Pseudo-umbilical CR-submanifolds in a locally conformal Kaehler space form

Koji Matsumoto and Zerrin Şentürk

(Received November 28, 2008; Revised March 31, 2009)

Abstract. In this report, we consider pseudo-umbilical CR-submanifolds in a locally conformal Kaehler space form and we mainly get a relation of the scalar curvature and the coefficient functions of the shape operator of a pseudo-umbilical CR-submanifold in a locally conformal Kaehler space form.

AMS 2000 Mathematics Subject Classification. 53C40

 $Key\ words\ and\ phrases.$ Locally conformal Kaehler manifold, pseudo-umbilical CR-submanifold, Lee form, adapted frame.

§1. Introduction

As a special CR-submanifold of an almost Hermitian manifold, the notion of a pseudo-umbilical CR-submanifold was introduced by A. Bejancu and gave a lot of interesting properties of this submanifold in a Kaehler manifold ([1]).

We consider this submanifold in a locally conformal Kaehler space form which is a generalization of a complex space form and we prove some properties of this submanifold (See Theorems 5.1 and 6.3).

§2. Preliminaries

A Hermitian manifold \tilde{M} with structure (J, \tilde{g}) is called a locally conformal Kaehler (an l.c.K.) manifold if each point $x \in \tilde{M}$ has an open neighbourhood U with differentiable function $\rho: U \to \mathcal{R}$ such that $\tilde{g}^* = e^{-2\rho} \tilde{g}_{|U}$ is a Kaehlerian metric on U, that is, $\nabla^* J = 0$, where J is the almost complex structure, \tilde{g} is the Hermitian metric, ∇^* is the covariant differentiation with respect to \tilde{g}^* and \mathcal{R} is a real number space ([7]). Then we know

Proposition 2.1([5]). A Hermitian manifold \tilde{M} with structure (J, \tilde{g}) is l.c. K.if and only if there exists a global 1-form α which is called the Lee form satisfying

$$(2.1) d\alpha = 0 (\alpha : closed),$$

$$(2.2) \qquad (\tilde{\nabla}_X J)Y = -\tilde{g}(\alpha^{\sharp}, Y)JX + \tilde{g}(X, Y)\beta^{\sharp} + \tilde{g}(JX, Y)\alpha^{\sharp} - \tilde{g}(\beta^{\sharp}, Y)X$$

for any $X,Y \in \Gamma T\tilde{M}$, where $\tilde{\nabla}$ denotes the covariant differentiation with respect to \tilde{g} , α^{\sharp} is the dual vector field of α which is called the Lee vector field, the 1 form β is defined by $\beta(X) = -\alpha(JX)$, β^{\sharp} is the dual vector field of β and $\Gamma T\tilde{M}$ means the set of all differentiable vector fields on \tilde{M} .

An l.c.K.-manifold $\tilde{M}(J, \tilde{g}, \alpha)$ is called an *l.c.K.-space form* if it has a constant holomorphic sectional curvature. We know that the Riemannian curvature tensor \tilde{R} of an l.c.K.-space form with the constant holomorphic sectional curvature c is given by ([5])

$$\begin{array}{lll} (2.3) & 4\tilde{R}(X,Y,Z,W) & = & c\{\tilde{g}(X,W)\tilde{g}(Y,Z) - \tilde{g}(X,Z)\tilde{g}(Y,W) \\ & + \tilde{g}(JX,W)\tilde{g}(JY,Z) - \tilde{g}(JX,Z)\tilde{g}(JY,W) \\ & - 2\tilde{g}(JX,Y)\tilde{g}(JZ,W)\} + 3\{P(X,W)\tilde{g}(Y,Z) \\ & - P(X,Z)\tilde{g}(Y,W) + \tilde{g}(X,W)P(Y,Z) \\ & - \tilde{g}(X,Z)P(Y,W)\} - \tilde{P}(X,W)\tilde{g}(JY,Z) \\ & + \tilde{P}(X,Z)\tilde{g}(JY,W) - \tilde{g}(JX,W)\tilde{P}(Y,Z) \\ & + \tilde{g}(JX,Z)\tilde{P}(Y,W) + 2\{\tilde{P}(X,Y)\tilde{g}(JZ,W) \\ & + \tilde{g}(JX,Y)\tilde{P}(Z,W)\} \end{array}$$

for any $X, Y, Z, W \in \Gamma T\tilde{M}$, where P and \tilde{P} are respectively defined by

(2.4)
$$\begin{cases} P(X,Y) = -(\tilde{\nabla}_X \alpha)Y - \alpha(X)\alpha(Y) + \frac{1}{2}\|\alpha\|^2 \tilde{g}(X,Y), \\ \tilde{P}(X,Y) = P(JX,Y) \end{cases}$$

for any $X, Y \in \Gamma TM$, where $\|\alpha\|$ is the length of the Lee form α .

Remark. To get (2.3), we have to assume that the symmetric (0,2)-tensor P defined by (2.4) is hybrid or equivalently \tilde{P} is skew-symmetric. This means the Ricci tensor \tilde{R}_1 is hybrid.

We write an l.c.K.-space form with the constant holomorphic sectional curvature c by $\tilde{M}(c)$

$\S 3.$ CR-submanifolds in an l.c.K.-manifold

In generally, between a Riemannian manifold (\tilde{M}, \tilde{g}) and its submanifold, we know the Gauss and Weingarten formulas

(3.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y),$$

(3.2)
$$\tilde{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi$$

for any $X, Y \in \Gamma TM$ and $\xi \in \Gamma T^{\perp}M$, where σ is the second fundamental form and A_{ξ} is the shape operator with respect to ξ . Moreover, we know the Gauss equation

(3.3)
$$R(X,Y,Z,W) = \tilde{R}(X,Y,Z,W) + \tilde{g}(\sigma(X,W),\sigma(Y,Z)) - \tilde{g}(\sigma(X,Z),\sigma(Y,W))$$

for any $X, Y, Z, W \in \Gamma TM$, where \tilde{R} (resp. R) denotes the Riemannian curvature tensor with respect to \tilde{g} (resp. the induced metric) ([3]).

A submanifold M in an l.c.K.-manifold M is called a CR-submanifold if there exists a differentiable distribution $\mathcal{D}: x \to \mathcal{D}_x \subset T_xM$ on M satisfying the following conditions;

- (i) \mathcal{D} is holomorphic, i.e., $J\mathcal{D}_x = D_x$ for each $x \in M$ and
- (ii) the complementary orthogonal distribution $\mathcal{D}^{\perp}: x \to \mathcal{D}_{x}^{\perp} \subset T_{x}M$ is totally real, i.e., $J\mathcal{D}_{x}^{\perp} \subset T_{x}^{\perp}M$ for each $x \in M$, where $T_{x}M$ (resp. $T_{x}^{\perp}M$) denotes the tangent (resp. normal) vector space at x of M ([1],[4], [6], etc.).

If $\dim \mathcal{D}_x^{\perp} = 0$ (resp. $\dim \mathcal{D}_x = 0$) for each $x \in M$, then the CR-submanifold is holomorphic (resp. totally real). A CR-submanifold M is said to be anti-holomorphic if $J\mathcal{D}_x^{\perp} = T_x^{\perp}M$ for any $x \in M$.

In [6], we proved that

Proposition 3.1([6]). In a CR-submanifold M in an l.c.K.-manifold \tilde{M} , we have

- (i) the distribution \mathcal{D}^{\perp} is integrable,
- (ii) the distribution \mathcal{D} is integrable if and only if

(3.4)
$$\tilde{g}(\sigma(X, JY) - \sigma(Y, JX) + 2\tilde{g}(JX, Y)\alpha^{\sharp}, JZ) = 0$$

for any $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

A CR-submanifold is said to be proper if it is neither holomorphic nor totally real.

In a CR-submanifold M in an l.c.K.-manifold \tilde{M} , we know the following formulas ([6]);

$$(3.5) \tilde{g}(\nabla_{U}Z, X) = \tilde{g}(JA_{JZ}U, X) + \tilde{g}(\alpha^{\sharp}, Z)\tilde{g}(U, X) + \tilde{g}(U, Z)\tilde{g}(\alpha^{\sharp}, X) - \tilde{g}(\beta^{\sharp}, Z)\tilde{g}(JU, X),$$

(3.6)
$$A_{JZ}W = A_{JW}Z + \tilde{g}(\beta^{\sharp}, Z)W - \tilde{g}(\beta^{\sharp}, W)Z$$

for any $U \in \Gamma TM$, $X \in \mathcal{D}$ and $Z, W \in \mathcal{D}^{\perp}$.

A CR-submanifold is said to be $mixed\ geodesic$ if the second fundamental form σ satisfies $\sigma(\mathcal{D}, \mathcal{D}^{\perp}) = \{0\}$ and to be \mathcal{D} -geodesic if the second fundamental form σ satisfies $\sigma(\mathcal{D}, \mathcal{D}) = \{0\}$.

For a CR-submanifold M of an almost Hermitian manifold M, we denote by ν the complementary orthogonal subbundle of $J\mathcal{D}^{\perp}$ in the normal bundle $T^{\perp}M$. Then we have the following direct sum decomposition

(3.7)
$$T^{\perp}M = J\mathcal{D}^{\perp} \oplus \nu, \qquad J\mathcal{D}^{\perp} \perp \nu.$$

Remark 3.1. By the definition of ν , a CR-submanifold is anti-holomorphic if $\nu_x = \{0\}$ for any $x \in M$.

Since the distribution \mathcal{D}^{\perp} is integrable, we consider a maximal integral submanifold M_{\perp} of the distribution. Let us cosider a necessary and sufficient condition that M_{\perp} is totally geodesic in M, that is, $\nabla_Z W \in \mathcal{D}^{\perp}$ for any $Z, W \in \mathcal{D}^{\perp}$. This condition is equivalent to $\tilde{g}(J\nabla_Z W, \Gamma T M) = \{0\}$. The condition means (i) $\tilde{g}(J\nabla_Z W, X) = 0$ and (ii) $\tilde{g}(J\nabla_Z W, V) = 0$ for any $X \in \mathcal{D}$ and $Z, W, V \in \mathcal{D}^{\perp}$. But, the case (ii) is trivial. So, we only consider the case (i).

Using (2.2), we have

$$\begin{split} \tilde{g}(J\nabla_Z W, X) &= \tilde{g}(\nabla_Z JW, X) - \tilde{g}((\nabla_Z J)W, X) \\ &= \tilde{g}(\sigma(X, Z), JW) - \tilde{g}(Z, W)\tilde{\beta}^{\sharp}, X) \\ &= -\{\tilde{g}(\sigma(X, Z) - \tilde{g}(\alpha^{\sharp}, JX)JZ, JW)\} \end{split}$$

Thus we have

Proposition 3.2. In a CR-submanifold M of an l.c.K.-manifold \tilde{M} , a maximal integral submanifold M_{\perp} of the distribution \mathcal{D}^{\perp} is totally geodesic in M if and only if

(3.8)
$$\sigma(X,Z) - \tilde{q}(\alpha^{\sharp},JX)JZ \in \nu$$

for any $X \in \mathcal{D}$ and $Z, W \in \mathcal{D}^{\perp}$.

Corollary 3.3. Under the same assumption of the above proposition, if the Lee vector field α^{\sharp} is orthogonal to \mathcal{D} , then M_{\perp} is totally geodesic in M if and only if $\sigma(\mathcal{D}, \mathcal{D}) \subset \nu$.

Remark 3.2. The above corollary is the same with a Kaehlerian case ([2]).

34. Pseudo-umbilical CR-submanifolds in an l.c.K.-manifold

Now, we put dim $\tilde{M}=m$, dim M=n, dim $\mathcal{D}=2p$, dim $\mathcal{D}^{\perp}=q$ (2p+q=n) and dim $\nu=2s$. Let $\{e_1,...,e_p,e_1^*,...,e_p^*\}$, $\{e_{2p+1},...,e_{2p+q}\}$, $\{e_{2p+1}^*,...,e_{2p+q}^*\}$ and $\{e_{n+q+1},...,e_{n+q+2s}\}$ (n+q+2s=m) be a local orthonormal basis of \mathcal{D} , \mathcal{D}^{\perp} , $J\mathcal{D}^{\perp}$ and ν , respectively, where $e_i^*=Je_i$ for $i\in\{1,...,p\}$ and $e_{2p+a}^*=Je_{2p+a}$ for $a\in\{1,...,q\}$. We call such local basis an adapted frame of \tilde{M} .

Remark 4.1. It is known that the dimensions of the distributions \mathcal{D} and ν are even and they have an almost complex tructure, respectively.

A CR-submanifold M in an l.c.K.-manifold \tilde{M} is said to be pseudo-umbilical if the shape operator A satisfies, with respect to the adapted frame,

$$\begin{cases}
A_{e_{2p+a}^*}X = a_{2p+a}X + b_{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}, \\
A_{e_{n+q+\alpha}}X = a_{n+q+\alpha}X + \sum_{a=1}^q b_{n+q+\alpha}^{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}, \\
A_{e_{n+q+\alpha}^*}X = a_{(n+q+\alpha)^*}X + \sum_{a=1}^q b_{(n+q+\alpha)^*}^{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}
\end{cases}$$

for any $X \in \Gamma TM$, where $a_{2p+a}, a_{n+q+\alpha}, a_{(n+q+\alpha)^*}, b_{2p+a}, b_{n+q+\alpha}^{2p+a}$ and $b_{(n+q+\alpha)^*}^{2p+a}$ are differentiable functions on M for any $a \in \{1, 2, ..., q\}$ and $\alpha \in \{1, 2, ..., s\}$ ([1]).

Now, we proved that

Proposition 4.1([6]). Let M be a pseudo-umbilical CR-submanifold in an l.c.K.-manifold \tilde{M} . If $\dim \mathcal{D}_x > 1$ at each point $x \in M$, then the functions $a_{2p+a}, a_{n+q+\alpha}$ and $a_{(n+q+\alpha)^*}$ are vanish for each $a \in \{1, ..., q\}$ and $\alpha \in \{1, 2, ..., s\}$.

By virtue of Proposition 4.1, the equation (4.1) can be written as

$$\begin{cases}
A_{e_{2p+a}^*}X = b_{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}, \\
A_{e_{n+q+\alpha}}X = \sum_{a=1}^q b_{n+q+\alpha}^{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}, \\
A_{e_{n+q+\alpha}^*}X = \sum_{a=1}^q b_{(n+q+\alpha)^*}^{2p+a}\tilde{g}(X, e_{2p+a})e_{2p+a}
\end{cases}$$

for any $X \in \Gamma TM$.

The equation (4.2) teaches us

Proposition 4.2. A pseudo-umbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} is \mathcal{D} -geodesic, that is, $\sigma(\mathcal{D}, \mathcal{D}) = \{0\}$.

Next, we prove

Proposition 4.3. A pseudo-umbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} is a mixed geodesic, that is, $\sigma(\mathcal{D}, \mathcal{D}^{\perp}) = \{0\}$.

Proof. It is enough to show $\tilde{g}(\sigma(X,Z),N)=0$ for any $X\in\mathcal{D},\,Z\in\mathcal{D}^{\perp}$ and $N\in\Gamma T^{\perp}M$.

We solve the above equation into three cases; Case 1.

$$\tilde{g}(\sigma(e_i, e_{2p+a}), Je_{2p+b}) = \tilde{g}(A_{e_{2p+b}^*} e_i, e_{2p+a})
= b_{2p+b} \tilde{g}(e_i, e_{2p+b}) \tilde{g}(e_{2p+b}, e_{2p+a}) = 0$$

for any $i \in \{1, 2, ..., 2p\}$ and $a, b \in \{1, 2, ..., q\}$. Case 2.

$$\tilde{g}(\sigma(e_i, e_{2p+a}), e_{n+q+\alpha}) = \tilde{g}(A_{e_{n+q+\alpha}}e_i, e_{2p+a})
= \sum_{b=1}^{q} b_{n+q+\alpha}^{2p+b} \tilde{g}(e_i, e_{2p+b}) \tilde{g}(e_{2p+b}, e_{2p+a}) = 0$$

for any $i \in \{1, 2, ..., 2p\}$, $a \in \{1, 2, ..., q\}$ and $\alpha \in \{1, 2, ..., s\}$. Case 3.

$$\tilde{g}(\sigma(e_i, e_{2p+a}), e_{n+q+\alpha}^*) = \tilde{g}(A_{e_{n+q+\alpha}^*} e_i, e_{2p+a})
= \sum_{b=1}^q b_{(n+q+\alpha)^*}^{2p+b} \tilde{g}(e_i, e_{2p+b}) \tilde{g}(e_{2p+b}, e_{2p+a}) = 0$$

for any
$$i \in \{1, 2, ..., 2p\}$$
, $a \in \{1, 2, ..., q\}$ and $\alpha \in \{1, 2, ..., s\}$.
The proof is complete.

By virtue of Propositions 3.2 and 4.3, we have

Proposition 4.4. In a pseudo-umbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} , if the Lee vector field α^{\sharp} is not orthogonal to \mathcal{D} , the maximal integral submanifold M_{\perp} of the distribution \mathcal{D}^{\perp} is never totally geodesic in M.

By virtue of Propositions 3.1 and 4.4, we have

Proposition 4.5. In a pseudo-unbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} , the distribution \mathcal{D} is integrable if and only if $\tilde{g}(\alpha^{\sharp}, JZ) = 0$ for any $Z \in \mathcal{D}^{\perp}$, that is, the Lee vector field α^{\sharp} is orthogonal to $J\mathcal{D}^{\perp}$, or equivalently, the vector field β^{\sharp} is orthogonal to \mathcal{D}^{\perp} .

§5. The length of the second fundamental form and the mean curvature

In this section, we consider the length of the second fundamental form and the mean curvature in a pseudo-umbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} .

Let M be an n-dimensional pseudo-umbilical CR-submanifold in an m-dimensional l.c.K.-manifold \tilde{M} . The equation (4.2) implies

(5.1)
$$\sigma(U,V) = \sum_{a=1}^{q} b_{2p+a} \tilde{g}(U, e_{2p+a}) \tilde{g}(V, e_{2p+a}) e_{2p+a}^{*}$$

$$+ \sum_{a=1}^{q} \sum_{\alpha=1}^{s} \{b_{n+q+\alpha}^{2p+a} \tilde{g}(U, e_{2p+a}) \tilde{g}(V, e_{2p+a}) e_{n+q+\alpha} + b_{(n+q+\alpha)^{*}}^{2p+a} \tilde{g}(U, e_{2p+a}) \tilde{g}(V, e_{2p+a}) e_{n+q+\alpha}^{*}\}$$

for any $U, V \in \Gamma TM$.

Next, using (5.1), we calculate the length $\|\sigma\|$ of the second fundamental form σ and the length $\|H\|$ (the mean curvature) of the mean curvature vector field H, where the mean curvature vector field H is given by

(5.2)
$$H = \frac{1}{n} \sum_{\mu=1}^{n} \sigma(e_{\mu}, e_{\mu})$$

for an adapted frame $\{e_1, e_2, ..., e_n\}$.

The length $\|\sigma\|$ of the second fundamental form σ is defined by

(5.3)
$$\|\sigma\|^2 = \sum_{\mu,\lambda=1}^n \tilde{g}(\sigma(e_\mu, e_\lambda), \sigma(e_\mu, e_\lambda)).$$

And it is separated to

$$(5.3)' \|\sigma\|^2 = \sum_{\mu,\lambda=1}^n \{ \sum_{a=1}^q \tilde{g}(\sigma(e_\mu, e_\lambda), e_{2p+a}^*)^2$$

$$+ \sum_{\alpha=1}^s \tilde{g}(\sigma(e_\mu, e_\lambda), e_{n+q+\alpha})^2 + \sum_{\alpha=1}^s \tilde{g}(\sigma(e_\mu, e_\lambda), e_{n+q+\alpha}^*)^2 \}.$$

The mean curvature ||H|| is defined

(5.4)
$$||H||^2 = \frac{1}{n^2} \sum_{\mu,\lambda=1}^n \tilde{g}(\sigma(e_{\mu}, e_{\mu}), \sigma(e_{\lambda}, e_{\lambda})).$$

By virtue of Propositions 4.1, 4.2 and 4.3, the nontrivial components of σ are

$$(5.5) \ \sigma(e_{2p+c}, e_{2p+b}) = \sum_{a=1}^{q} b_{2p+a} \tilde{g}(e_{2p+c}, e_{2p+a}) \tilde{g}(e_{2p+b}, e_{2p+a}) e_{2p+a}^{*}$$

$$+ \sum_{a=1}^{q} \sum_{\alpha=1}^{s} \{b_{n+q+\alpha}^{2p+a} \tilde{g}(e_{2p+c}, e_{2p+a}) \tilde{g}(e_{2p+b}, e_{2p+a}) e_{n+q+\alpha} \}$$

$$+ b_{(n+q+\alpha)^{*}}^{2p+a} \tilde{g}(e_{2p+c}, e_{2p+a}) \tilde{g}(e_{2p+b}, e_{2p+a}) e_{n+q+\alpha}^{*} \}$$

$$= \sum_{a=1}^{q} b_{2p+a} \delta_{ca} \delta_{ab} e_{2p+a}^{*} + \sum_{a=1}^{q} \sum_{\alpha=1}^{s} \{b_{n+q+\alpha}^{2p+a} \delta_{ca} \delta_{ba} e_{n+q+\alpha} + b_{(n+q+\alpha)^{*}}^{2p+a} \delta_{ca} \delta_{ba} e_{n+q+\alpha}^{*} \}.$$

Using (5.5), the equation (5.3) is written as

$$\|\sigma\|^{2} = \sum_{c,b,a=1}^{q} \tilde{g}(\sigma(e_{2p+c}, e_{2p+b}), e_{2p+a}^{*})^{2} + \sum_{c,b=1}^{q} \sum_{\beta=1}^{s} \{\tilde{g}(\sigma(e_{2p+c}, e_{2p+b}), e_{n+q+\beta})^{2} + \tilde{g}(\sigma(e_{2p+c}, e_{2p+b}), e_{n+q+\beta}^{*})^{2} \}$$

$$= \sum_{c,b,a=1}^{q} (b_{2p+b}\delta_{cb}\delta_{ba})^{2} + \sum_{c,b=1}^{q} \sum_{\beta,\alpha=1}^{s} \{(b_{n+q+\alpha}^{2p+b}\delta_{cb}\delta_{\beta\alpha})^{2} + (b_{(n+q+\alpha)^{*}}^{2p+b}\delta_{cb}\delta_{\beta\alpha})^{2} \}$$

$$= \sum_{a=1}^{q} (b_{2p+a})^{2} + \sum_{b=1}^{q} \sum_{\alpha=1}^{s} \{(b_{n+q+\alpha}^{2p+b})^{2} + (b_{(n+q+\alpha)^{*}}^{2p+b})^{2} \}.$$

Hence, we get

(5.6)
$$\|\sigma\|^2 = \sum_{a=1}^{q} [(b_{2p+a})^2 + \sum_{\alpha=1}^{s} \{(b_{n+q+\alpha}^{2p+a})^2 + (b_{(n+q+\alpha)^*}^{2p+a})^2\}].$$

Moreover, we have from (5.5)

(5.7)
$$\sigma(e_{2p+b}, e_{2p+b}) = b_{2p+b}e_{2p+b}^* + \sum_{\alpha=1}^s \{b_{n+q+\alpha}^{2p+b} e_{n+q+\alpha} + b_{(n+q+\alpha)^*}^{2p+b} e_{n+q+\alpha}^*\}.$$

By virtue of (5.4) and (5.7), we obtain

(5.8)
$$n^{2} \|H\|^{2} = \sum_{b,a=1}^{q} \tilde{g}(\sigma(e_{2p+b}, e_{2p+b}), \sigma(e_{2p+a}, e_{2p+a}))$$
$$= \sum_{a=1}^{q} (b_{2p+a})^{2} + \sum_{a=1}^{q} \sum_{\alpha=1}^{s} \{(b_{n+q+\alpha}^{2p+a})^{2} + (b_{(n+q+\alpha)^{*}}^{2p+a})^{2}\}$$
$$+ \sum_{b \neq a=1}^{q} \sum_{\alpha=1}^{s} (b_{n+q+\alpha}^{2p+b} b_{n+q+\alpha}^{2p+b} + b_{(n+q+\alpha)^{*}}^{2p+a})^{2}$$

Thus we have from (5.6) and (5.8)

$$(5.9) n^2 ||H||^2 = ||\sigma||^2 + \sum_{b \neq a=1}^q \sum_{\alpha=1}^s (b_{n+q+\alpha}^{2p+b} b_{n+q+\alpha}^{2p+a} + b_{(n+q+\alpha)^*}^{2p+b} b_{(n+q+\alpha)^*}^{2p+a}).$$

The equation (5.9) means

Theorem 5.1. If an n-dimensional pseudo-umbilical CR-submanifold M in an l.c.K.-manifold \tilde{M} is anti-holomorhpic, then the submanifold M is totally geodesic or the length $\| \sigma \|$ of the second fundamental form σ and the mean curvature $\| H \|$ have the relation $\| \sigma \| = n \| H \|$.

§6. Pseudo-umbilical CR-submanifolds in an l.c.K.-space form

Let $\tilde{M}(c)$ be an l.c.K-space form with the constant holomorphic sectional curvature c. Then, by virtue of (3.3), we have

(6.1)
$$R_{\mu\lambda\lambda\mu} = \tilde{R}_{\mu\lambda\lambda\mu} + \tilde{g}(\sigma_{\mu\mu}, \sigma_{\lambda\lambda}) - \tilde{g}(\sigma_{\mu\lambda}, \sigma_{\mu\lambda}),$$

where $R_{\omega\nu\mu\lambda}$ and $\sigma_{\mu\lambda}$ are respectively the componernt of R and σ with respect to the adapted frame, that is,

(6.2)
$$R_{\omega\nu\mu\lambda} = R(e_{\omega}, e_{\nu}, e_{\mu}, e_{\lambda}), \quad \sigma_{\mu\lambda} = \sigma(e_{\mu}, e_{\lambda}).$$

From (6.1), we have

(6.3)
$$r = \sum_{\mu,\lambda=1}^{n} \tilde{R}_{\mu\lambda\lambda\mu} + n^{2} ||H||^{2} - ||\sigma||^{2},$$

where r is the scalar curvature with respect to the induced metric.

Next, we calculate $\sum_{\mu\lambda=1}^{n} \tilde{R}_{\mu\lambda\lambda\mu}$ in an l.c.K.space form $\tilde{M}(c)$.

We can separate it as

$$\sum_{\mu,\lambda=1}^{n} \tilde{R}_{\mu\lambda\lambda\mu} = \sum_{j,i=1}^{2p} \tilde{R}_{jiij} + 2\sum_{j=1}^{p} \sum_{a=1}^{q} \{\tilde{R}_{j(2p+a)(2p+a)j} + \tilde{R}_{j^*(2p+a)(2p+a)j^*}\} + \sum_{b,a=1}^{q} \tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+b)}$$

$$= \sum_{j,i=1}^{p} \{\tilde{R}_{jiij} + 2\tilde{R}_{ji^*i^*j} + \tilde{R}_{j^*i^*i^*j^*}\}$$

$$+4\sum_{j=1}^{p} \sum_{a=1}^{q} \tilde{R}_{j(2p+a)(2p+a)j} + \sum_{b,a=1}^{q} \tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+b)}.$$

Since we know $\tilde{R}_{j^*i^*i^*j^*} = \tilde{R}_{jiij}$ and $\tilde{R}_{j^*(2p+a)(2p+a)j^*} = \tilde{R}_{j(2p+a)(2p+a)j}$, the above equation is

(6.4)
$$\sum_{\mu,\lambda=1}^{n} \tilde{R}_{\mu\lambda\lambda\mu} = 2\sum_{j,i=1}^{p} (\tilde{R}_{jiij} + \tilde{R}_{ji^*i^*j}) + 4\sum_{j=1}^{p} \sum_{a=1}^{q} \tilde{R}_{j(2p+a)(2p+a)j} + \sum_{b,a=1}^{q} \tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+a)(2p+b)}.$$

Thus using (6.4), (6.3) is written as

(6.5)
$$r = 2 \sum_{j,i=1}^{p} (\tilde{R}_{jiij} + \tilde{R}_{ji^*i^*j}) + 4 \sum_{j=1}^{p} \sum_{a=1}^{q} \tilde{R}_{j(2p+a)(2p+a)j} + \sum_{b,a=1}^{q} \tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+b)} + n^2 ||H||^2 - ||\sigma||^2.$$

We have from (2.3)

$$4\tilde{R}_{jiij} = c(\delta_{jj}\delta_{ii} - \delta_{ji}\delta_{ji}) + 3(\delta_{ii}P_{jj} - \delta_{ji}P_{ji} + \delta_{jj}P_{ii} - \delta_{ji}P_{ij}).$$

So, we obtain

(6.6)
$$4\sum_{j,i=1}^{p} \tilde{R}_{jiij} = (p-1)(pc+6\sum_{i=1}^{p} P_{ii}).$$

Similarly, we have from (2.3)

$$4\tilde{R}_{ji^*i^*j} = c(\delta_{jj}\delta_{ii} - \delta_{ji}\delta_{ji}) + 3(\delta_{ii}P_{jj} - \delta_{ji}P_{ji}).$$

So, we have

(6.7)
$$4\sum_{j,i=1}^{p} \tilde{R}_{ji^*i^*j} = (p-1)(pc+3\sum_{i=1}^{p} P_{ii}).$$

Moreover, we have from (2.3)

$$4\tilde{R}_{j(2p+a)(2p+a)j} = c\delta_{jj}\delta_{aa} + 3(P_{jj}\delta_{aa} + \delta_{jj}P_{(2p+a)(2p+a)}).$$

Thus we get

(6.8)
$$4\sum_{j=1}^{p}\sum_{a=1}^{q}\tilde{R}_{j(2p+a)(2p+a)j} = pqc + 3\{q\sum_{j=1}^{p}P_{jj} + p\sum_{a=1}^{q}P_{(2p+a)(2p+a)}\}.$$

Finally, since we get

$$4\tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+b)} = c(\delta_{bb}\delta_{aa} - \delta_{ba}\delta_{ba}) + 3(\delta_{aa}P_{(2p+b)(2p+b)} - \delta_{ba}P_{(2p+b)(2p+a)} + \delta_{bb}P_{(2p+a)(2p+a)} - \delta_{ba}P_{(2p+a)(2p+a)}),$$

we obtain

(6.9)
$$4\sum_{b,a=1}^{q} \tilde{R}_{(2p+b)(2p+a)(2p+a)(2p+b)} = (q-1)(qc+6\sum_{b=1}^{q} P_{(2p+b)(2p+b)}).$$

Substituting (6.6), (6.7), (6.8) and (6.9) into (6.5), we obtain

(6.10)
$$4r = (n^{2} - n - 2p)c + 6(2n - 3 - p) \sum_{j=1}^{p} P_{jj} + 6(n - 1) \sum_{j=1}^{q} P_{(2p+a)(2p+a)} + 4n^{2} ||H||^{2} - 4||\sigma||^{2}.$$

From (5.3), we have

Theorem 6.1. In an n-dimensional pseudo-umbilical CR-submanifold M in an l.c.K.-space form $\tilde{M}(c)$, the mean curvature ||H|| satisfies the following inequality.

(6.11)
$$||H||^{2} \geq \frac{1}{4n^{2}} \{4r - (n^{2} - n - 2p)c - 6(2n - 3 - p) \sum_{j=1}^{p} P_{jj} - 6(n - 1) \sum_{a=1}^{q} P_{(2p+a)(2p+a)} \}.$$

In particular, in the equality case of (6.11), we have from (6.10) and (6.11), the submanifold M is totally geodesic and the scalar curvature r with respect to the induced metric satisfies

(6.12)
$$4r = (n^2 - n - 2p)c + 6(2n - 3 - p)\sum_{j=1}^{p} P_{jj} + 6(n - 1)\sum_{a=1}^{q} P_{(2p+a)(2p+a)}.$$

Corollary 6.2. In an n-dimensional pseudo-umbilical CR-submanifold M in a complex space form $\tilde{M}(c)$, the mean curvature ||H|| satisfies the following inequality.

(6.13)
$$||H||^2 \ge \frac{1}{4n^2} \{4r - (n^2 - n - 2p)c\}.$$

In particular, in the equality case of (6.13), we have from (6.10) and (6.11), the submanifold M is totally geodesic and the scalar curvature r with respect to the induced metric satisfies

(6.14)
$$4r = (n^2 - n - 2p)c.$$

Substituting (5.9) into (6.10), we obtain

$$(6.15) 4r = (n^{2} - n - 2p)c + 6(2n - 3 - p) \sum_{j=1}^{p} P_{jj} + 6(n - 1) \sum_{a=1}^{q} P_{(2p+a)(2p+a)}$$
$$+4 \sum_{h\neq q-1}^{q} \sum_{\alpha=1}^{s} (b_{n+q+\alpha}^{2p+b} b_{n+q+\alpha}^{2p+a} + b_{(n+q+\alpha)^{*}}^{2p+b} b_{(n+q+\alpha)^{*}}^{2p+a}).$$

Thus we have

Proposition 6.3. In a pseudo-umbilical CR-submanifold M in an l.c.K.-space form $\tilde{M}(c)$, the scalar curvature r with respect to the induced metric is given by (6.15).

Corollary 6.4. In a pseudo-umbilical CR-submanifold M in a complex space form $\tilde{M}(c)$, the scalar curvature r with respect to the induce metric is given by

(6.16)
$$4r = (n^2 - n - 2p)c + 4\sum_{b \neq a=1}^{q} \sum_{\alpha=1}^{s} (b_{n+q+\alpha}^{2p+b} b_{n+q+\alpha}^{2p+a} + b_{(n+q+\alpha)^*}^{2p+b} b_{(n+q+\alpha)^*}^{2p+a}).$$

Acknowlegements

The authors express their hearty thanks to the referee who give them very kind and important suggestions.

References

- [1] A. Bejancu, CR-submanifolds of a Kaehler manifold I, II, Proc.Amer. Math. Soc., **69** (1978), 134 –142 and Trans. Amer. Math. Soc., **250** (1979), 333–345.
- [2] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, (1986).
- [3] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, 1973.

- [4] B. Y. Chen, CR-submanifolds of a Kaehler manifold I, II J. Differential Geometry, 16 (1981), 305–323 and 493–509.
- [5] T. Kashiwada, Some properties of locally conformal Kähler manifolds, Hokkaido Math, J., 8 (1979), 191–198.
- [6] K. Matsumoto, On CR-submanifolds of locally conformal Kähler manifolds I, II J. Korean Math. 21 (1984), 49–61 and Tensor, N. S. 45 (1987), 144–150.
- [7] I. Vaisman, Locally conformal almost Kähler manifolds, Israel J, Math., **24**(1976), 338–351.

Koji Matsumoto 2-3-65, Nishi-Odor, Yonezawa, Yamagata,992-0059, Japan E-mail: tokiko_ matsumoto@yahoo.com

Zerrin Şentürk
Department of Mathematics,
Fen-Edebiyat Faculty,
Istanbul Technical University,Maslak,
Istanbul, Turkey
E-mail: senturk@itu.edu.tr