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Neumann problem for a nonlinear nonlocal
equation on a half-line

Rosa E. Cardiel-Cervantes and Pavel I. Naumkin

(Received January 5, 2006; Revised May 23, 2008)

Abstract. Our goal is to study the global existence and large time asymptotic
behavior of solutions to the Neumann initial-boundary value problem for the
nonlinear nonlocal equation on a half-line

u + N(u,uz) + Lu=f, (t,z)e RT xR,
U(va) = uo(x)v T e R+7
Ozu(t,0) = h(t), teRT,

where the nonlinear term is N(u,uy) = v’ul , with p,o > 0, and £ is a
pseudodifferential operator defined by the inverse Laplace transform

e L ioo o (ﬂ(t,p) 3 (u(t,O) N sult, 0))> dp

T 2mi P p?

—100

where 4(p) = [;° e P*u(z)dz. We prove that if the initial data uo € L"* N L™
for a € [0,1), then there exists a unique solution

u € C([0,00); L") N C ((0,00); L N W),

for the inital-boundary value problem. We also obtain the large time asymptotic
formulas for the solutions...
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81. Introduction

We study the Neumann initial-boundary value problem for the nonlinear Ott-
Sudan-Ostrovsky type equation on a half-line

ug + N (u,ug) + Lu=f, t>0,2>0,
(1.1) u(0,z) =ug(z), z>0,
ux(tao):h(t)v t>0,
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where the nonlinear term is N (u, u,) = vug with p, o > 0, L is a pseudodif-
ferential operator defined by the inverse Laplace transformation as follows

100
tu= g [ L) (a(en) - T 0 (e, ,) do
where U(p) = [, ¢ P*u () dx denotes the Laplace transform of u. The symbol
L(p) = —Ep®/? has the dissipative property, i.e. the constant E € C is such
that Re L (p) > C |p\5/2 for p € (—ioo,i00), where C' > 0. For example, the
constant E can be chosen as follows E = 1. By p°/2
branch of the complex analytic function in the complex half-plane Rep > 0,
so that 1°/2 = 1 (we make a cut along the negative real axis (—o0,0)). More
generally, we can fix the argument of F as follows —7 < arg F' < 7.
Note that the equation

we understand the main

o0

sign (¢ — y)

o Vl0r—y

describes the ion-acoustic waves in plasma (see [11]). It also can be written in
the form (1.1) if we choose p = ¢ = 1 and the symbol of the linear operator
Lp) = p®>+1+ \/m . This symbol is nonhomogeneous and nonanalytic so
that it is difficult to investigate the Neumann initial-boundary value problem
for this equation. To make the first step in the study of the Neumann initial-
boundary value problem we replace the complete symbol by a homogeneous
and analytic one of a higher order (if, for example, we replace the complete
symbol by a single term like \/p, then no boundary data are necessary, see [2].)
Thus we arrive to equation (1.1) which represents a simple nonlinear model
including a derivative of a fractional order and such that it is possible to pose
the Neumann type boundary condition.

Recently much attention was given to the study of the global existence
and asymptotic behavior of solutions to the Dirichlet problems for various
nonlinear local and nonlocal equations (see papers [1], [3], [4], [5], [7], [10]).
Dirichlet problem for Ott-Sudan-Ostrovsky type equations on a segment with
homogeneous boundary data was studied in papers [9], [8]. A general theory
of Dirichlet problems for nonlinear nonlocal equations on a half-line was de-
veloped in book [2]. This paper presents a further development of this theory,
considering the Neumann type boundary conditions. We propose a general
method of constructing the Green operator for problem (1.1). Also we prove
the global existence of solutions and find the large time asymptotics in the
case of nonhomogeneous boundary data. The main difficulty which we over-
come in the present paper is to evaluate the contribution of the boundary data
into the large time asymptotic behavior of solutions since it can be completely
different compared with the corresponding Dirichlet problem.

Ut + Uy + Uppr + U + uy (t,y)dy =0
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Now we give some definitions. The usual Lebesgue space is L" (R™) for
1 < r < co. In what follows we write L" instead of L" (R"), for simplic-
ity. The weighted Lebesgue space L™ for o« > 0 has the norm ||¢[|jre =
(14 z)* @[/ The Sobolev space is defined as follows

o)
L

Different positive constants we denote by the same letter C.
We now introduce the space for the solution

i

w; = {68’ [dllw; = Tiso|

X*7 = {¢ € C([0,00); L") NC ((0,00); W) : 6]l xas < 00}
with the norm
_ _24 2 2 2
6l =506 ()78 Wl + 0 6l + (0 £F 02l1).
where « € [0,1), 8 € R, with (¢) = V1 + t2. Define also the spaces

Y52 = {f € C((0,00):L1) | fllyon < o0}

for the source function in the problem (1.1) with the norm
N ,1— _2 2
£z =sup (07727 (073 Wl + s + OF e )

where a € [0,1), v =1 — %a € (%,1] , A € R. Also we use the space Z* =
{h(t) € C(0,00) : ||h||zn < oo} for the boundary data, where the norm

Il = sup ()3~ (1h (1) + {0) |’ (0)]

with © € R.
We introduce the function

1 100 ME 100 100 ~5eld
B(x) = o— / PP g 4 —— / dp p*/?e?” / p——— §
2mi —100 4T —100 —ico 4 — Ep /

-2 _2iagE
where M = |E| 75 e 5'¥8 5,
First we consider the case, when the asymptotic behavior of solutions is
determined by the initial data.

Theorem 1. Let ug € LY NL>®, f € Y and h € Z* with a € (0,1),
—% < v <0, —% < p <0 v=1- %a and have sufficiently small norms.

Suppose that the powers p > 1, o € [1, 5) of the nonlinearity N are such that
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p+ 20 > % Then there exists a unique solution u € X*Y of problem (1.1).
Moreover the following asymptotic representation

u(t,z) =t 5AB (a;t*?) +0 (t%*‘s) :
is true for t — oo uniformly with respect to x > 0, where the coefficient

A= /0 o () dy+/0 /0 (f (7, y) = N (u, ) dydr
and 6 > 0 is some small constant.

Next we consider the case, when the asymptotic behavior of solutions is
defined by a more slow time decay rate of the source or the Neumann boundary
data. We introduce two functions

1
O (y) = / Sl1-2) 5B (X (1- z)*%) dz
0
and .
v = [ Ha-a K (-0 s
0
where the kernel K (z) = W (x) + A (z) with the functions

E [t 5/2 1
W(z)=——— PrEEP 2 g
(z) omi ) ° p2dp
and ‘ A )
M@ == [ e [ £
47T2M —100 —100 5 - Ep5/2

Theorem 2. Let ug e L'NL®, he ZP and f € Yg’ﬁ with some (B € (0, %) ,
y=1-— %0 and have sufficiently small norms. Suppose that the powers p > 1,
o € [1,%) of the nonlinearity N are such that p + o > g:gg + 1. Then
there exists a unique solution u € X%% of problem (1.1). Moreover, assume
that || f (t)||pre < Ct°~1 with a € (0,1), and the asymptotics for the source

function and the boundary data are true

/OOO ftz)de=at’ 1 +0 (t[’*l*‘s)

and

h(t)=bt""5 +0 <tﬁ—%—5>
for all t — oo, where 0 < § < min (ﬁ, %, %a) . Then the following asymptotics
u(t,x) = A3 (aq) (:mf_%> + b0 (mt_g)) +0 (tﬂ—§—6)

is true for t — oo uniformly with respect to x > 0, where § > 0 is some small
constant.
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We organize the rest of the paper as follows. In Section 2 we consider the
linear initial-boundary value problem with the pseudodifferential operator £
and find the representation of the Green operators. Also we obtain some pre-
liminary estimates and asymptotic formulas for the Green functions. Finally,
we prove Theorems 1 and 2 in Sections 3 and 4, respectively.

§2. Estimates for the linear problem
In this section we study the linear problem corresponding to (1.1)

ur+Lu=f, t>0,2>0,
(2.1) u(0,z) =uo(z), =>0,
ug (t,0) =h(t), t>0.

We follow the method of [2] to show that the initial-boundary value problem
(2.1) is well-posed in the functional space C ([0,00);L') N C! ((0,00); WL)).
First under the supposition that there exists a solution u € C ([O, 00) ;Ll) N
C! ((0,00) ; W) of problem (2.1) we obtain its integral representation. Since
the solution u (t) € L! for every t > 0 and u (t,z) = 0 for all z < 0, t > 0,
we see that the Laplace transform u(¢,p) = [;° e P*u (¢, x) dx is bounded and
analytic in the complex half-plane {p € C: Rep > 0}. Taking the Laplace
transformation of (2.1) with respect to x we get

Gy (t,p) + L(p)a (t,p) = H (t,p)
(2:2) { () im0 = T(p).

where H (t,p) = f(t,p) + L(p)p~tu(t,0) + L (p) p~2us (¢,0) . Integration of
(2.2) with respect to ¢ yields

t
(2.3) i (t,p) = e -0t (m) + / O (7, p) dT) .
0

Before applying the inverse Laplace transformation to (2.3) we must check the
necessary condition

(2.4) [u(t,p)] <C forall Rep>0

with some C. Rewriting (2.3) as

altp) = B0 (@) + [ B E (rpyar) - [T 00N (rp)ar,
0 ¢
we see that to satisfy (2.4) we need to impose the following necessary condition

(2.5) Tio(p) + / !PTH (7,p)dr =0
0
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in the domain {p € C: Re L(p) < 0,Rep > 0} . Equation (2.5) helps us to find
the boundary value u (¢,0) of the function u, which appears in the definition
of the pseudodifferential operator £. Changing the variable L(p) = —Ep°? =

—¢, so that p = Mﬁg with M = |E]_% e_%iargE, we rewrite (2.5) as
(26)  w (MeR) + (& MeR) — MR (6,0) - MTIERU(E,0) = 0
in the complex half-plane Re{ > 0, where u (§,z) = fooo e $Tu (1, x) dr is the

Laplace transform with respect to time and fis the Laplace transform with re-

spect to both space and time variables f (£, n) = [ S e T f (1, 2) dadr.
Then by applying to (2.6) the inverse Laplace transformation with respect to

time we get
(2.7)

u(t,0) = 1

omi

IS (%(Mf§)+?(s,M£§)— 254, (€, 0)) de.

—1300

Substitution of (2.7) into (2.3) yields
ar) = M0 [Ty L) [ e 00D
+ /Ot dre~HP)(E=T) /OOO e PVf(r,y)dy
ML( )/ dre—L@)E=T) /ioo dﬁe&f_% /Oo e—Mg%yuO (y) dy
0 —ioo

2mip

0
t 100 0o
Lo —L(p)(t—7) / erp—2 / ey (o
2m'pM/ dre _mdge £7s ; e h(T
/ dre - / dgetTe s

27”]9 —100
x/ / e_ET_Mfgyf(T',y)dydT’.

o Jo

Then taking the inverse Laplace transformation with respect to space, we
obtain the Duhamel formula for the solutions to problem (2.1) (see also [1])

(2.8) u=Guo+ZIf+Jh,

where

Gup = / dyuo (y) (1/ dper v v =Lt
0 271 ;

—100

100 t
M e ) / dreLO)(E=7)
p 0

h dgg—ﬁefT—ME%y> :
42 —1300 —100
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/ dT/ dyf (1,y) / dpep(fﬂfy)*L(p)(t*T)

o d p:L“L(p)/ dr / — ()(t T/) e déé*%

/ dy/ dref™'=7) M§5yf(7 Y)

and

1 100 t

Jh = — dpeP* L (p)p~ /dTe_ ®YE=T)p, (1)

271 — 00

+4 M [ i / dre

X / dee—s / dr'eS TR (1) .
Note that . o Lyt

/ oLt ber g _ e P

0 £+ L(p)
and

/ZOO dee4 (€ + L (p) e MM — g,

—100

Denote G (z) = 5= i em+Ep5/2dp, and

21t J —100

2
100 100 E—MESy
ME (™ dpeorpprz / e €73,
—100

Therefore we can transform

1 100

and
100 t 100
_ﬁ dpepr (p) / dre—L@)(t=7) dgg—gefT—ME%y
p 0 —100

3 2
g*geft—M@y 5

100 100 s 2 s
= dpepxp?’m/‘ d¢ Py E =t 5Q<xt 5, yt 5),

Then the Green operator G can be rewritten as

gt)o=1% [ (G (w-ne )+ Qo i) ot
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2
—I\/]{S y+§(t—7‘)
&+L(p)

. _3
In the same manner since fiozooo d€ £ Be =0 for all 7 >t and

/ Taee S (4 Lip) e P — g

—100
for all 7 > 0 we get

t 00 1 100
If = /dT/ dyf(T,y)/ dpeP@=y)=L(p)(t=7)
0 0

211 — 00

M 00 00 100 L t ,
T / dr / dyf (1, y) / dpere 2P) / dr'e” M=)
47 0 0 p 0

—100

x / 7 dge bt -medy

—100

t [e's} 1 100
_ / dr / dyf (T,y)< | / dpere—)~L ) (=)
0 0 21 J oo

. . 3 2

M 100 L 200 -5 §(t—7—)—M§5y

_42 dpepa? (p) / dé-g 5€
am —100 p —100 5 +L (p)

= /Q(t—T)f(T)dT.
0

A _2
Finally by the equality ficzooo d€ %6_57 = 0 for all 7 > 0, we can rewrite
the Green operator J as follows

E t 100 5
= L ) [ appheseen
2mi Jo —ico
E 0o 100 - 3/2
—471_2]\4/0 dTh (T) /Zoo dpep p /
t 100
y / 4y e o)) / deg—3 60 =T)
0 —100
t 1 100 1 5/2
= — / dth (1) (/ dppz ePrHEP?(t=7)
0 2mi —i00

. . 2
1 700 100 é'—g
o px, 3/2 S 0 g(t-T)
+47T2M /—ioo ape”p /—z‘oo d§§ + L (p) ‘ )
¢

_ / (t - R K (2t —7)F) hir)dr,

0
where we introduced the kernel K (z) = W (z) + A () with the functions

100
W (z) = B ePTTEP 203

211 — 00
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and

. . 2
E 100 100 5_3€£d§
- _ xp, 3/2
MO =g /m e /m €= Eplt

We can also represent

. . 3
E [ 5/2 1 ie0 £5efde
K/ __ = pxr+Ep 3/2d - / d :J:p/ _sveus
(@) =3 ¢ P oy )L P e Epi

—100
with

F:{§:|§]ei%ﬂ€:\g[zl}u{fzew:GG [—g—e,g—FE}},

where € > 0 is small enough, from which it follows that K’ (0) = 0. It is inter-
1
esting to note that W (z) = 97 G (x) , since by our definition of the fractional
1 , -
derivative 92 ¢ (z) = 5= [*°° p3 ¢ (p) dp.

=5 e
In the next lemmaQS,Trzve \szoioll obtain estimates for the Green operators G, 7
and J, which then imply that formula (2.8) gives us a unique solution of the
initial-boundary value problem (2.1) in the functional space C ([0,00);L') N
O ((0,00): WL).
First we estimate the kernels G (z), Q (z,y) and K (x).

Lemma 1. The estimates are true
|04 ()| < C ()7

for all x € R, ' '
LK (z)| < C (x)e77

for all x > 0, and

PROLQ (,y)| < C ()2 H (y) 2

for all x,y > 0, where k,1 =0,1, j =0,1,2, with some small o > 0.

Proof. The first estimate of the lemma along with the inequality

AW (w)] <

C (2)°7%7 for all z € R are the consequences of estimate (1.45) from [6]. We
next prove the estimate for the kernels @ (z,y) and A (z). We first consider
the case of x > 1, y > 0. Changing the contour of integration with respect to

p by -
Lo = {p= Ipl =5 |p| > 0},

and with respect to £ by

P={e=lgfe=F= g 2 1fufe =10 [-T -7 +c|],
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respectively, where € > 0 is small enough, we get

E(—M)'! . a3 £~ ME/%y
9. (a,y) = 2T /F dpetPpd/ 2k /F e
0

Ar? L ¢ — Epi2
and
. E 124 €3 ebde
IN(z) = ——— [ dpespp¥/2ti [ S 20

For all p € T, £ = |¢] e, with 6 € [-F —¢€,0], we have

’5 _ Ep5/2‘ _ ‘5621‘5 _ EpPl2e%ie

> Re (5621'6 _ Ep5/2€2ie)
)
= |€]cos (0 + 2€) + |E| |p|*'? cos <:|:;r + —€e+ 2+ argE)

2
C (I¢l+1p”?)

and for all p € Ty, & = |¢] €, with 0 € [0, 5+ e] , We write

v

‘5 _ Ep5/2‘ _ ‘56721'6 _ EpP/2e e

> Re (567215 _ Ep5/2672ie)
= |¢|cos (6 — 2€) + | E| |p*/? cos <j:i4T + ge —2¢e+ argE)

> o (lgl+ ),

since € is sufficiently small. Thus we get the estimate

‘E - Ep5/2‘_1 <C (Ié! + Ip\‘r’ﬂ)_1

for all p € Tp, & € I. Then using the estimates || < Cz=27F |p|727F,
] <C @+, ¢F| <1, and

2
e MEY < C(14y) 2

forallpelg, £l x> 1,y >0, we find

1
g _ dpl|p|™2 |d¢|
o] < cotrary [ | /
Q) v 1+ 1072 Jo (Lt (€])°

< Cx~%Fk (1+ y)_2

and, similarly

_1
}%A(a:)‘ SCij/ |dp| |p| 2/ |d£| 5 SCJUiZ?j
ro 14 [p|>? Jr (L+€))




NEUMANN PROBLEM FOR NONLINEAR EQUATION 11

forall x > 1, y > 0.
Consider now the case of 0 < x < 1, y > 0. In view of the identity

f\p|>1 %ezp =2 | sin (zp) % =7 —28Si(z), we represent
k ol (_M)1+l k . 20—=3 f—M{‘%y
8x8yQ (l’,y) = 4771_28:0 (77'—281(%‘)) Fdff 5 e
2
—-M 1+ . 2042 e'E_Mggy
A r £~ Ep
1+l _Med
B [ gt
ar? o Jpla r § — Ep*/?
and
) 1 , )
TN = ——0) (7 —28i deg5 et
IN@) = Jop0h(m—28i) [ dse e
1 A s ot
- dpezpﬂ_l/dggs
AmEM Jip2 N
&
e

E / . . 2
g [ vt et
471'2M Ip|<1 r é‘ _ Ep5/2

_ -1
As above we get the estimate |{ — Ep®/?| <c <|£] + |p|5/2) for all p € Ty,

¢ € I'. Hence applying the estimates }eq <O+, 5_% <1, and

2
e—M{E’)y SC(1+y)—2

forallpely, el 0<a <1, y>0, we find

_ _T _
o) < cvn (14 [ e Hal) e 2
0
< Cl4y)2.
In the same manner

il < c (1 [ @iy Hal) [ a2 <c

foral0<z<1,y>0,k1=0,1, 5 =0,1,2. Thus the second and the third
estimates of the lemma are true. Lemma 1 is proved. O
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In the next lemma we obtain the estimates for the Green operators G, 7
and J in our basic norms

6lxes = 5D (87 (75 [llgna + ()7 9llgw + (85 15 020l )
t>0

1y = sup (872477 (075 U fllgra + Ifllgs + (6 1/l )
v t>0

and
1]l 7 = Sup (05 (1h ()] + (1) |1 (1)]) -

Lemma 2. The estimates are valid

1G] xa0 < Cll¢llpra + Cllollne

fora € [0.1).
IZflxcess < € U fllym

for a€0,1), B> max(0,\), A#£0, v € (2,1], and

[T hl ke < Cl[hlIz0
ora € |0,1), p > —z, provided that the right-hand sides are finite.
f 0,1 é ded that th ht-hand sid fi

Proof. By Lemma 1 we find

9 0lee < CFdlgn sup [ ]G (0= w)t7F)|de + ool
y>0J0

oo
o [ (e
y>0.J0

o0
2
< Cllgasup [ (14 ]n- ot
y>0J0

o 2\ €2 2
xsup/ <<1+ ‘n—yt_g ) ’n—yt_ﬁ
y>0.J0

2Ot
(2.9) < Ct3% |9l + Clollga

G ((x —y) f%)‘ +2%|Q (xtfg,yt*%) D dx

€e—2 2&
) dn+ ot )],

(L4 !n\“) dn

for all t > 0, @ € [0,1). Again by using the estimates of Lemma 1 we have

190 ol < tF ol sup [ (|G (@ =) e7F) 4@ (7R R
< Clolsup [ (1w i) w000 an
y>0.J0
< Ol
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forall0 <t <1 and
190 ¢l < Flol s (|6 (@ - 8)]+|@ (a2 ur2)))

Ct™5 ||l

IN

for all ¢ > 1. Combining these estimates we obtain

(2.10) 16 (£) $llgoe < C (175 (6l + I Bllg)

for all £ > 0. In the same manner we get

102G () Bllge < Ct3 [0l sup /
x>0 .J0

s

2 e 9 2
< Ct75 [[9flpe ; (1+n)""dn < Ct 5 ||¢]lL

0.G ((ac ) t_%> ‘ dy

_2
+Ot75 |[@llpee

0,Q (xtfg,yf%) ‘ dy

Loo

forall0 <t <1 and

2 2
SR 2
10:G (1) dllg < O3 dllga |0 (at S)Hme)
+C1 3 gllgs [sup|0.@ (w72, 41 3)
y>0 Loo
)
< i gl || (1 o) < Ct5 ¢l
LOO

for all ¢ > 1. Combining these estimates we find

(2.11) 102G (1) llg < C 85 75 ((l@llgs + [0llg00)

for all £ > 0. By virtue of these inequalities we obtain the first estimate of the
lemma.
By estimate (2.9) we get

t
I lpe = ] [ou-nr@ar

L1«

IN

C /Ot ((t — )R ()l + Hf(T)IILl,a) dr
c HfHYr;A (/Ot ((t — T)%a (7->>‘_’Y Ay <T>§a+)\—7 7_7,1) d7_>

2
< )T fllygen

IN
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forallt >0,if a€[0,1),v€ (%,1] , B >max(0,\), A € R.
Via (2.10) we find

t
il = [ oe-nimar|
t 2 t
< [ =A@l + 1 Olgs)dr
0
t 2 2
< Clflyga [ t=n @70 lar <007y

for all t > 0, if « € [0,1), v € (2,1], 8 > max(0,A), A # 0. Similarly by
virtue of (2.11) we have

10.Tfll < C /0 (t=7)75 & =) 75 (I ()llgs + 1 (7)llge) dr

[SIN]

¢ 2
< Cliflyso [ =m0 =m"
X <<T>)\77 oy <T>)\777% 7'7_1> dr
B—2
< O T lyan

forallt > 0,if « €[0,1), v € (%, 1] , B> max (0,\), A # 0. Hence the second
estimate of the lemma follows.
Finally, we write

|Thlp = ’At@—Tyél(Gﬂt—TYg)hhﬁh

Lo

t _3 _4 _2
212) < Clhllge 1K e /0 (t— ) (it dr < 0 1 g

and

t 2,41 _4 24
[Thllgra < Cllhllz, IIKHLLa/O (t=7)3"75 (1) 5 dr < C ()75 |2

if > —%. To estimate the derivative with respect to x we represent
t _3 _2
Th = / (t=7) 5K (w(t—7)F)hir)dr
0

= h(t) /OtTgK (937'7%) dr

- - K (ot - 1) (h(r) - h(e) dr.
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For the first integral we change the variable of integration 2T =2
t
5 5
/T—EK(W ar =K (0)t5+i‘ (K (=) — K (0)) 2.
0

Then we differentiate with respect to x

0.7h = Shi) | [ R 8 G e ()

Since K’ (0) = 0, we have the estimate

t
0:Thl < C (1Kl + | K ) IO+ C g K [
C Il

IN

forall 0 <t <1, and

10:T Al < C (1K Igeo + [| K[| ) |2 (2)]

t

HC g | e [ (1t ) i
+C Rl HK'HLm[ (M2 dr < C (P73 |[hlp

forallt > 1,if p > —%. Thus, the third estimate of the lemma is valid. Lemma
2 is proved. O

In the next lemma we obtain the fast asymptotics for the Green operators
g, Iandj Denote B(z) = G(z) + Q(x,0) and 0 = [*¢(x)dz, ¥ =

fo fo (x,t) dxdt.

Lemma 3. The estimates are valid

lowe—oip(art)| <ot folpu..

HZf — 9t 5B (a:t%) HL < CE 5 fllygon
e} Y

and

_2
[T hllgee < O35 ||h]| 5
for allt > 1, where o € (0,1), —%oz<)\<0, —%<,u<0,’y€(0,1].
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Proof. Denote the operator
_2 [ _2
6116 =17 [ (w=net) o
Applying Lemma 1.28 from [6] we have

e o--toa (), <o 0

forallt>0,1<¢q¢<o00,0< 2% <a<1. ByLemma 1 we find
_2 2 _2 _2\"2 2
‘Q(It 5.yt 5)—Q<xt 5,0)‘§C’(1—|—$t 5> y“t s

then we can estimate the operator

Go(t) ¢ =t75

[
é:\
8
O
/N
8
7
(%)
S
-+
ol
N—
=
N
S~—
Q
N

as follows

L4
7 (Q(at %, yt73) — @ (at77,0)) <z>(y>dy>
z” <1+xt*§)_2 g /OOO y* lo(y)l dy

_2(1_1 _
< o ) .

Hll <G2 —f%f’@(ﬂ*?@)\

L¢

forallt > 0,1 <qg<o0,0<x<a<1. Thus we obtain the first estimate of

the lemma.
Denote 0 (t fo f (t,x) dx, then by virtue of the first estimate of the

lemma we have
)) dr

t

(Ge-nr@ -0 -1 B(xt-7)"
0

[N

Loe

t
< c / (t— )32 £ (1) g dr
0
t 2 2 2,40 1 212
< Ofllyen / (t — 73R () 3e R 1 < 0TI e
vy 0 vy

where a € (0,1), v € (0,1], —2ar < A < 0. By applying the estimate

2 2

‘(t ~7)75 B (:c (t— T)_%) —t75B (xt—%)) <Ctirs(t—1)75
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we obtain

2 2 _2
<Ct 5/ |0 (7)| 75 (t —7) 5 dr
0

/0 0 () (t—r)ng (a: (t—T)7%> dr —t 3B ($t§>/0 9 (1)dr

Loe

t
<ot |nyYO,A/ (t— )% (T Rdr < O ER | ]y
vy 0 Y
for all ¢ > 0, if =2 < A < 0, v € (0,1] . Note that

/tooe(f)df

for all t > 0, if A € (—1,0), v € (0,1]. Hence

”t—ﬁB (mt—%> /too 0 (r)dr

Therefore the second estimate of the lemma follows. To prove the last estimate
4
of the lemma we note that |k (¢)| < (£)"75 ||h||z.. Then by (2.12) we find

<Cliflyg [ (P77 hdr < O 1y
t

2

< O3 | fllyon
0

LOO

_2
[Tl < CE757 |||z
for all t > 0, if —% < p < 0. Lemma 3 is proved. O

In the next lemma we consider the case of the slow asymptotics of the
source and the boundary data. Denote

d(x) = /01 27— z)fg B (X(l - 2)7%> dz

and

U (y) = /1 P12 K (X (1- z)—%> dz.

0

Lemma 4. Let the estimate ||f (t)||p1.e < Ct?~! be valid with o € (0,1) . Let
the asymptotic formulas

0(t) = /OOO ft,x)de =at® 1 +0 (tﬁ—l—é)

and

B(t) =075+ 0 (197370
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be true for all t > 0, where 8 > 0, 0 < § < min (ﬂ, %a, %) . Then the asymp-
totics hold , ,
If=at’ 5®(x)+0 (tﬁ*?‘s)

and

Th=bt""5T (x) + O (tﬁ%*‘s)
for all t > 1 uniformly with respect to x > 0, where x = xt™3.

Proof. By virtue of the first estimate of Lemma 3 we have

¢ 2.2, ¢ _2.24 5.4
C|l (t—7) 5 3%f(7)|lpradr < C/ (t—7) 575 P1dr
0 0

/Ot (g(t—T)f(T) —6(7) (t—T)_%B<$(t—T)_%))dT

Loe

IN

< Ctf-i-8e

for all t > 0. Changing 7 = 2t, x = 2t=% we find
t 2 2
/ 9(r)(t—7)"3 B (:c (t — 7)—5) dr
0
t
= a/ e 7)7% B (93 (t— 7')7%> dr
0

t
+0 </ =170 (¢ — 7)7% dT)
0
1
= atf% / 71— 2)7% B (X (1-— 2)7%) dz+ O (tﬂ_%_‘;)
0
= at? 5 (x) +0 <t5—§—6) .

forallt >0if0<é < ﬂ.QTherefore the first asymptotic formula of the lemma
follows. Denote xy = xt™ 5. Changing 7 = 2zt we obtain

Th = b =7 K (at-7)75) 75 ar

0
t 3 4

+0 (/ (t—71)"5 75_5_5d7)
0
1

- btﬁ_g/ 1-2) 3K (x(1—2)75) 273 dz+0 (49737

0T R (1= 2) ) SR de 0 (7750

forallt >0if 0 < é < % Thus the second asymptotic formula of the lemma
is true. Lemma 4 is proved. O
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We now estimate the nonlinearity N (u, u;) = uPug in the norms Y5 A,

Lemma 5. Let p>1, 0 € [1, %) . Then the estimate is true
~1
IV (1, t0) = N (v,0) [ yar < [lu = vllxas (Jullxas + 0]l x00)"
withy=1—20,A=1+8(c+p)—2(p+20-1).

2 _2
Proof. We have the estimates [6]l,1 < (675 [6llxs [0l < (67 9o
_2 2
10200 < <t>ﬂ 5175 ||¢llxxa.s - Hence

[ufug = vPv7 |

< cnu—vnm(nuu [z ]| e + 0] ||vx||Loo)
+0Hux—vaLoo(HUIILmHUH luallfmt + [vllpra l[0llf o vz T )
< ()P =St e D 130 ol gas ([ull e + (0]l ges) 7T

2 _ _
< TR lu— vllxas (Jullxas + [0]xas) 77

withy=1-20, A=1+8(c+p)—2(p+20 —1) for a € [0,1]. In the same
manner

[uPug = v ozl

< Cllu=vllgee (el e |Zee + 018 o lE)
+C iz = vallg (el Ul Tual g + ol Nl loeI7=")
< O ()PP R u— v (e + [Vllxes) 7

Aey—2 ~— —1
< COTEO T lu = 0llxas ([ullxas + [[vllxas)

Thus the estimate of the lemma is true. Lemma 5 is proved. ]

83. Proof of Theorem 1

Using the Duhamel formula (2.8) we rewrite problem (1.1) in the form of the
integral equation

(3.1) u=Guy+Z(f—N(u,uy))+ Jh.
We apply the contraction mapping principle in the ball

={0eX*: Jullxao < e},
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where € > 0 is sufficiently small. For v € X2? we define the transformation
M (v) by the formula

(3.2) M) =Guo+Z(f —N (v,vy)) + Th.

First we prove that [[M (v)|xa.0 < €. By the conditions of the theorem using
estimates of Lemmas 2 and 5 we find form (3.2)

IM (0)lIxa0 < Guollxao + 1T (f =N (v, 02))lIxe0 + [T hllxe0
< Clluollpie + Clluollpe + Cllfllygr + CIN (0, 02)llyer + C ] 20

< Clluollpra +Clluollpe + Clfllyer + Cllhllzo + Cllv]%l < e,

since A = 1— 2 (p+20—1) < 0 and € > 0 is small enough. Therefore M
transforms X2 into itself. In the same way we estimate the difference

M (w) = M (V) xa0 < TNV (v, 02) = N (w, wz)) | xa0
< Cllw = vllxao ([wllxao + [1ollxe0) ™ < O lw —v[xa0 ,

where w,v € X°. Thus M is a contraction mapping in X, therefore there
exists a unique solution u € X2 to the integral equation (3.1) and the problem
(1.1).

We now prove the asymptotics. Since

IV (1 102) o < C llull$efy < C=7*,
applying estimates of Lemma 3 we find from the integral representation (3.1)

u(t) = Guo+ZI(f—-N(u,uz))+Th
= (0+9,—0s)t 3B (xt—%> +0 (t—g—ga HuOHLl,a)

O (7577 (W hyge IV )y + Nellz) )

where 0 < 9 < %a, 0 <min(=\,—v,—p), 0= fooo uo (y) dy,
9 = fooo fgoo f(1,y) dydr and

Vg = /OO /OO/\/'(u,ux) dydr.
0 0

Theorem 1 is proved.
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84. Proof of Theorem 2

We apply the contraction mapping principle in
X07 ={6 e X% Julxos <e},

where € > 0 is sufficiently small. For v € Xg’ﬁ we define the mapping M (v)
by formula (3.2). First we prove that

M (v)llx0.s < e

By the conditions of the theorem using estimates of Lemmas 2 and 5 we have
from (3.2)

[MW)llxos < [|Guollxos + IIZ(f =N (v,vz))lx06 + | Thllx0.6
< Clluollgs + Clluoll~ + C 1l fllyos
OV (v, v2) lyor + C Bl 25
Clluollg + Clluollg + C [l fllyos + Cllhllzs + C vl
< e

IN

Here we can choose A such that 1+ (o + p) — % (p+20—1) < X< f, since
14+B(c+p)—2(p+20—1) <Bifp+o > g:gg +1. Therefore M transforms

X%7 into itself. In the same way we estimate the difference

M (w) = M ()l[x0s < |7 () N (v,v2) = N (w, wa)) I x0.8
< Cllw = vllgos (lolxos + [0lx05)7 " < Ce707 [l — vl0s
where w, v € Xg’ﬁ . Thus M is a contraction mapping in Xg’ﬁ , therefore there
exists a unique solution u € Xg’ﬂ to the integral equation (3.1) and the problem

(1.1).
We now prove the asymptotics. Since

IV (u, ua)llyor < Cllulloy < Ce7*2,
using Lemma 2 we obtain the decay estimate
IN (u,u;) = O (tﬁ_%_é)
with § = § — A > 0. By the first estimate of Lemma 2 we get

Guo = 0 (+7% [luoly) -
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Then by the integral representation (3.1) and the estimates of Lemma 4 we

find

u(t) = If+JTh+ Guy—IN (u,uy)
= 1775 (a® () + bW () + O (1175 7)

for t > 1, where 0 < 0 < min (ﬁ, %, %a,ﬁ — )\) . Theorem 2 is proved.
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