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Abstract. The notion of generalized η-Einstein trans-Sasakian manifold is
introduced. Conformally flat trans-Sasakian manifolds are studied and intro-
duced the idea of a manifold of hyper generalized quasi-constant curvature with
various non-trivial examples.
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§1. Introduction

Recently, Oubina ([1]) introduced the notion of trans-Sasakian manifolds
which contains both the class of Sasakian and cosymplectic structures and are
closely related to the locally conformal Kähler manifolds. A trans-Sasakian
manifold of type (0, 0), (α, 0) and (0, β) are the cosymplectic, α-Sasakian and
β-Kenmotsu manifold, respectively. The object of the present paper is to study
conformally flat trans-Sasakian manifolds. Section 2 is concerned with some
curvature identities of trans-Sasakian manifolds. In section 3, we introduce the
notion of generalized η-Einstein trans-Sasakian manifolds and proved that in
such a manifold the scalars 2n(α2−β2−ξβ) and r

2n−(α2−β2−ξβ) are the Ricci
curvatures in the direction of the vector fields associated with the 1-forms of
the manifold and satisfies the inequality ω(φ (grad α)) < 1√

2
q+(2n−1)ω(grad

β) where q is the length of the Ricci tensor and ω is the associated non-
zero 1-form. In 1972, Chen and Yano introduced the notion of a manifold
of quasi-constant curvature ([3]). Generalizing this notion, M. C. Chaki ([4])
introduced the idea of a manifold of generalized quasi-constant curvature . It
is shown that a 3-dimensional generalized η-Einstein trans-Sasakian manifold
is a manifold of generalized quasi-constant curvature.
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In 2000, M. C. Chaki and R. K. Ghosh ([4]) introduced the notion of quasi-
Einstein manifold and then studied by various authors ([5], [14]). The same
notion is also introduced and studied by R. Deszcz and his co-authors in several
papers ([7], [8], [9], [10]). The existence and applications of quasi-Einstein
manifolds have been studied by various authors. The notion of η-Einstein
manifold for contact structures is an analogous situation as the quasi-Einstein
manifold.

In 2001, M. C. Chaki ([5]) introduced the notion of generalized quasi-
Einstein manifold and studied its geometrical significance as well as its ap-
plications to the general relativity and cosmology ([6]). Subsequently, the
physical significance of the generalized quasi-Einstein manifold is interpreted
in ([14]).

The notion of generalized quasi-Einstein manifold by Chaki stands an anal-
ogous situation to that of the generalized η-Einstein trans-Sasakian manifold.
Thus the notion of generalized η-Einstein manifold is geometrically and phys-
ically important.

Section 4 deals with a conformally flat trans-Sasakian manifold. As an
extension of generalized η-Einstein trans-Sasakian manifold, we introduce the
notion of hyper generalized η-Einstein trans-Sasakian manifold. Especially, if
the associated vector fields ρ and λ of the corresponding 1-forms ω and π of the
hyper generalized η-Einstein trans-Sasakian manifold are linearly dependent,
then it reduces to the notion of generalized η-Einstein trans-Sasakian manifold.
The characteristic vector field ξ is always orthogonal to the associated vector
field ρ but ξ is not necessarily orthogonal to the associated vector field λ,
where ω(X) = g(X, ρ) and π(X) = g(X,λ) for all X. In particular, if ρ and λ
are linearly dependent, then ξ is orthogonal to both the vector fields ρ and λ
in which case the notion reduces to the generalized η-Einstein trans-Sasakian
manifold.

As in the case of generalized η-Einstein trans-Sasakian manifold, the no-
tion of hyper generalized η-Einstein trans-Sasakian manifold is equally geo-
metrically and physically importance. Not only that but also one can easily
extend the notion of generalized quasi-Einstein manifold to the notion of hyper
generalized quasi-Einstein manifold for the Riemannian case and study their
geometrical significance as well as its applications to the general relativity and
cosmology. It is proved that a conformally flat trans-Sasakian manifold is a
hyper generalized η-Einstein trans-Sasakian manifold. It is shown that a con-
formally flat trans-Sasakian manifold is an η-Einstein if and only if φ (grad
α) = (2n−1) (grad β). Also it is proved that a conformally flat trans-Sasakian
manifold is a generalized η-Einstein manifold if and only if the structure func-
tion β is a non-vanishing constant.

The notion of generalized quasi-constant curvature introduced by Chaki
([6]) is a geometrically important concept as its existence and physical in-
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terpretation is given by Chaki ([6]) and also by various authors ([14]). In
this section we also introduce the notion of hyper generalized quasi-constant
curvature.

Especially, if the associated vector fields ρ and λ of the corresponding 1-
forms ω and π of the hyper generalized quasi-constant curvature are linearly
dependent, then it reduces to the notion of generalized quasi-constant curva-
ture. The characteristic vector field ξ is always orthogonal to the associated
vector field ρ but ξ is not necessarily orthogonal to the associated vector field
λ , where ω(X) = g(X, ρ) and π(X) = g(X,λ) for all X. In particular, if ρ
and λ are linearly dependent, then ξ is orthogonal to both the vector fields
ρ and λ in which case the notion reduces to the generalized quasi-constant
curvature.

It is proved that a conformally flat trans-Sasakian manifold of dimen-
sion greater than three is of quasi-constant curvature if and only if φ(grad
α) = (2n−1) (grad β). Also it is shown that a conformally flat trans-Sasakian
manifold is a manifold of generalized quasi–constant curvature if and only if
the structure function β is a non-vanishing constant. Then we obtain some
mutually equivalent conditions on a conformally flat trans-Sasakian manifold.
The last section deals with several non-trivial examples of trans-Sasakian man-
ifolds constructed with global vector fields.

§2. Trans-Sasakian manifolds

A (2n + 1)-dimensional differentiable manifold M2n+1 is said to be an almost
contact metric manifold ([12]) if it admits a (1, 1) tensor field φ, a contravariant
vector field of ξ, a 1-form η and a Riemannian metric g which satisfy

φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ,(2.1)
g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1,(2.2)

g(φX, φY ) = g(X,Y ) − η(X)η(Y )(2.3)

for all vector fields X,Y on M2n+1.
An almost contact metric manifold M2n+1(φ, ξ, η, g) is said to be trans-

Sasakian manifold ([1]) if (M×R, J,G) belong to the class W4 of the Hermitian
manifolds where J is the almost complex structure on M × R defined by

J(Z, f
d

dt
) = (φZ − fξ, η(Z)

d

dt
)

for any vector field Z on M and smooth function f on M × R and G is the
product metric on M × R. This may be stated by the condition ([2])

(∇Xφ)(Y ) = α{g(X,Y )ξ − η(Y )X} + β{g(φX, Y )ξ − η(Y )φX}(2.4)
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where α, β are smooth functions on M and we say such a structure the trans-
Sasakian structure of type (α, β). From (2.4) it follows that

∇Xξ = −αφX + β{X − η(X)ξ},(2.5)
(∇Xη)(Y ) = −αg(φX, Y ) + βg(φX, φY ).(2.6)

In a trans-Sasakian manifold M2n+1(φ, ξ, η, g) the following relations hold
([11]):

R(X,Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ] − (Xα)φY − (Xβ)φ2(Y )(2.7)
+2αβ[η(Y )φX − η(X)φY ] + (Y α)φX + (Y β)φ2(X),

η(R(X,Y )Z) = (α2 − β2)[g(Y,Z)η(X) − g(X,Z)η(Y )](2.8)
−2αβ[g(φX,Z)η(Y ) − g(φY,Z)η(X)]
−(Y α)g(φX,Z) − (Xβ){g(Y,Z) − η(Y )η(Z)}
+(Xα)g(φY,Z) + (Y β){g(X,Z) − η(Z)η(X)},

R(ξ,X)ξ = (α2 − β2 − ξβ)[η(X)ξ − X],(2.9)
S(X, ξ) = [2n(α2 − β2) − (ξβ)]η(X) − ((φX)α) − (2n − 1)(Xβ),(2.10)
S(ξ, ξ) = 2n(α2 − β2 − ξβ),(2.11)

(ξα) + 2αβ = 0,(2.12)
Qξ = [2n(α2 − β2) − ξβ]ξ + φ(gradα) − (2n − 1)(gradβ).(2.13)

for any vector fields X, Y on M .

§3. Generalized η-Einstein Trans-Sasakian manifolds

Definition 3.1. An almost contact metric manifold M2n+1(φ, ξ, η, g) is said
to be η-Einstein if its Ricci tensor S of type (0, 2) is of the form

S = ag + bη ⊗ η,(3.1)

where a, b are smooth functions on M .

It is shown in ([11]) that the associated scalars a and b of the η-Einstein
trans-Sasakian manifold are given by

a =
r

2n
− (α2 − β2 − ξβ), b = − r

2n
+ (2n + 1)(α2 − β2 − ξβ).

Definition 3.2. A trans-Sasakian manifold M(φ, ξ, η, g) is said to be gener-
alized η-Einstein if its Ricci tensor S of type (0, 2) is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + c[η(X)ω(Y ) + η(Y )ω(X)](3.2)
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where a, b, c are non-zero scalars, ω is a non-zero 1-form such that ω(X) =
g(X, ρ) for all X, and ξ and ρ are unit vector fields orthogonal to each other.
The scalars a, b, c are called the associated scalars.

Proposition 1. In a generalized η-Einstein trans-Sasakian manifold (M2n+1, g),
the associated scalars are given by

a =
r

2n
− (α2 − β2 − ξβ),(3.3)

b = − r

2n
+ (2n + 1)(α2 − β2 − ξβ),(3.4)

c = ω(φgradα) − (2n − 1)ω(gradβ).(3.5)

Proof. Setting X = Y = ξ in (3.2) and then using (2.11), we get

S(ξ, ξ) = a + b = 2n(α2 − β2 − ξβ).(3.6)

Contracting (3.2) over X and Y , it yields

r = (2n + 1)a + b,(3.7)

where r is the scalar curvature of the manifold. From (3.6) and (3.7) we
obtain (3.3) and (3.4).

Again replacing X by ρ and Y by ξ in (3.2), respectively, and keeping in
mind the relation (2.10), we obtain (3.5). This proves the proposition.

Theorem 3.1. In a generalized η-Einstein trans-Sasakian manifold (M2n+1, g),
the associated scalars 2n(α2 − β2 − ξβ) and r

2n − (α2 − β2 − ξβ) are the Ricci
curvatures in the direction of the vector fields ξ and ρ, respectively, and the
inequality ω(φgradα) < 1√

2
q + (2n − 1)ω(gradβ) holds, where q is the length

of the Ricci tensor S.

Proof. Setting X = Y = ρ in (3.2) we obtain by virtue of (3.3) that

S(ρ, ρ) =
r

2n
− (α2 − β2 − ξβ).(3.8)

From (3.6) and (3.8), it follows that 2n(α2−β2−ξβ) and r
2n−(α2−β2−ξβ) are

the Ricci curvatures in the direction of the vector fields ξ and ρ respectively.
Let g(QX,Y ) = S(X,Y ) and q2 denote the square of the length of the Ricci
tensor S, i.e.,

q2 =
2n+1∑
i=1

S(Qei, ei),(3.9)
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where {ei : i = 1, 2, ..., 2n + 1} is an orthonormal basis of the tangent space
at any point of the manifold. From (3.2) it follows that

2n+1∑
i=1

S(Qei, ei) = 2na2 + (a + b)2 + 2c2

which implies that

q2 − 2c2 = 2na2 + (a + b)2.

Since a 6= 0 and b 6= 0, we obtain q2 − 2c2 = 2na2 + (a + b)2 > 0 and hence
the equation

c <
1√
2
q.

Hence by virtue of (3.5) we have the required inequality. This proves the
theorem.

Definition 3.3 ([3]). A Riemannian manifold (Mm, g) (m ≥ 3) is said to be
of quasi-constant curvature if its curvature tensor R̃ of type (0, 4) satisfies the
condition :

R̃(X,Y, Z,W ) = p1[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](3.10)
+p2[g(X,W )A(Y )A(Z) − g(Y,W )A(X)A(Z)
+g(Y,Z)A(X)A(W ) − g(X,Z)A(Y )A(W )]

where p1, p2 are non-zero scalars and A is a non-zero 1-form such that g(X,U) =
A(X) for all X, and U is a unit vector field. p1, p2 and A are called the asso-
ciated scalars and associated 1-form of the manifold, respcetively.

The notion of a manifold of quasi-constant curvature is introduced by Chen
and Yano ([3]). Generalizing this notion of quasi-constant curvature, Chaki
([4]) introduced the notion of generalized quasi-constant curvature as follows :

Definition 3.4. A Riemannian manifold (Mm, g)(m ≥ 3) is said to be of
generalized quasi-constant curvature if its curvature tensor R̃ of type (0, 4)
satisfies the condition

R̃(X,Y, Z,W ) = a[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](3.11)
+b[g(X,W )A(Y )A(Z) − g(Y,W )A(X)A(Z)
+g(Y,Z)A(X)A(W ) − g(X,Z)A(Y )A(W )]
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+c[g(X,W ){A(Y )B(Z) + A(Z)B(Y )}
−g(X,Z){A(W )B(Y ) + A(Y )B(W )}
+g(Y,Z){A(W )B(X) + A(X)B(W )}
−g(Y,W ){A(Z)B(X) + A(X)B(Z)}],

where a, b and c are non-zero scalars, and A and B are non-zero 1-forms
such that A(X) = g(X,U) and B(X) = g(X,V ) for all X, and U and V are
orthogonal vector fields.

Theorem 3.2. A 3-dimensional generalized η-Einstein trans-Sasakian man-
ifold is a manifold of generalized quasi-constant curvature.

Proof. Since in a 3-dimensional Riemannian manifold the Weyl conformal
curvature vanishes, its curvature tensor R̃ of type (0, 4) is given by

R̃(X,Y, Z,W ) = g(Y,Z)S(X,W ) − g(X,Z)S(Y,W )(3.12)
+S(Y,Z)g(X,W ) − S(X,Z)g(Y,W )

+
r

2
[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )].

By virtue of (3.2), (3.12) can be written as

R̃(X,Y, Z,W ) = a1[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](3.13)
+b1[g(X,W )η(Y )η(Z) − g(Y,W )η(X)η(Z)
+g(Y,Z)η(X)η(W ) − g(X,Z)η(Y )η(W )]
+c1[g(X,W ){η(Y )ω(Z) + η(Z)ω(Y )}
−g(X,Z){η(W )ω(Y ) + η(Y )ω(W )}
+g(Y,Z){η(W )ω(X) + η(X)ω(W )}
−g(Y,W ){η(Z)ω(X) + η(X)ω(Z)}]

where a1 = 3r
2 − 2(α2 − β2 − ξβ), b1 = − r

2 + 3(α2 − β2 − ξβ) and c1 =
λ(φgradα) − λ(gradβ) are three non-zero scalars. Comparing (3.11) with
(3.13) , it follows that the manifold under consideration is of generalized quasi-
constant curvature. This proves the theorem.

§4. Conformally flat Trans-Sasakian manifolds

Let (M2n+1, g) (n > 1) be a conformally flat trans-Sasakian manifold. Then
its curvature tensor is given by

R(X,Y )Z =
1

2n − 1
[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX(4.1)

−g(X,Z)QY ] − r

2n(2n − 1)
[g(Y,Z)X − g(X,Z)Y ]
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for any vector fields X, Y and Z on M . Setting Z = ξ in (4.1) and using
(2.7) and (2.10), we obtain

[(α2 − β2) − 2n(α2 − β2) − ξβ

2n − 1
+

r

2n(2n − 1)
][η(Y )X − η(X)Y ](4.2)

+2αβ[η(Y )φX − η(X)φY ]
−(Xα)φY − (Xβ)φ2(Y ) + (Y α)φX + (Y β)φ2(X)

=
1

2n − 1
[{η(Y )QX − η(X)QY } − (2n − 1){(Y β)X − (Xβ)Y }

−{((φY )α)X − ((φX)α)Y }].

Again replacing Y by ξ in (4.2), we obtain by virtue of (2.12) that

QX = [
r

2n
− (α2 − β2 − ξβ)]X(4.3)

+[− r

2n
+ (2n + 1)(α2 − β2) + (2n − 3)(ξβ)]η(X)ξ

−(2n − 1){(Xβ)ξ + η(X)gradβ} − ((φX)α)ξ
+η(X)φ(gradα) + (2n − 1)(ξα)φX,

which can also be written as

S(X,Y ) = ag(X,Y ) + bη(X)η(Y )(4.4)
−(2n − 1){(Xβ)η(Y ) + (Y β)η(X)} − [((φX)α)η(Y )
+((φY )α)η(X)] + (2n − 1)(ξα)g(φX, Y )

where a = r
2n − (α2−β2− ξβ) and b = − r

2n +(2n+1)(α2−β2)− (2n−3)(ξβ).
The symmetry property of the Ricci tensor yields from (4.4) that

(ξα) = 0.(4.5)

Extending the notion of generalized η-Einstein manifold we introduce the
notion of hyper generalized η-Einstein manifold as follows :

Definition 4.1. A trans-Sasakian manifold (M2n+1, g) is said to be hyper
generalized η-Einstein manifold if its Ricci tensor S of type (0, 2) is of the
form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + c[η(X)ω(Y ) + η(Y )ω(X)](4.6)
+d[η(X)π(Y ) + η(Y )π(X)]

where a, b, c and d are non-zero scalars which are called the associated scalars,
ω and π are non-zero 1-forms such that ω(X) = g(X, ρ), π(X) = g(X,λ) for all
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X ; ρ and λ being associated vector fields of the 1-forms ω and π respectively
such that ξ is orthogonal to ρ.

The name ‘hyper’ is used as in the case of hyper real numbers. Especially,
if λ = δρ, δ being a scalar, then the notion of hyper generalized η-Einstein
manifold reduces to the notion of generalized η-Einstein manifold. This implies
that ρ and λ are not necessarily mutually orthogonal whereas ξ is always
orthogonal to ρ.

Theorem 4.1. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is a hyper generalized η-Einstein manifold.

Proof. If a trans-Sasakian manifold (M2n+1, g) (n > 1) is conformally flat,
then we have the relation (4.4). By virtue of (4.5), (4.4) yields,

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) − (2n − 1){(Xβ)η(Y )(4.7)
+(Y β)η(X)} − [((φX)α)η(Y ) + ((φY )α)η(X)],

which can also be written as

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + c[η(X)ω(Y ) + η(Y )ω(X)](4.8)
+d[η(X)π(Y ) + η(Y )π(X)]

where a, b, c and d are non-zero scalars given by where a = r
2n −(α2−β2−ξβ) ,

b = − r
2n+(2n+1)(α2−β2)−(2n−3)(ξβ)], c = 1 and d = −(2n−1) ; ω and π are

non-zero 1-forms such that ω(X) = g(X, ρ) = g(X,φ(gradα)) = −((φX)α),
π(X) = g(X,λ) = g(X, gradβ) = (Xβ) for all X. This proves the theorem.

Theorem 4.2. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is an η-Einstein manifold if and only if

φ(gradα) = (2n − 1)(gradβ).(4.9)

Proof. For a conformally flat trans-Sasakian manifold we have the relation
(4.8). We first suppose that the conformally flat trans-Sasakian manifold is
η-Einstein. Then (4.8) yields

[η(X)ω(Y ) + η(Y )ω(X)] − (2n − 1)[η(X)π(Y ) + η(Y )π(X)] = 0(4.10)

where ω(X) = g(X,φgradα) and π(X) = g(X, gradβ). Setting X = ξ in
(4.10) we get

ω(Y ) − (2n − 1)[π(Y ) + (ξβ)η(Y )] = 0.(4.11)

Again replacing Y = ξ in (4.11), we have

(ξβ) = 0.(4.12)



34 A. A. SHAIKH AND Y. MATSUYAMA

In view of (4.12) and (4.11) we obtain (4.9).
Conversely, if (4.9) holds, then π(X) = 1

(2n−1)ω(X) and hence (ξβ) =
g(ξ, gradβ) = 1

2n−1g(ξ, φgradα) = 0 and hence (4.8) reduces to

S(X,Y ) = ãg(X,Y ) + b̃η(X)η(Y ),(4.13)

where ã and b̃ are non-zero scalars given by

ã =
r

2n
− (α2 − β2), b̃ = − r

2n
+ (2n + 1)(α2 − β2).

The relation (4.13) implies that the manifold under consideration (4.9) is an
η-Einstein manifold. This proves the theorem.

Corollary 4.1. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is a generalized η-Einstein manifold if and only if the structure function β
is a non-vanishing constant.

Proof. If β is a non-vanishing constant, then (Xβ) = 0 for all X and hence
(4.8) reduces to

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + c[η(X)ω(Y ) + η(Y )ω(X)],(4.14)

where a, b and c are non-zero scalars. The relation (4.14) is of the form
(3.2) and hence the manifold is generalized η-Einstein. Conversely, if a con-
formally flat trans-Sasakian manifold (M2n+1, g) (n > 1) is a generalized η-
Einstein manifold, then we have the relation (4.14). From (4.8) and (4.14),
we have

d[η(X)π(Y ) + η(Y )π(X)] = 0,

which yields for Y = ξ

(Xβ) + (ξβ)η(X) = 0,(4.15)

since d 6= 0. Again, setting X = ξ in (4.15), we have (ξβ) = 0. Therefore,
(4.15) takes the form

(Xβ) = 0,

for all X and hence β is a constant. This proves the corollary.
Extending the notion of generalized quasi-constant curvature of M. C.

Chaki ([4]), we introduce the notion of hyper generalized quasi-constant cur-
vature as follows:
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Definition 4.2. A Riemannian manifold (Mm, g)(m ≥ 3) is said to be of
hyper generalized quasi-constant curvature if its curvature tensor R̃ of type (0,
4) is of the form

R̃(X,Y, Z,W ) = δ1[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](4.16)
+δ2[g(X,W )A(Y )A(Z) − g(Y,W )A(X)A(Z)
+g(Y,Z)A(X)A(W ) − g(X,Z)A(Y )A(W )]
+δ3[g(X,W ){A(Y )B(Z) + A(Z)B(Y )}
−g(X,Z){A(Y )B(W ) + A(W )B(Y )}
+g(Y,Z){A(X)B(W ) + A(W )B(X)}
−g(Y,W ){A(X)B(Z) + A(Z)B(X)}]
+δ4[g(X,W ){A(Y )D(Z) + A(Z)D(Y )}
−g(X,Z){A(Y )D(W ) + A(W )D(Y )}
+g(Y,Z){A(X)D(W ) + A(W )D(X)}
−g(Y,W ){A(X)D(Z) + A(Z)D(X)}],

where δi ( i = 1, 2, 3, 4) are non-vanishing scalars and A, B and D are non-
zero 1-forms given by A(X) = g(X, ξ), B(X) = g(X, ρ), D(X) = g(X,λ) such
that ξ is orthogonal to ρ.

Especially, if λ = δρ, δ being a scalar, then the notion of a manifold of hyper
generalized quasi-constant curvature reduces to the notion of generalized quasi-
constant curvature. This implies that ρ and λ are not necessarily mutually
orthogonal whereas ξ is always orthogonal to ρ. We have used the term “hyper”
, since if B and D are linearly dependent, then (4.16) reduces to the form of
(3.11).

Theorem 4.3. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is a manifold of hyper generalized quasi-constant curvature.

Proof. In a conformally flat trans-Sasakian manifold (M2n+1, g) (n > 1) we
have the relations (4.1) and (4.8). By virtue of (4.8) the relation (4.1) can
be written as

R̃(X,Y, Z,W ) = γ1[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](4.17)
+γ2[g(X,W )η(Y )η(Z) − g(Y,W )η(X)η(Z)
+g(Y,Z)η(X)η(W ) − g(X,Z)η(Y )η(W )]
+γ3[g(X,W ){η(Y )ω(Z) + η(Z)ω(Y )}
−g(X,Z){η(W )ω(Y ) + η(Y )ω(W )}
+g(Y,Z){η(W )ω(X) + η(X)ω(W )}
−g(Y,W ){η(Z)ω(X) + η(X)ω(Z)}]
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+γ4[g(X,W ){η(Y )π(Z) + η(Z)π(Y )}
−g(X,Z){η(W )π(Y ) + η(Y )π(W )}
+g(Y,Z){η(W )π(X) + η(X)π(W )}
−g(Y,W ){η(Z)π(X) + η(X)π(Z)}]

where γi, i = 1, 2, 3, 4 are non-zero scalars given by γ1 = 1
2n−1 [ r

2n − 2(α2 −
β2 − ξβ)], γ2 = 1

2n−1 [− r
2n + (2n + 1)(α2 − β2)− (2n− 3)(ξβ)], γ3 = 1

2n−1 and
γ4 = −1, ω(X) = g(X,φgradα), and π(X) = g(X, gradβ) for all X. From
(4.16) and (4.17) , it follows that the manifold under consideration is hyper
generalized quasi-constant curvature.

Theorem 4.4. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is a manifold of quasi-constant curvature if and only if

φ(gradα) = (2n − 1)(gradβ).

Proof. We first suppose that in a conformally flat trans-Sasakian manifold
(M2n+1, g) (n > 1), the relation φ(gradα) = (2n − 1)(gradβ) holds. Then we
have the relation (4.13). By virtue of (4.13) the relation (4.1) can be written
as

R̃(X,Y, Z,W ) = γ̃[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )](4.18)
+δ̃[g(X,W )η(Y )η(Z) − g(Y,W )η(X)η(Z)
+g(Y,Z)η(X)η(W ) − g(X,Z)η(Y )η(W )]

where γ̃ and δ̃ are non-zero scalars given by

γ̃ =
1

2n − 1
[

r

2n
− 2(α2 − β2 − ξβ)],

δ̃ =
1

2n − 1
[− r

2n
+ (2n + 1)(α2 − β2) − (2n − 3)(ξβ)].

From (4.18) it follows by virtue of Definition 3.3 that the manifold is of quasi-
constant curvature.

Conversely, if the manifold is of quasi-constant curvature, then (4.17) yields

γ3[g(X,W ){η(Y )ω(Z) + η(Z)ω(Y )} − g(X,Z){η(W )ω(Y )(4.19)
+η(Y )ω(W )} + g(Y,Z){η(W )ω(X) + η(X)ω(W )}
−g(Y,W ){η(Z)ω(X) + η(X)ω(Z)] + γ4[g(X,W ){η(Y )π(Z)
+η(Z)π(Y )} − g(X,Z){η(W )π(Y ) + η(Y )π(W )}
+g(Y,Z){η(W )π(X) + η(X)π(W )} − g(Y,W ){η(Z)π(X)
+η(X)π(Z)}] = 0.
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Let {ei}, i = 1, 2, ... , 2n + 1 be an orthonormal basis of the tangent space
at any point of the manifold. Setting X = W = ei in (4.19) and taking
summation over i, 1 ≤ i ≤ 2n + 1, we get

γ3(2n − 1)[η(Y )ω(Z) + η(Z)ω(Y )](4.20)
+γ4[(2n − 1){η(Y )π(Z) + η(Z)π(Y )} + 2g(Y,Z)(ξβ)] = 0.

Since γ3 = 1
2n−1 and γ4 = −1, (4.20) implies that

η(Y )ω(Z) + η(Z)ω(Y ) − 2g(Y,Z)(ξβ)(4.21)
−(2n − 1){η(Y )π(Z) + η(Z)π(Y )} = 0.

Replacing Y by ξ in (4.21), we get

ω(Z) − (2n − 1)π(Z) = 0,(4.22)

which implies φ(gradα) = (2n − 1)(gradβ). This proves the theorem.

Corollary 4.2. A conformally flat trans-Sasakian manifold (M2n+1, g) (n >
1) is a manifold of generalized quasi-constant curvature if and only if the
structure function β is a non-vanishing constant.

Proof. If β is constant, then (Y β) = 0 for all Y and hence (4.17) reduces to
the form of generalized quasi-constant curvature.

Conversely, if the manifold is of generalized quasi-constant curvature, then,
from the relation (4.17), it follows that

γ4[g(X,W ){η(Y )π(Z) + η(Z)π(Y )}(4.23)
−g(X,Z){η(W )π(Y ) + η(Y )π(W )}
+g(Y,Z){η(W )π(X) + η(X)π(W )}
−g(Y,W ){η(Z)π(X) + η(X)π(Z)}] = 0.

Contracting (4.23) over X and W , we get

γ4[(2n − 1){η(Y )π(Z) + η(Z)π(Y )} − 2g(Y,Z)(ξβ)] = 0,(4.24)

which yields for Y = ξ

(2n − 1)π(Z) − (2n + 1)(ξβ)η(Z) = 0.(4.25)

Now, setting Z = ξ in the above relation, we have (ξβ) = 0. Hence, (4.25) takes
the form (Zβ) = 0 for all Z, which implies that β is a constant. This proves
the corollary.
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Theorem 4.5. Let (M2n+1, g) (n > 1) be a conformally flat trans-Sasakian
manifold. Then the following conditions are mutually equivalent:
(1) M is η-Einstein.
(2) M is a manifold of quasi-constant curvature.
(3) ξ is the eigenvector field of the Ricci operator Q.
(4) M satisfies φ(gradα) = (2n − 1)(gradβ).

Proof. Let (M2n+1, g) (n > 1) be a conformally flat trans-Sasakian manifold.
We first suppose that M is η-Einstein. Then (4.1) and (3.1) hold good. In
view of (4.1) and (3.1) we have

R̃(X,Y, Z,W ) =
1

2n − 1
(2a − r

2n
)[g(Y,Z)g(X,W )(4.26)

−g(X,Z)g(Y,W )] +
b

2n − 1
[g(X,W )η(Y )η(Z)

−g(Y,W )η(X)η(Z) + g(Y,Z)η(X)η(W )
−g(X,Z)η(Y )η(W )],

where a and b are non-zero scalars given by

a =
r

2n
− (α2 − β2 − ξβ), b = − r

2n
+ (2n + 1)(α2 − β2 − ξβ).

The relation (4.26) implies that the manifold under consideration is a manifold
of quasi-constant curvature. Hence (1) ⇒ (2).

Next, let M2n+1 (n > 1) be a conformally flat trans-Sasakian manifold
which is of quasi-constant curvature. Then (3.10) holds good. For U = ξ,
(3.10) can be written as

R̃(X,Y, Z,W ) = p1[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )]
+p2[g(X,W )η(Y )η(Z) − g(Y,W )η(X)η(Z)
+g(Y,Z)η(X)η(W ) − g(X,Z)η(Y )(W )],

which yields

S(Y,Z) = (2np1 + p2)g(Y,Z) + (2n − 1)p2η(Y )η(Z).(4.27)

From (4.27) it follows that Qξ = 2n(p1+p2)ξ which yields ξ is the eigenvector
of the Ricci operator Q. Hence (2) ⇒ (3).

Again, let in a conformally flat trans-Sasakian manifold M2n+1 (n > 1) ξ is
the eigenvector of the Ricci operator Q. Then from (4.3) it follows by virtue
of (4.5) that φ(gradα) = (2n − 1)(gradβ). Thus (3) ⇒ (4).

Finally, let in a conformally flat trans-Sasakian manifold M2n+1 (n > 1) the
condition φ(gradα) = (2n− 1)(gradβ) holds. Using this condition in (4.4) we
obtain by virtue of (4.5) that the manifold is η-Einstein. Hence (4) ⇒ (1).
This completes the proof.
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§5. Examples of trans-Sasakian manifolds

Example 1 We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 :
z 6= 0 }, where (x, y, z) are the standard coordinates in R3. Let {E1, E2, E3}
be linearly independent global frame on M given by

E1 = e−z ∂

∂y
, E2 = e−z(

∂

∂x
+ y

∂

∂z
), E3 =

∂

∂z
.

Let g be the Riemannian metric defined by g(E1, E3) = g(E2, E3) = g(E1, E2) =
0, g(E1, E1) = g(E2, E2) = g(E3, E3) = 1. Let η be the 1-form defined by
η(U) = g(U,E3) for any U ∈ χ(M). Let φ be the (1, 1) tensor field defined
by φE1 = E2, φE2 = −E1, φE3 = 0. Then using the linearity of φ and g, we
have η(E3) = 1, φ2U = −U + η(U)E3 and g(φU, φW ) = g(U,W )− η(U)η(W )
for any U,W ∈ χ(M). Thus for E3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g and R the curvature tensor of g. Then we have

[E1, E2] = ye−zE1 + e−2zE3, [E1, E3] = E1, [E2, E3] = E2.

Taking E3 = ξ and using Koszul formula for the Riemannian metric g, we can
easily calculate

∇E1E3 = E1 −
1
2
e−2zE2, ∇E3E3 = 0, ∇E2E3 = E2 +

1
2
e−2zE1,

∇E2E2 = −E3, ∇E2E1 = −1
2
e−2zE3, ∇E1E2 =

1
2
e−2zE3 + ye−zE1,

∇E1E1 = −E3 − ye−zE2, ∇E3E2 =
1
2
e−2zE1, ∇E3E1 = −1

2
e−2zE2.

From the above it can be easily seen that (φ, ξ, η, g) is an trans-Sasakian
structure on M . Consequently, M3(φ, ξ, η, g) is a trans-Sasakian manifold
with α = −1

2e−2z 6= 0 and β = 1.
Example 2. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 :
z 6= 0 }, where (x, y, z) are the standard coordinates in R3. Let {E1, E2, E3}
be linearly independent global frame on M given by

E1 = −z(
∂

∂x
+ y

∂

∂z
), E2 = −z

∂

∂y
, E3 =

∂

∂z
.

Let g be the Riemannian metric defined by g(E1, E3) = g(E2, E3) = g(E1, E2) =
0, g(E1, E1) = g(E2, E2) = g(E3, E3) = 1. Let η be the 1-form defined by
η(U) = g(U,E3) for any U ∈ χ(M). Let φ be the (1, 1) tensor field defined by
φE1 = E2, φE2 = −E1, φE3 = 0. Then using the linearity of φ and g we have
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η(E3) = 1, φ2U = −U + η(U)E3 and g(φU, φW ) = g(U,W ) − η(U)η(W )
for any U,W ∈ χ(M). Thus, for E3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g and R the curvature tensor of g. Then we have

[E1, E2] = −yE2 − z2E3, [E1, E3] =
1
z
E1, [E2, E3] =

1
z
E2.

Taking E3 = ξ and using Koszul formula for the Riemannian metric g, we can
easily calculate

∇E1E3 =
1
z
E1 +

1
2
z2E2, ∇E3E3 = 0, ∇E2E3 =

1
z
E2 −

1
2
z2E1,

∇E2E2 = −yE1 −
1
z
E3, ∇E1E2 = −1

2
z2E3, ∇E2E1 =

1
2
z2E3 + yE2,

∇E1E1 = −1
z
E3, ∇E3E2 = −1

2
z2E1, ∇E3E1 =

1
2
z2E2.

From the above it can be easily seen that (φ, ξ, η, g) is an trans-Sasakian
structure on M . Consequently, M3(φ, ξ, η, g) is a trans-Sasakian manifold
with α = −1

2z2 6= 0 and β = 1
z .
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