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Abstract. The notion of generalized n-Einstein trans-Sasakian manifold is
introduced. Conformally flat trans-Sasakian manifolds are studied and intro-
duced the idea of a manifold of hyper generalized quasi-constant curvature with
various non-trivial examples.

AMS 2000 Mathematics Subject Classification. 53C15, 53C25

Key words and phrases. a-Sasakian, §-Kenmotsu, cosymplectic, generalized 7-
Finstein trans-Sasakian manifold, hyper generalized quasi-constant curvature,
conformally flat trans-Sasakian manifold, generalized quasi-constant curvature.

8§1. Introduction

Recently, Oubina ([1]) introduced the notion of trans-Sasakian manifolds
which contains both the class of Sasakian and cosymplectic structures and are
closely related to the locally conformal Kéhler manifolds. A trans-Sasakian
manifold of type (0, 0), (a,0) and (0, 3) are the cosymplectic, a-Sasakian and
(-Kenmotsu manifold, respectively. The object of the present paper is to study
conformally flat trans-Sasakian manifolds. Section 2 is concerned with some
curvature identities of trans-Sasakian manifolds. In section 3, we introduce the
notion of generalized n-Einstein trans-Sasakian manifolds and proved that in
such a manifold the scalars 2n(a?—3%2—£3) and 50— (a?—3%2—£P3) are the Ricci
curvatures in the direction of the vector fields associated with the 1-forms of
the manifold and satisfies the inequality w(¢ (grad «)) < %q%— (2n—1)w(grad
() where ¢ is the length of the Ricci tensor and w is the associated non-
zero 1-form. In 1972, Chen and Yano introduced the notion of a manifold
of quasi-constant curvature ([3]). Generalizing this notion, M. C. Chaki ([4])
introduced the idea of a manifold of generalized quasi-constant curvature . It
is shown that a 3-dimensional generalized n-Einstein trans-Sasakian manifold
is a manifold of generalized quasi-constant curvature.

25



26 A. A. SHAIKH AND Y. MATSUYAMA

In 2000, M. C. Chaki and R. K. Ghosh ([4]) introduced the notion of quasi-
Einstein manifold and then studied by various authors ([5], [14]). The same
notion is also introduced and studied by R. Deszcz and his co-authors in several
papers ([7], [8], [9], [10]). The existence and applications of quasi-Einstein
manifolds have been studied by various authors. The notion of n-Einstein
manifold for contact structures is an analogous situation as the quasi-Einstein
manifold.

In 2001, M. C. Chaki ([5]) introduced the notion of generalized quasi-
Einstein manifold and studied its geometrical significance as well as its ap-
plications to the general relativity and cosmology ([6]). Subsequently, the
physical significance of the generalized quasi-Einstein manifold is interpreted
in ([14]).

The notion of generalized quasi-Einstein manifold by Chaki stands an anal-
ogous situation to that of the generalized n-Finstein trans-Sasakian manifold.
Thus the notion of generalized n-Finstein manifold is geometrically and phys-
ically important.

Section 4 deals with a conformally flat trans-Sasakian manifold. As an
extension of generalized n-Finstein trans-Sasakian manifold, we introduce the
notion of hyper generalized n-FEinstein trans-Sasakian manifold. Especially, if
the associated vector fields p and X of the corresponding 1-forms w and 7 of the
hyper generalized n-Finstein trans-Sasakian manifold are linearly dependent,
then it reduces to the notion of generalized n-Einstein trans-Sasakian manifold.
The characteristic vector field £ is always orthogonal to the associated vector
field p but £ is not necessarily orthogonal to the associated vector field A,
where w(X) = g(X, p) and 7(X) = g(X, \) for all X. In particular, if p and A
are linearly dependent, then & is orthogonal to both the vector fields p and A
in which case the notion reduces to the generalized n-Finstein trans-Sasakian
manifold.

As in the case of generalized n-FEinstein trans-Sasakian manifold, the no-
tion of hyper generalized n-Einstein trans-Sasakian manifold is equally geo-
metrically and physically importance. Not only that but also one can easily
extend the notion of generalized quasi- Finstein manifold to the notion of hyper
generalized quasi-FEinstein manifold for the Riemannian case and study their
geometrical significance as well as its applications to the general relativity and
cosmology. It is proved that a conformally flat trans-Sasakian manifold is a
hyper generalized n-FEinstein trans-Sasakian manifold. It is shown that a con-
formally flat trans-Sasakian manifold is an n-Einstein if and only if ¢ (grad
a) = (2n—1) (grad B). Also it is proved that a conformally flat trans-Sasakian
manifold is a generalized n-Finstein manifold if and only if the structure func-
tion (§ is a non-vanishing constant.

The notion of generalized quasi-constant curvature introduced by Chaki
([6]) is a geometrically important concept as its existence and physical in-
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terpretation is given by Chaki ([6]) and also by various authors ([14]). In
this section we also introduce the notion of hyper gemeralized quasi-constant
curvature.

Especially, if the associated vector fields p and A of the corresponding 1-
forms w and 7 of the hyper generalized quasi-constant curvature are linearly
dependent, then it reduces to the notion of generalized quasi-constant curva-
ture. The characteristic vector field £ is always orthogonal to the associated
vector field p but £ is not necessarily orthogonal to the associated vector field
A, where w(X) = g(X,p) and 7(X) = ¢g(X,\) for all X. In particular, if p
and X are linearly dependent, then £ is orthogonal to both the vector fields
p and A in which case the notion reduces to the generalized quasi-constant
curvature.

It is proved that a conformally flat trans-Sasakian manifold of dimen-
sion greater than three is of quasi-constant curvature if and only if ¢(grad
a) = (2n—1) (grad B). Also it is shown that a conformally flat trans-Sasakian
manifold is a manifold of generalized quasi—constant curvature if and only if
the structure function § is a non-vanishing constant. Then we obtain some
mutually equivalent conditions on a conformally flat trans-Sasakian manifold.
The last section deals with several non-trivial examples of trans-Sasakian man-
ifolds constructed with global vector fields.

§2. Trans-Sasakian manifolds

A (2n + 1)-dimensional differentiable manifold M?"*! is said to be an almost
contact metric manifold ([12]) if it admits a (1, 1) tensor field ¢, a contravariant
vector field of £, a 1-form n and a Riemannian metric g which satisfy

(2.1) ¢¢ = 0, n(¢X) =0, ¢*X = —X +n(X),
(22)  g(eX)Y) = —g(X,¢Y), n(X) = g(X,§), n(§) = 1,
(23)  g(@X,9Y) = ¢g(X,Y)—n(X)n(Y)

for all vector fields X,Y on M?2n+1.

An almost contact metric manifold M?"+1(¢,£,n,g) is said to be trans-
Sasakian manifold ([1]) if (M x R, J, G) belong to the class Wy of the Hermitian
manifolds where J is the almost complex structure on M x R defined by

HZTS) = 62~ fen2) %)

for any vector field Z on M and smooth function f on M x R and G is the
product metric on M x R. This may be stated by the condition ([2])

(24) (Vxo)(Y) = a{g(X,Y)§—n(Y)X}+ B{g(¢X,Y)E —n(Y)pX}
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where «, 3 are smooth functions on M and we say such a structure the trans-
Sasakian structure of type (a, 3). From (2.4) it follows that

(2.5) Vx{ = —agX + B{X —n(X)EL,
(2.6) (Vxn)(Y) = —ag(¢X,Y)+ Bg(¢X,¢Y).
In a trans-Sasakian manifold M2+ (¢, £, n, g) the following relations hold
([11]):
27  RX,Y)¢ = (o= p)n(Y)X —n(X)Y] = (Xa)eY — (XB)¢*(Y)
+2a8[(Y)9X — n(X)oY] + (Ya)pX + (Y 5)¢*(X),
(2.8) n(R(X,Y)Z) = (a® = F)[g(Y,Z)n(X) — g(X, Z)n(Y)]
—2apg(0X, Z)n(Y) — g(¢Y, Z)n(X)]
—(Ya)g(¢X, Z) — (XB){9(Y,Z) —n(Y)n(Z)}
+(Xa)g(oY, Z) + (YB){9(X, Z) — n(Z)n(X)},

(29) REX)E = (a® = B —EB)In(X)¢ — X],

(210) S(X,6) = [ nla? - > (€8)In(X) = ((#X)a) — (2n — 1)(XB),
(211) S8 = 2n(a® - —€B),

(2.12) () + 203 = 0,

(213) Q¢ = [2n(a®— @) — £BJ¢ + dlgrada) — (2n — 1)(grad).

for any vector fields X, Y on M.

83. Generalized n-Einstein Trans-Sasakian manifolds

Definition 3.1. An almost contact metric manifold M?2"*1(¢, £, 7, g) is said
to be n-Einstein if its Ricci tensor S of type (0, 2) is of the form

(3.1) S = ag+bhmemn,
where a, b are smooth functions on M.

It is shown in ([11]) that the associated scalars a and b of the n-Einstein

trans-Sasakian manifold are given by
r

@ = - (@®=F=¢h), b= - +@n+1)(a’ - -Ep).

Definition 3.2. A trans-Sasakian manifold M (¢, &, n, g) is said to be gener-
alized n-Finstein if its Ricci tensor S of type (0, 2) is of the form

(32) S(X,Y) = ag(X,Y)+bn(X)n(Y) + c[n(X)w(Y) +n(Y )w(X)]



ON TRANS-SASAKIAN MANIFOLDS 29

where a, b, ¢ are non-zero scalars, w is a non-zero 1-form such that w(X) =
g(X, p) for all X, and £ and p are unit vector fields orthogonal to each other.
The scalars a, b, ¢ are called the associated scalars.

Proposition 1. In a generalized n-Einstein trans-Sasakian manifold (M1 g),
the associated scalars are given by

r

(3.3) o = - —(a" =3 -¢p),
(3.4) b = —%+(2n+1)(a2—52—§ﬂ),
(3.5) ¢ = w(gpgrada) — (2n — 1)w(gradp).

Proof. Setting X =Y = ¢ in (3.2) and then using (2.11), we get
(3.6) S(€.€) = a+b = 2n(a® — B —¢h).
Contracting (3.2) over X and Y, it yields

(3.7) r = (2n+1)a+b,

where 7 is the scalar curvature of the manifold. From (3.6) and (3.7) we
obtain (3.3) and (3.4).

Again replacing X by p and Y by ¢ in (3.2), respectively, and keeping in
mind the relation (2.10), we obtain (3.5). This proves the proposition.

Theorem 3.1. In a generalized n-Einstein trans-Sasakian manifold (M?"*1, g),
the associated scalars 2n(a® — 3% — £6) and o~ — (a* — 3% — £B) are the Ricci
curvatures in the direction of the vector fields & and p, respectively, and the
inequality w(pgrada) < %q + (2n — Nw(gradf) holds, where q is the length
of the Ricci tensor S.

Proof. Setting X =Y = p in (3.2) we obtain by virtue of (3.3) that

(3.8) S(pp) = 5 —(0® =B = ¢B).

n
From (3.6) and (3.8), it follows that 2n(a?—3*—¢3) and - —(a?— 32 —£3) are
the Ricci curvatures in the direction of the vector fields € and p respectively.
Let g(QX,Y) = S(X,Y) and ¢? denote the square of the length of the Ricci
tensor S, i.e.,

2n+1

(3.9) @ = ZS(Qei,ei),

i=1
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where {e; : i =1,2,...,2n + 1} is an orthonormal basis of the tangent space
at any point of the manifold. From (3.2) it follows that

2n+1
Z S(Qe;,ei) = ona® + (a+ 5)2 + 202
=1

which implies that
-2 = 2na®+ (a+0b)>

Since a # 0 and b # 0, we obtain ¢ — 2¢? = 2na® + (a + b)?> > 0 and hence
the equation

1
c < —=

2t

Hence by virtue of (3.5) we have the required inequality. This proves the
theorem.

Definition 3.3 ([3]). A Riemannian manifold (M™,g) (m > 3) is said to be
of quasi-constant curvature if its curvature tensor R of type (0, 4) satisfies the
condition :

(3'10) E(X, Y, Z, W) = D1 [Q(K Z)Q(X7 W) - g(X7 Z)Q(K W)]
+p2[9(X, W)A(Y)A(Z) — g(Y, W) A(X)A(Z)
+9(Y, Z)A(X)AW) — g(X, Z)A(Y)A(W)]

where p1, pg are non-zero scalars and A is a non-zero 1-form such that g(X,U) =
A(X) for all X, and U is a unit vector field. py, po and A are called the asso-
ciated scalars and associated 1-form of the manifold, respcetively.

The notion of a manifold of quasi-constant curvature is introduced by Chen
and Yano ([3]). Generalizing this notion of quasi-constant curvature, Chaki
([4]) introduced the notion of generalized quasi-constant curvature as follows :

Definition 3.4. A Riemannian manifold (M™,g)(m > 3) is said to be of
generalized quasi-constant curvature if its curvature tensor R of type (0, 4)
satisfies the condition

W) —g( ]
+b[g(X, W)A(Y)A(Z) — g(Y, W) A(X)A(Z)
+9(Y, 2)A(X)A(W) — g(X, 2)A(Y)A(W)]
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+elg(X, W{A(Y)B(Z) + A(2)B(Y)}
—9(X, 2){AW)B(Y) + A(Y)B(W)}
+9(Y, 2){AW)B(X) + A(X)B(W)}
—g(Y, W){A(Z2)B(X) + A(X)B(2)}],

where a, b and ¢ are non-zero scalars, and A and B are non-zero 1-forms
such that A(X) = ¢g(X,U) and B(X) = ¢g(X,V) for all X, and U and V are
orthogonal vector fields.

Theorem 3.2. A 3-dimensional generalized n-Einstein trans-Sasakian man-
ifold is a manifold of generalized quasi-constant curvature.

Proof. Since in a 3-dimensional Riemannian manifold the Weyl conformal
curvature vanishes, its curvature tensor R of type (0, 4) is given by
(3.12) R(X,Y,Z,W) = g(Y,2)S(X,W) —g(X,Z)S(Y,W)

+5(Y, Z)g(X, W) = S(X, Z)g(Y, W)

+5[9(Y, 2)g(X, W) = g(X, Z)g (Y, W)].

By virtue of (3.2), (3.12) can be written as

(3.13) R(X,Y,ZW) = ailg(Y,2)9(X, W) — g(X, Z)g(Y, W)
+ou[g(X, W)n(Y)n(Z) = g(Y, W)n(X)n(Z)
+9(Y, Z)n(X)n(W) = g(X;, Z)n(Y)n(W)]
+alg(X, W)in(Y)w(Z) +n(Z2)w(Y)}
—9(X; Z){n(W)w(Y) + n(Y)w(W)}
+9(Y, Z){n(W)w(X) + n(X)w(W)}
—g9(Y, W){n(Z2)w(X) + n(X)w(2)}]

where a1 = ¥ —2(a? — 2 —£B), by = =5+ 3(a? — % —¢B) and ¢ =

A(pgrada) — A(grad3) are three non-zero scalars. Comparing (3.11) with

(3.13) , it follows that the manifold under consideration is of generalized quasi-
constant curvature. This proves the theorem.

)
)

w

§4. Conformally flat Trans-Sasakian manifolds

Let (M?"*1 g) (n > 1) be a conformally flat trans-Sasakian manifold. Then
its curvature tensor is given by

(4.1) R(X,Y)Z = 2n1_ LS. 2)X ~ S(X. 2)Y + (Y. 2)QX

—g(X, Z)QY] -

T

m[g(ya 2)X —9(X,2)Y]
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for any vector fields X, Y and Z on M. Setting Z = ¢ in (4.1) and using
(2.7) and (2.10), we obtain
n(a? — %) — r

42 (a2 - O )X~ gV

+208[n(Y)pX — n(X)dY]

—(Xa)pY — (XB)$*(Y) + (Ya)oX + (Y 3)¢*(X)

= QX —(X)QY} - (20— DIVH)X — (XB)Y)
—{(@Y)a)X — ((¢X))Y}].

Again replacing Y by £ in (4.2), we obtain by virtue of (2.12) that

r

L~ (o= B - EB)X

=g + (2n+1)(a? = 8%) + (2n = 3)(¢B)In(X)¢
—(2n = D{(XB)E +n(X)gradB) — ((6X)a)¢

+n(X)p(grada) + (2n — 1)(§a)¢ X,

(43) QX = |

which can also be written as

(44) S(X,Y) = ag(X,Y) +bp(X)n(Y)
—(2n = D{XB)n(Y) + (Y B)n(X)} = [((6X)a)n(Y)
+H((@Y)a)n(X)] + (2n — 1)(Ea)g(¢X,Y)

where a = %—(02—52—5@ and b = —#+(2n+1)(a2—52) (2n—3)(£0).

The symmetry property of the Ricci tensor yields from (4.4) that

(4.5) (a) = 0.

Extending the notion of generalized n-FEinstein manifold we introduce the
notion of hyper generalized n-FEinstein manifold as follows :

Definition 4.1. A trans-Sasakian manifold (M?"*! g) is said to be hyper
generalized n-Finstein manifold if its Ricci tensor S of type (0, 2) is of the
form

(4.6) S(X,Y) = ag(X,Y)+bn(X)n(Y) + c[n(X)w(Y) + n(Y)w(X)]
+d[n(X)m(Y) +n(Y)m(X)]

where a, b, ¢ and d are non-zero scalars which are called the associated scalars,
w and 7 are non-zero 1-forms such that w(X) = g(X, p), 7(X) = g(X, \) for all
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X ; p and X being associated vector fields of the 1-forms w and 7 respectively
such that ¢ is orthogonal to p.

The name ‘hyper’ is used as in the case of hyper real numbers. Especially,
if A = dp, & being a scalar, then the notion of hyper generalized n-FEinstein
manifold reduces to the notion of generalized n-FEinstein manifold. This implies
that p and A\ are not necessarily mutually orthogonal whereas £ is always
orthogonal to p.

Theorem 4.1. A conformally flat trans-Sasakian manifold (M>*"*1,g) (n >
1) is a hyper generalized n-Finstein manifold.

Proof. If a trans-Sasakian manifold (M?"*! ¢) (n > 1) is conformally flat,
then we have the relation (4.4). By virtue of (4.5), (4.4) yields,

(4.7)  S(X)Y) = ag(X,Y)+bn(X)n(Y) — (2n — D{(XB)n(Y)
+YB)m(X)} = [((9X)a)n(Y) + ((¢Y)a)n(X)],
which can also be written as
(4.8) S(X,Y) = ag(X,Y)+bn(X)nY) + c[n(X)w(Y) +n(Y)w(X)]
+dn(X)m(Y) +n(Y)m(X)]

: _r 2 2
where a, b, c and d are non-zero scalars given by where a = 5. — (o — 3 —¢0) ,

b=—o-+(2n+1)(a?—5%)—(2n—3)(£B)],c = land d = —(2n—1) ; w and 7 are
non-zero 1-forms such that w(X) = g(X, p) = g(X, ¢(grada)) = —((¢X)a),
m(X) = g(X,\) = g(X, gradB) = (Xf) for all X. This proves the theorem.

Theorem 4.2. A conformally flat trans-Sasakian manifold (M?*"+1,g) (n >
1) is an n-Einstein manifold if and only if

(4.9) o(grada) = (2n—1)(gradp).

Proof. For a conformally flat trans-Sasakian manifold we have the relation
(4.8). We first suppose that the conformally flat trans-Sasakian manifold is
n-Einstein. Then (4.8) yields

(4.10) [n(X)w (V) + n(Y)w(X)] = (2n = D[n(X)x(Y) + n(Y)m(X)] = 0

where w(X) = g(X, pgrada) and 7(X) = ¢(X,grad3). Setting X = ¢ in
(4.10) we get

(4.11) W(Y) (20— D[x(Y) + (€B)n(Y)] = 0.
Again replacing Y = £ in (4.11), we have
(4.12) €5) = o



34 A. A. SHAIKH AND Y. MATSUYAMA

In view of (4.12) and (4.11) we obtain (4.9).
Conversely, if (4.9) holds, then 7(X) = @Tl_l)w(X) and hence (£8) =

9(&, gradB) = 25 g(¢, pgrada) = 0 and hence (4.8) reduces to
(4.13) S(X,Y) = ag(X,Y)+bn(X)n(Y),

where a and b are non-zero scalars given by

@ = 5= (=), b=~ +@n+1)a? - ).

The relation (4.13) implies that the manifold under consideration (4.9) is an
n-Einstein manifold. This proves the theorem.

Corollary 4.1. A conformally flat trans-Sasakian manifold (M?"*! g) (n >
1) is a generalized n-FEinstein manifold if and only if the structure function (3
s a non-vanishing constant.

Proof. If 8 is a non-vanishing constant, then (X3) = 0 for all X and hence
(4.8) reduces to

(4.14) S(X,Y) = ag(X,Y)+bn(X)n(Y) + c[n(X)w(Y) +n(Y )w(X)],

where a,b and ¢ are non-zero scalars. The relation (4.14) is of the form
(3.2) and hence the manifold is generalized n-Einstein. Conversely, if a con-
formally flat trans-Sasakian manifold (M?"*! g) (n > 1) is a generalized 7-
Einstein manifold, then we have the relation (4.14). From (4.8) and (4.14),
we have

dln(X)m(Y) +n(Y)n(X)] = 0,
which yields for Y = ¢
(4.15) (XB) + (€Pm(X) = 0,

since d # 0. Again, setting X = £ in (4.15), we have ({4) = 0. Therefore,
(4.15) takes the form

for all X and hence § is a constant. This proves the corollary.

Extending the notion of generalized quasi-constant curvature of M. C.
Chaki ([4]), we introduce the notion of hyper generalized quasi-constant cur-
vature as follows:
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Definition 4.2. A Riemannian manifold (M™,g)(m > 3) is said to be of

hyper generalized quasi-constant curvature if its curvature tensor R of type (0,
4) is of the form

(416 R(X, Y. Z,W) = &[g(Y, Z)g(X, W) — g(X, Z)g(Y,W)]
+02[g(X, W)A(Y )A(Z) g(Y, W)A(X)A(Z)
+9(Y, 2)A(X)AW) — g(X, ) (Y)AW)]
+03[9(X, W){A(Y)B(Z) + A(Z)B(Y)}
—9(X, 2){A(Y)B(W) ) (Y)}
+9(Y, Z){A(X)B W)B ( )}
—g(Y, W){A(X)B
+aa[g(X, W){A(Y
—9(X, Z){A(Y)D
+9(Y, 2){A(X
—g(Y, W{A(X)D(Z

where 0; (i =1, 2, 3, 4) are non-vanishing scalars and A, B and D are non-
zero 1-forms given by A(X) = ¢(X,€), B(X) = g(X, p), D(X) = g(X, \) such
that & is orthogonal to p.

Especially, if A = dp, § being a scalar, then the notion of a manifold of hyper
generalized quasi-constant curvature reduces to the notion of generalized quasi-
constant curvature. This implies that p and A are not necessarily mutually
orthogonal whereas £ is always orthogonal to p. We have used the term “hyper”
, since if B and D are linearly dependent, then (4.16) reduces to the form of
(3.11).

Theorem 4.3. A conformally flat trans-Sasakian manifold (M?*"*1,g) (n >
1) is a manifold of hyper generalized quasi-constant curvature.

Proof. In a conformally flat trans-Sasakian manifold (M?"*1 g) (n > 1) we
have the relations (4.1) and (4.8). By virtue of (4.8) the relation (4.1) can
be written as

(4.17) R(X,Y,Z,W) = mgY,2)9(X, W) — g(X, Z)g(Y,W)]
+y2[g(X, Wn(Y)n(Z) — g(Y, W)n(X)n(Z)
+9(Y, Z)n(X)n(W) — g(X, Z)n(Y )n(W)]
+73g(X, W){n(Y)w(Z) + n(Z)w(Y)}
—9(X, 2){n(W)w(Y)
+9(Y, Z){n(W)w(X)
—g(Y,W){n(Z)w(X)

+n(Y)w(W)}
w(X) +n(X)w(W)}
w(X) +n(X)w(2)}]



36 A. A. SHAIKH AND Y. MATSUYAMA

+lg (X, W{n(Y)m(Z2) + n(
—9(X, Z){n(W)m(Y) + n(Y )7 (
+9(Y, Z){n(W)m(X) + n(X)m(W
—g(Y, W){n(Z)m(X) + n(X)n(
where 7;, i = 1, 2, 3, 4 are non-zero scalars given by 71 = 5.—[5, — 2(a? —
B2 —EB)), 12 = gupl—g; + (2n+1)(0” = B%) — (2n — 3)(€8)], 13 = 5,7 and
v4 = —1, w(X) = g(X, pgrada), and 7(X) = g(X, grads) for all X. From
(4.16) and (4.17) , it follows that the manifold under consideration is hyper
generalized quasi-constant curvature.

Theorem 4.4. A conformally flat trans-Sasakian manifold (M?*"*1,g) (n >
1) is a manifold of quasi-constant curvature if and only if

¢(grada) = (2n — 1)(gradp).

Proof. We first suppose that in a conformally flat trans-Sasakian manifold
(M?"+1 g) (n > 1), the relation ¢(grada) = (2n — 1)(grad3) holds. Then we
have the relation (4.13). By virtue of (4.13) the relation (4.1) can be written
as

(4'18) R(X7Y7Z7W) = 'ﬂg( )g(X,W) g(X Z) (YvW)]
+0[g(X, Wn(Y)n(Z) — g(Y, W)n(X)n(Z)
9(Y, Z)n(X)n(W) — g(X, Z)n(Y )n(W)]

=
N

+
=
N

where 4 and § are non-zero scalars given by

i o= sl e - B - )L

sl o+ (204 1)(a — %) — (20— 3)(€8)]

i

From (4.18) it follows by virtue of Definition 3.3 that the manifold is of quasi-
constant curvature.
Conversely, if the manifold is of quasi-constant curvature, then (4.17) yields

(4.19)  wlg(X, W){n(Y)w(Z) +1(2)w(Y)} = g(X, 2){n(W)w(Y)
+n(Y)w(W)} +g(Y, Z){n(W)w(X) + n(X)w(W)}

—g(Y, W){n(Z)w(X) + n(X)w(Z)] + 1lg(X, W){n(Y)n(Z)

n(Z)r(Y)} = g(X, Z){n(W)n(Y) + n(Y)r(W)}

(

(

_l’_

+9(Y, 2){n(W)m(X) + n(X)m(W)} — g(¥, W){n(Z)m(X)
+n(X)w(2)}] = 0.

> :<
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Let {e;}, i =1, 2, ... ,2n+ 1 be an orthonormal basis of the tangent space
at any point of the manifold. Setting X = W = ¢; in (4.19) and taking
summation over ¢, 1 <14 < 2n 4+ 1, we get

(4.20)  w2n—-1DhY)w(Z) +n(Z)w(Y)]
+2l(2n = Din(Y)m(Z) +n(2)m(Y)} +29(Y, Z2)(£6)] = 0.

Since v3 = Tlfl and y4 = —1, (4.20) implies that

(4.21) n(Y)w(Z) +n(Z2)w(Y) = 29(Y, Z)(£6)

) Z)(
—(2n = D{n(¥)w(Z) + n(Z2)x(Y)} = 0.

Replacing Y by ¢ in (4.21), we get
(4.22) w(Z) - @n—-Dn(Z) = o,
which implies ¢(grada) = (2n — 1)(grad). This proves the theorem.

Corollary 4.2. A conformally flat trans-Sasakian manifold (M*" 1 g) (n >
1) is a manifold of generalized quasi-constant curvature if and only if the
structure function (3 is a non-vanishing constant.

Proof. 1f (3 is constant, then (Y'3) = 0 for all Y and hence (4.17) reduces to
the form of generalized quasi-constant curvature.

Conversely, if the manifold is of generalized quasi-constant curvature, then,
from the relation (4.17), it follows that

(4.23) Ylg(X, W{n(Y)m(Z) +n(Z)w(Y)}

—9(X, 2){n(W)m(Y) + n(¥Y)m(W)}

+9(Y, Z){n(W)m(X) + n(X)m(W)}

—g(Y, W){n(Z)m(X) + n(X)m(Z)}] = 0
Contracting (4.23) over X and W, we get
(4.24)  m[(2n = D{n(Y)7(2) +n(2)n(Y)} = 29(Y, Z2)(£B)] = 0,
which yields for Y = ¢
(4.25) 2n—-D7n(Z2) - 2n+1)(6)n(Z) = O.

Now, setting Z = £ in the above relation, we have ({3) = 0. Hence, (4.25) takes
the form (Z3) = 0 for all Z, which implies that ( is a constant. This proves
the corollary.
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Theorem 4.5. Let (M*"1 g) (n > 1) be a conformally flat trans-Sasakian
manifold. Then the following conditions are mutually equivalent:

(1) M is n-Einstein.

(2) M is a manifold of quasi-constant curvature.

(3) € is the eigenvector field of the Ricci operator Q.

(4) M satisfies ¢(grada)) = (2n — 1)(gradf3).

Proof. Let (M?"*1 g) (n > 1) be a conformally flat trans-Sasakian manifold.
We first suppose that M is n-Einstein. Then (4.1) and (3.1) hold good. In
view of (4.1) and (3.1) we have

(126) ROXY,Z,W) = (20— )oY, 2)g(X, W)
~g(X, Z)g(V, W)] + 5 [o(X, W)Y )n(2)

—g(Y,Wn(X)n(Z) + g(Y, Z)n(X)n(W)
—9(X, Z)n(Y)n(W)],

where a and b are non-zero scalars given by
r

= - (@=F =B, b= -+t - - ¢h).

The relation (4.26) implies that the manifold under consideration is a manifold
of quasi-constant curvature. Hence (1) = (2).

Next, let M?"*1 (n > 1) be a conformally flat trans-Sasakian manifold
which is of quasi-constant curvature. Then (3.10) holds good. For U = ¢,
(3.10) can be written as

RX,Y,Z,W) = mlg(Y,2)g(X, W) — g(X, Z)g(Y, W)
+p2[g(X, W)n(Y)n(Z) — g(Y, W)n(X)n(2)
+9(Y, Z)n(X)n(W) — g(X, Z)n(Y)(W)],

which yields
(427)  S(Y.Z) = (2np1+p2)g(Y,Z) + (2n— L)pan(Y)n(2).

From (4.27) it follows that Q& = 2n(p1 + p2)€ which yields £ is the eigenvector
of the Ricci operator . Hence (2) = (3).

Again, let in a conformally flat trans-Sasakian manifold M?"*1 (n > 1) £ is
the eigenvector of the Ricci operator ). Then from (4.3) it follows by virtue
of (4.5) that ¢(grada) = (2n — 1)(grad). Thus (3) = (4).

Finally, let in a conformally flat trans-Sasakian manifold M?"*1 (n > 1) the
condition ¢(grada) = (2n —1)(grad3) holds. Using this condition in (4.4) we
obtain by virtue of (4.5) that the manifold is n-Einstein. Hence (4) = (1).
This completes the proof.
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85. Examples of trans-Sasakian manifolds

Example 1 We consider the 3-dimensional manifold M = {(z,y,2) € R? :
z # 0 }, where (7,9, z) are the standard coordinates in R3. Let {E, Eq, E3}
be linearly independent global frame on M given by

9 a8 )
E2 = e (%—{—y%), E3 = %

Let g be the Riemannian metric defined by g(E1, E3) = g(Es, E3) = g(F1, E2) =
0, g(E1,Er1) = g(Eq, E2) = g(E3, E3) = 1. Let n be the 1-form defined by
n(U) = g(U, E3) for any U € x(M). Let ¢ be the (1, 1) tensor field defined
by ¢Fy = Es, ¢F9 = —FE1, ¢FE3 = 0. Then using the linearity of ¢ and g, we
have 7(Bs) = 1, U = ~U + 5(U) Es and g(6U, 6W) = g(U, W) — n(U)(W)
for any U, W € x(M). Thus for E3 =&, (¢,&,1n,9) defines an almost contact
metric structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g and R the curvature tensor of g. Then we have

[ElaEQ] - ye_ZE1+e_2ZE37 [E17E3] = El; [E27E3] = E2'

Taking F3 = ¢ and using Koszul formula for the Riemannian metric g, we can
easily calculate

1 1
Vg, B3 = FEy—-e¢ *Fy, VgF; =0, VgFE; = Fy+ e *Fy,

2 2
1 1
Ve, By = —EB3, VpE = —56’_2ZE3, Ve Ey = 56_22E3+ye_2E1,
1 1
Ve By = —E3—ye “Ey, VgEy = §€7QZE1, Ve, B = _56722E2.

From the above it can be easily seen that (¢,£,n,¢g) is an trans-Sasakian
structure on M. Consequently, M3(4,&,n,g) is a trans-Sasakian manifold
with a = —%e*ZZ #0and g =1.

Example 2. We consider the 3-dimensional manifold M = {(z,y,2) € R :
2z # 0 }, where (z,y, 2) are the standard coordinates in R3. Let {E}, Eo, E3}
be linearly independent global frame on M given by

0 0 0 0
El = —Z(%—Fy%), E2 = —2Z, E3 = %

Let g be the Riemannian metric defined by g(E1, E3) = g(Es, E3) = g(E1, Es) =
0, g(E1,E1) = g(Eq, E2) = g(E3,E3) = 1. Let n be the 1-form defined by
n(U) = g(U, E3) for any U € x(M). Let ¢ be the (1, 1) tensor field defined by
¢oFE1 = Es, pFs = —F1, ¢F3 = 0. Then using the linearity of ¢ and g we have
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n(Es) =1, ¢*°U = —U +n(U)Es and g(¢U, W) = g(U, W) — n(U)n(W)
for any U, W € x(M). Thus, for F5 =&, (¢,£,n,g) defines an almost contact
metric structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g and R the curvature tensor of g. Then we have

1 1
[E17E2] = _yE2_Z2E37 [E17E3] = ;Elv [E27E3] = ;EQ

Taking F3 = ¢ and using Koszul formula for the Riemannian metric g, we can
easily calculate

1 1 1 1
vElEg = ;E1+522E2, VE3E3 = 0, VE2E3 = ;E2—§Z2E1,
1 1 1
Ve, by = —yE1—;E37 Ve By = —522E3, Ve, E1 = 522E3+yE2,
1 1 1
Ve, By = —-E3 VpgFy = —522El, Ve, El = 52«2EQ.
z

From the above it can be easily seen that (¢,&,7,g) is an trans-Sasakian
structure on M. Consequently, M3($,€&,n,g) is a trans-Sasakian manifold
with a = —%zz #0and g = %
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