pair of (g, h) associated with ∆′ if (g′, h′)
satisfies the conditions (i)–(iii) as in Theorem.

§3. Determination of local orbit types of s-representations

Let (G,H) be an exceptional semisimple symmetric pair. We shall use the
notations of previous sections. Let ∆ be the restricted root system of (g, h)
with respect to a vector-type maximal split abelian subspace a. We take a
simple root system {λ1, . . . , λr}(=: Ψ) of ∆ and denote by (Aλ1

, . . . , Aλr
) its

dual basis. Denote by Lh(g, h, Ψ) the set of all local orbit types of the Ad(H)-
orbits through A =

∑r
i=1 aiAλi

with all ai ≥ 0. Note that Lh(g, h, Ψ) depends
on the choice of Ψ . We consider the case where Ψ satisfies the condition that
there exists a λi0 such that m+(λj) ≥ m−(λj) holds for all j 6= i0 (see Section
6 of [5]). In this case, we determine the set Lh(g, h, Ψ). We denote by ∆Θ

the intersection of
∑

λ∈Θ Rλ and ∆ for a subset Θ of Ψ . If we put ΘA :=
{λi | ai = 0}, then ∆A coincides with ∆ΘA

and ΘA is a simple root system of
∆A. From Theorem stated in Introduction there exists a subsymmetric pair
(g(∆ΘA

), h(∆ΘA
)) of (g, h) associated with ∆ΘA

. We denote by h0(∆ΘA
) the

h-principal isotropy subalgebra of (g(∆ΘA
), h(∆ΘA

)). Then we have

(3.1)

hA = zh(a) +
∑

λ∈∆A∩∆+

hλ

= zh(a)/h0(∆ΘA
) + h0(∆ΘA

) +
∑

λ∈∆ΘA
∩∆+

hλ

= zh(a)/h0(∆ΘA
) + h(∆ΘA

).
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For any subset Θ of Ψ , we call

hΘ := zh(a) +
∑

λ∈∆Θ∩∆+

hλ

the corresponding subalgebra of Θ. The isotropy subalgebra hA coincides with
the corresponding subalgebra of ΘA. By the above argument, we have the
following proposition which is useful to determine Lh(g, h, Ψ).

Proposition 3. Lh(g, h, Ψ) = {[hΘ] | Θ ⊂ Ψ}.

Now, we give a recipe to determine Lh(g, h, Ψ) as follows.

(Step 1) By investigating the split rank of (g, h) and the Satake dia-
gram of (gd, kd), we determine the Satake diagrams of (g, h, a)
and (g, h, aq), where kd is a maximal compactly imbedded sub-
algebra of gd. We determine the h-principal isotropy subalge-
bra zh(a) of (g, h) in terms of the Satake diagrams of (g, h, a),
(g, h, aq) and (g, k), where k is a maximal compactly imbedded
subalgebra of g.

(Step 2) For each Θ(⊂ Ψ) we find a subsymmetric pair (g′, h′) associated
with ∆Θ in terms of the Dynkin diagram of ∆ with respect to
Ψ . From zh(a), (g′, h′) and the h-principal isotropy subalgebra
of (g′, h′) we determine hΘ and hence Lh(g, h, Ψ).

By using this recipe, we investigate the local orbit types of hyperbolic orbits
for the nine exceptional semisimple symmetric pairs stated in Introduction.
For any Lie algebra l, lk denotes the direct sum of k copies of l. For convenience,
we use the following diagram.

(g, h) (g, ha) (gad, hd)

(gd, hd) (gd, ha) (gad, h)

oo associated // oo dual //
OO

associated

��

OO

dual

��
oo associated // oo dual //

In the case of (g, h) = (e6(6), f4(4)), we have the following diagram (cf. (1.16)
of [5]).

(e6(6), f4(4)) (e6(6), su
∗(6) + su(2)) (e6(2), sp(3, 1))

(e6(−26), sp(3, 1)) (e6(−26), su
∗(6) + su(2)) (e6(2), f4(4))

oo associated // oo dual //
OO

associated

��

OO

dual

��
oo associated // oo dual //
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3.1. (g, h) = (e6(6), f4(4))-case

(Step 1) Let a be a vector-type maximal split abelian subspace of (g, h) and aq

(resp. ap) be a maximal abelian subspace of q (resp. p) containing a. Let ã be a
maximal abelian subalgebra of g containing aq + ap. We denote by R the root
system of gC with respect to ãC and by R0 := {α ∈ R | α(A) = 0,∀A ∈ a}.
We have the root space decomposition

gC = ãC +
∑

α∈R

gC

α

with respect to ãC. Note that a maximal compactly imbedded subalgebra k of
g is sp(4). In this case, we have a = aq. Hence the Satake diagram of (g, h, a)
coincides with that of (gd, kd). Since (gd, kd) = (e6(−26), f4) holds, the Satake
diagrams of (g, h, a) and (g, k) are given as follows (cf. Table VI, Chapter X
of [2]).

the Satake diagram of (g, h, a) the Satake diagram of (g, k)

α1
◦α3

•α4
•α5

•α6
◦

α2•

α1
◦α3

◦α4
◦α5

◦α6
◦

α2◦

It follows from the Satake diagram of (g, h, a) that {α2, α3, α4, α5} is a simple
root system of R0. Since a is a maximal abelian subspace of q, we have

zh(a) = ã ∩ h +
(

∑

α∈R0

gC

α

)

∩ g.

Since both the dimension of ã ∩ h and the rank of R0 are equal to 4, zh(a) is
semisimple and the Dynkin diagram of the complexification (zh(a))

C of zh(a)
is given as follows:

◦◦◦
◦

It follows from the Satake diagram of (g, k) that, for any root αi(i = 2, 3, 4, 5)
of (zh(a))

C, the restriction of αi to ap ∩ h is not equal to neither zero nor the
restriction of αj (j 6= i) to ap∩h. Hence the Satake diagram of (zh(a), k∩zh(a))
is given as follows:

◦◦◦
◦

Hence zh(a) is isomorphic to so(4, 4).

(Step 2) The Dynkin diagram of the restricted root system ∆ of (g, h) with
respect to a is given as follows (cf. Table V of [5]).
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λ1◦ λ2◦
(

m+(λi) m+(2λi)
m−(λi) m−(2λi)

)

=

(

4 0
4 0

)

(i = 1, 2)

We denote by Ψ(a) = {λ1, λ2}. In the case of Ψ(a) and ∅, these corresponding
subalgebra coincide with h and zh(a), respectively. We put Θi = {λi} (i = 1, 2).
By Theorem stated in Introduction, there exists a subsymmetric pair of (g, h)
associated with ∆Θi

. In this case, it is shown that a subsymmetric pair of (g, h)
associated with ∆Θi

is isomorphic to (so(5, 5), so(4, 5)) and its h-principal
isotropy subalgebra is isomorphic to so(4, 4). It follows from (3.1) that the
corresponding subalgebra of Θi is isomorphic to so(4, 5). Thus, by Proposition
3 we have

Lh(g, h, Ψ(a)) =
{

[f4(4)], [so(4, 5)], [so(4, 4)]
}

,

where so(4, 5) (resp. so(4, 4)) is a subalgebra of f4(4) isomorphic to so(4, 5)
(resp. so(4, 4)).

3.2. (gd, hd) = (e6(−26), sp(3, 1))-case

(Step 1) In this case, the vector-type maximal split abelian subspace a of
(gd, hd) coincides with that of (g, h), and is a maximal abelian subspace of
pd. Note that a maximal compactly imbedded subalgebra kd of gd is f4. Since
zhd(a) coincides with zkd(a), zhd(a) is compact. Let aqd be a maximal abelian

subspace of qd containing a. Then the Satake diagrams of (gd, hd, a) and
(gd, hd, aqd) coincide with those of (g, h, a) and (g, k), respectively. It is shown
that a coincides with the center of zgd(a). We denote by ẑgd(a) the semisimple

part of zgd(a). It follows from the Satake diagram of (gd, hd, a) that the Dynkin

diagram of (ẑgd(a))C is given as follows:

◦◦◦
◦

It follows from the Satake diagram of (g, k) that the Satake diagram of
(ẑgd(a), ẑgd(a) ∩ hd) is given as follows:

◦◦◦
◦

Since ẑgd(a)∩ hd coincides with zhd(a), zhd(a) is isomorphic to so(4) + so(4)(∼=
sp(1)4).

(Step 2) The restricted root system of (gd, hd) with respect to a coincides with
the restricted root system ∆ (including their multiplicities and signatures) of
(g, h). We put Θi = {λi} (i = 1, 2). By Theorem stated in Introduction,
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there exists a subsymmetric pair of (gd, hd) associated with ∆Θi
. In this case,

it is shown that a subsymmetric pair of (gd, hd) associated with ∆Θi
is iso-

morphic to (so(1, 9), so(1, 4)+ so(5)) and its h-principal isotropy subalgebra is
isomorphic to so(4)+ so(4)(∼= sp(1)4). Note that so(1, 4)+ so(5) is isomorphic
to sp(1, 1) + sp(2)(⊂ sp(3, 1)). It follows from (3.1) that the corresponding
subalgebra of Θi is isomorphic to sp(1, 1) + sp(2). Thus, by Proposition 3 we
have

Lh(gd, hd, Ψ(a)) =
{

[sp(3, 1)], [sp(1, 1) + sp(2)], [sp(1)4]
}

,

where sp(1, 1) + sp(2) (resp. sp(1)4) is a subalgebra of sp(3, 1) isomorphic to
sp(1, 1) + sp(2) (resp. sp(1)4).

3.3. (g, ha) = (e6(6), su
∗(6) + su(2))-case

(Step 1) Let aa be a vector-type maximal split abelian subspace of (g, ha).
In this case, aa is a maximal abelian subspace of qa. Let aa

p be a maximal
abelian subspace of p containing a and ãa be a maximal abelian subalgebra of
g containing aa

p. Then the Satake diagram of (g, ha, aa) coincides with that of
the Riemannian symmetric pair (e6(2), su(6)+ su(2)), which is given as follows
(cf. Table VI, Chapter X of [2]).

the Satake diagram of (g, ha, aa) the Satake diagram of (g, k)

β1◦β3◦β4◦β5◦β6◦
β2◦

77gg 77gg
β1
◦

β3
◦

β4
◦

β5
◦

β6
◦

β2◦

Since there exists no black circle in the Satake diagram of (g, h, a), zg(a
a) has

no semisimple part. Since the dimension of ãa ∩ ha is equal to two, zha(aa) is
isomorphic to R2.

(Step 2) The Dynkin diagram of the restricted root system ∆a of (g, ha) with
respect to aa is given as follows (cf. Table V of [5]).

µ2◦ µ4◦ µ3◦+3 µ1◦

(

m+(µi) m+(2µi)
m−(µi) m−(2µi)

)

=























(

1 0

0 0

)

(i = 2, 4),

(

1 0

1 0

)

(i = 1, 3)

We denote by Ψ(aa) = {µi | i = 1, . . . , 4}. We put Θ = {µi | i = 2, 3, 4}. By
Theorem stated in Introduction, there exists a subsymmetric pair of (g, ha)
associated with ∆Θ. In this case, it is shown that a subsymmetric pair of
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(g, ha) associated with ∆Θ is isomorphic to (so(4, 4), so(1, 4) + so(3)) and its
h-principal isotropy subalgebra is isomorphic to R. It follows from (3.1) that
the corresponding subalgebra of Θ is isomorphic to R + so(1, 4) + so(3). By
the same argument, we can determine the other isotropy subalgebras as in
Table 1. Thus, we can determine Lh(g, ha, Ψ(aa)).

Θ(⊂ Ψ(aa)) ha
Θ

Ψ(aa) su∗(6) + su(2)
{µi | i = 2, 3, 4} R + so(1, 4) + so(3)
{µi | i = 1, 2, 4} R + so(3) + sl(2,R)
{µi | i = 1, 2, 3} so(2) + sl(3,R)
{µi | i = 1, 3, 4} sl(3,C) + so(2)

{µ2, µ4} R2 + so(3)
{µ3, µ4} R + so(2) + sl(2,C)

{µ1, µ2}, {µ1, µ4}, R + so(2) + sl(2,R){µ2, µ3}
{µ1, µ3} sl(3,R)
{µ2}, {µ4} R2 + so(2)
{µ1}, {µ3} R + sl(2,R)

∅ R2

Table 1: the corresponding subalgebras in the case of (g, ha) = (e6(6), su
∗(6) +

su(2))

3.4. (gad, hd) = (e6(2), sp(3, 1))-case

(Step 1) In this case, the vector-type maximal split abelian subspace aa

of (gad, hd) coincides with that of (g, ha) and is a maximal abelian subspace
of pad. Note that a maximal compactly imbedded subalgebra kad of gad is
su(6)+su(2). Since zhd(aa) coincides with zkad(a), zhd(aa) is compact. Let aa

qad

be a maximal abelian subspace of qad containing aa. Then the Satake diagram
of (gad, hd, aa) and (gad, hd, aa

qad) coincide with those of (g, ha, aa) and (g, k),

respectively. Therefore zhd(aa) is {0}.

(Step 2) The restricted root system of (gad, hd) with respect to aa coin-
cides with the restricted root system ∆a (including their multiplicities and
signatures) of (g, ha). We put Θ = {µi | i = 2, 3, 4}. By Theorem stated
in Introduction, there exists a subsymmetric pair of (gad, hd) associated with
∆Θ. In this case, it is shown that a subsymmetric pair of (gad, hd) associated
with ∆Θ is isomorphic to (so(5, 3), so(1, 3)+so(4)) and its h-principal isotropy
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Θ(⊂ Ψ(aa)) hd

Θ

Ψ(aa) sp(3, 1)
{µi | i = 2, 3, 4} so(1, 3) + so(4)
{µi | i = 1, 2, 4} so(3) + so(2, C)
{µi | i = 1, 2, 3} so(2) + so(3, C)
{µi | i = 1, 3, 4} so∗(6)

{µ2, µ4} so(3)
{µ3, µ4} so∗(4)

{µ1, µ2}, {µ1, µ4},
so(2) + so(2, C)

{µ2, µ3}
{µ1, µ3} so(3,C)

{µ2}, {µ4} so(2)
{µ1}, {µ3} so(2,C)

∅ {0}

Table 2: the corresponding subalgebras in the case of (gad, hd) =
(e6(2), sp(3, 1))

subalgebra is {0}. It follows from (3.1) that the corresponding subalgebra of
Θ is isomorphic to so(1, 3) + so(4). By the same argument, we can deter-
mine the other isotropy subalgebras as in Table 2. Thus, we can determine
Lh(gad, hd, Ψ(aa)).

3.5. (gd, ha) = (e6(−26), su
∗(6) + su(2))-case

(Step 1) Let ada be a vector-type maximal split abelian subspace of (gd, ha)
and ada

qda (resp. ada
pda) be a maximal abelian subspace of qda (resp. pda) con-

taining ada. In this case, ada is not equal to neither ada
qda nor ada

pda . Note that

a maximal compactly imbedded subalgebra kda of gda coincides with kd by
(1.4.1) of [5]. First, we determine the Satake diagram of (gd, ha, ada). The Sa-
take diagram of (gd, ha, ada

qda) coincides with that of the Riemannian symmetric

pair (e6(2), su(6) + su(2)). Therefore the Satake diagrams of (gd, ha, ada
qda) and

(gd, kd) are given as follows (cf. Table VI, Chapter X of [2]).

the Satake diagram of (gd, ha, ada
qda) the Satake diagram of (gd, kd)

γ1◦γ3◦γ4◦γ5◦γ6◦
γ2◦

77gg 77gg
γ1
◦γ3

•γ4
•γ5

•γ6
◦

γ2•

Hence the Satake diagram of (gd, ha, ada) is given as follows:
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γ1◦γ3•γ4•γ5•γ6◦
γ2•

77gg

From above Satake diagrams it is shown that the h-principal isotropy subal-
gebra is isomorphic to R + sp(2) + su(2).

(Step 2) Let Ψ(ada) be a simple root system of the restricted root system
∆da of (gd, ha) with respect to ada, whose rank is equal to 1. Thus, we have

Lh(gd, ha, Ψ(ada)) =
{

[su∗(6) + su(2)], [R + sp(2) + su(2)]
}

,

where R + sp(2) + su(2) is a subalgebra of su∗(6) + su(2) isomorphic to R +
sp(2) + su(2).

3.6. (gad, h) = (e6(2), f4(4))-case

(Step 1) In this case, the vector-type maximal split abelian subspace ada of
(gad, h) coincides with that of (gd, ha). Let ada

qdad (resp. ada
pdad) be a maximal

abelian subspace of qdad (resp. pdad) containing ada. Then the Satake diagrams
of (gad, h, ada) and (gda, h, ada

qdad) coincide with those of (gd, ha, ada) and (gd, kd),
respectively. Hence it is shown that the h-principal isotropy subalgebra is
isomorphic to so(5, 3).

(Step 2) The restricted root system of (gad, h) with respect to ada coincides
with the restricted root system ∆da (including their multiplicities and signa-
tures) of (gd, ha). Thus, we have

Lh(gad, h, Ψ(ada)) =
{

[f4(4)], [so(5, 3)]
}

,

where so(5, 3) is a subalgebra of f4(4) isomorphic to so(5, 3).
In the case of (g, h) = (e6(6) + e6(6), e6(6)), we have the following diagram by

Lemma 1.13.1 of [5].

(e6(6) + e6(6), e6(6)) (eC6 , sp(6,C)) (eC6 , e6(6))oo dual // oo associated //?? __

associated dual

3.7. (g, h) = (e6(6) + e6(6), e6(6))-case

(Step 1) Let a be a vector-type maximal split abelian subspace of (g, h). In
this case, a is a maximal abelian subspace of q, and a maximal compactly
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imbedded subalgebra k of g is sp(4) + sp(4). Therefore the Satake diagram of
(g, h, a) coincides with that of the Riemannian symmetric pair (eC6 , e6). Then
the Satake diagrams of (g, h, a) and (g, k) are given as follows.

the Satake diagram of (g, h, a) the Satake diagram of (g, k)

β1◦β3◦β4◦β5◦β6◦

β2◦

β′

1

◦
β′

3

◦
β′

4

◦
β′

5

◦
β′

6

◦
β′

2

◦

VV

��

VV

��

VV

��

HH

��

HH

��

HH

��

β1◦β3◦β4◦β5◦β6◦

β2◦

β′

1◦β′

3◦β′

4◦β′

5◦β′

6◦

β′

2◦

By these Satake diagrams it is shown that zh(a) is isomorphic to R6.

(Step 2) The Dynkin diagram of the restricted root system ∆ of (g, h) with
respect to a is given as follows.

λ1◦λ3◦λ4◦λ5◦λ6◦

λ2◦ (

m+(µi) m+(2µi)
m−(µi) m−(2µi)

)

=

(

1 0
1 0

)

(i = 1, . . . , 6)

Note that, in this case, all restricted roots have the same multiplicity and
signature. We put Ψ(a) := {λi | i = 1, . . . , 6}. Since all simple roots have the
same multiplicity and signature, the corresponding subalgebra of Θ(⊂ Ψ(a))
only depends on the form of the Dynkin diagram of ∆Θ. If a subdiagram of
the Dynkin diagram of ∆ has the form

◦◦◦◦
◦

then it is shown that a subsymmetric pair of (g, h) associated with the re-
stricted root system whose Dynkin diagram coincides with the above subdia-
gram is isomorphic to (so(5, 5)+ so(5, 5), so(5, 5)), and its h-principal isotropy
subalgebra is isomorphic to R5. It follows from (3.1) that the corresponding
subalgebra is isomorphic to R + so(5, 5). By the same argument, we can de-
termine the other isotropy subalgebras as in Table 3. Thus, by Proposition 3
we can determine Lh(g, h, Ψ(a)).

3.8. (gd, hd) = (eC6 , sp(6,C))-case

(Step 1) In this case, the vector-type maximal split abelian subspace a of
(gd, hd) coincides with that of (g, h). Note that a maximal compactly imbed-
ded subalgebra kd of gd is e6. Let aqd be a maximal abelian subspace of qd
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Θ(⊂ Ψ(a)) hΘ

◦◦◦◦◦
◦

e6(6)

◦◦◦◦
◦

R + so(5, 5)

◦◦◦◦◦ R + sl(6,R)
◦◦◦◦◦ R + sl(5,R) + sl(2,R)
◦◦◦◦◦ R + sl(3,R)2 + sl(2,R)

◦◦◦◦ R2 + sl(5,R)
◦◦◦◦ R2 + sl(3,R) + sl(2,R)2

◦◦◦◦ R2 + sl(4,R) + sl(2,R)

◦◦◦
◦

R2 + so(4, 4)

◦ ◦ ◦ ◦ R2 + sl(3,R)2

◦ ◦ ◦ R3 + sl(4,R)
◦ ◦ ◦ R3 + sl(3,R) + sl(2,R)
◦ ◦ ◦ R3 + sl(2,R)3

◦ ◦ R4 + sl(3,R)
◦ ◦ R4 + sl(2,R)2

◦ R5 + sl(2,R)
∅ R6

Table 3: the corresponding subalgebras in the case of (g, h) = (e6(6) +
e6(6), e6(6))
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containing a. The Satake diagrams of (gd, hd, a) and (gd, hd, aqd) coincide with
those of (g, h, a) and (g, k), respectively. Hence it is shown that the h-principal
isotropy subalgebra is {0}.

(Step 2) The restricted root system of (gd, hd) with respect to a coincides with
the restricted root system ∆ (including their multiplicities and signatures) of
(g, h). If a subdiagram of the Dynkin diagram of ∆ has the form

◦◦◦◦
◦

then it is shown that a subsymmetric pair of (gd, hd) associated with the
restricted root system whose Dynkin diagram coincides with the above sub-
diagram is isomorphic to (so(10,C), so(5,C) + so(5,C)), and its h-principal
isotropy subalgebra is {0}. Note that so(5,C) + so(5,C) is isomorphic to
sp(2,C) + sp(2,C)(⊂ sp(6,C)). It follows from (3.1) that the corresponding
subalgebra is isomorphic to sp(2,C)+sp(2,C). By the same argument we can
determine the other isotropy subalgebras as in Table 4. Thus, by Proposition
3 we can determine Lh(gd, hd, Ψ(a)).

3.9. (gd, ha) = (eC6 , e6(6))-case

(Step 1) Let ada be a vector-type maximal split abelian subspace of (gd, ha)
and ada

qda (resp. ada
pda) be a maximal abelian subspace of qda (resp. pda) contain-

ing ada. Note that ada is not equal to neither ada
qda nor ada

pda . Then the Satake

diagram of (gd, ha, ada
qda) coincides with that of (eC6 , e6). The Dynkin diagram

of (gd, ha) with respect to ada is given as follows (cf. Table V of [5]).

µ2◦ µ4◦ µ3◦+3 µ1◦

(

m+(µi) m+(2µi)
m−(µi) m−(2µi)

)

=











































(

0 0

2 0

)

(i = 2),

(

2 0

0 0

)

(i = 4)

(

2 0

2 0

)

(i = 1, 3)

Therefore it is shown that the Satake diagram of (gd, ha, ada) is given as follows.
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Θ(⊂ Ψ(a)) hd
Θ

◦◦◦◦◦
◦

sp(6,C)

◦◦◦◦
◦

sp(2,C)2

◦◦◦◦◦ sl(4,C)
◦◦◦◦◦ sp(2,C) + C
◦◦◦◦◦ sp(1,C)2 + C

◦◦◦◦ sp(2,C)
◦◦◦◦ sp(1,C) + C2

◦◦◦◦ sp(1,C)2 + C

◦◦◦
◦

sp(1,C)4

◦ ◦ ◦ ◦ sp(1,C)2

◦ ◦ ◦ sp(1,C)2

◦ ◦ ◦ sp(1,C) + C
◦ ◦ ◦ C3

◦ ◦ sp(1,C)
◦ ◦ C2

◦ C
∅ {0}

Table 4: the corresponding subalgebras in the case of (gd, hd) = (eC6 , sp(6,C))
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β1◦β3◦β4◦β5◦β6◦

β2◦
77gg 77gg

β′

1◦β′

3◦β′

4◦β′

5◦β′

6◦

β′

2◦
77gg 77gg

(Remark. βi and β′

i are joined by a curved arrow for each i)

Hence the h-principal isotropy subalgebra is isomorphic to R2 + so(2)4.

(Step 2) We put Ψ(ada) := {µi | i = 1, . . . , 4} and Θ := {µi | i = 2, 3, 4}. By
Theorem stated in Introduction, there exists a subsymmetric pair of (gd, ha)
associated with ∆Θ. In this case, it is shown that a subsymmetric pair of
(gd, ha) associated with ∆Θ is isomorphic to (so(8,C), so(3, 5)) and its h-
principal isotropy subalgebra is isomorphic to so(2)4. It follows from (3.1)
that the corresponding subalgebra of Θ is isomorphic to R2 + so(3, 5). By the
same argument we can determine the other corresponding subalgebras as in
Table 5. Thus, by Proposition 3 we can determine Lh(gd, ha, Ψ(ada)).

Θ(⊂ Ψ(ada)) hda
Θ

Ψ(aa) e6(6)
{µi | i = 2, 3, 4} R2 + so(3, 5)
{µi | i = 1, 3, 4} so(2) + su∗(6)
{µi | i = 1, 2, 4} R2 + su(1, 2) + so∗(4)
{µi | i = 1, 2, 3} R2 + su(1, 1) + so∗(6)

{µ3, µ4} R + so(2)2 + su∗(4)
{µ2, µ4} R2 + so(2)2 + su(1, 2)
{µ2, µ3} R2 + so(2) + su(1, 1) + so∗(4)
{µ1, µ4} R2 + so(2) + su(2) + so∗(4)
{µ1, µ3} R2 + so(2) + so∗(6)
{µ1, µ2} R2 + so(2) + su(1, 1) + so∗(4)
{µ4} R2 + so(2)3 + su(2)

{µ3}, {µ1} R2 + so(2)2 + so∗(4)
{µ2} R2 + so(2)3 + su(1, 1)
∅ R2 + so(2)4

Table 5: the corresponding subalgebras in the case of (gd, ha) = (eC6 , e6(6))

Remark 3. (1) If b is a troidal-type maximal split abelian subspace of q,

the subspace
√
−1b is a vector-type maximal split abelian subspace of qdad.
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Θ(⊂ Φ(b)) hΘ

Φ(b) f4(4)
∅ so(5, 3)

Table 6: Local orbit types of elliptic orbits of (g, h) = (e6(6), f4(4))

Therefore the restricted root system Σ of (g, h) with respect to b coincides with

that of (gad, h) with respect to
√
−1b. Let {ν1, . . . , νl}(=: Φ(b)) be a simple

root system of Σ. Then Lh(gad, h, Φ(b)) coincides with the set Le(g, h, Φ(b))
of all local orbit types of the Ad(H)-orbits through B =

∑l
i=1 biBνi

with all

bi ≥ 0, where (Bν1
, . . . , Bνl

) is the dual basis of (ν1, . . . , νl). For example, in

the case of (g, h) = (e6(6), f4(4)), we can determine Le(g, h, Φ(b)(= Ψ(ada))) by

Table 6.

(2) The set Lh(g, h, Ψ) is not necessarily equal to the set of all local orbit

types of the hyperbolic Ad(H)-orbits. For example, if ha is semisimple and, for

any λ ∈ ∆, gλ ∩ ha 6= {0} holds, then Lh(g, h, Ψ) coincides with the set of all

local orbit types of hyperbolic Ad(H)-orbits, where ∆ denotes the restricted root

system of (g, h) with respect to a vector-type maximal split abelian subspace.

Research plan in the future. We plan to determine the set of all local orbit
types of hyperbolic orbits (or elliptic orbits) of s-representations, completely.
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