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Abstract. In this report, we consider pseudo-umbilical C'R-submanifolds in
a locally conformal Kaehler space form and we mainly get a relation of the
scalar curvature and the coefficient functions of the shape operator of a pseudo-
umbilical C'R-submanifold in a locally conformal Kaehler space form.
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8§1. Introduction

As a special C'R-submanifold of an almost Hermitian manifold, the notion of
a pseudo-umbilical C'R-submanifold was introduced by A. Bejancu and gave
a lot of interesting properties of this submanifold in a Kaehler manifold ([1]).

We consider this submanifold in a locally conformal Kaehler space form
which is a generalization of a complex space form and we prove some properties
of this submanifold (See Theorems 5.1 and 6.3).

§2. Preliminaries

A Hermitian manifold M with structure (.J,§) is called a locally conformal
Kaehler (an l.c.K.) manifold if each point z € M has an open neighbourhood U
with differentiable function p : U — R such that g* = 6_29§|U is a Kaehlerian
metric on U, that is, V*J = 0, where J is the almost complex structure, g
is the Hermitian metric, V* is the covariant differentiation with respect to g*
and R is a real number space ([7]). Then we know
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Proposition 2.1([5]). A Hermitian manifold M with structure (J,§) is l.c.K.-
if and only if there exists a global 1-form o which is called the Lee form satis-

fying

(2.1) do=0 (o: closed),

(2.2)  (VxJ)Y = —g(a*, V)JX + §(X, V)3 + §(JX, V)b — g(B%, V)X

for any XY € FT]\;[, where NV denotes the covariant differentiation with
respect to §, of is the dual vector field of o which is called the Lee vector field,
the 1 form (3 is defined by B(X) = —a(JX), G is the dual vector field of
and T'TM means the set of all differentiable vector fields on M.

An l.c.K.-manifold M(J,g, «) is called an [.c.K.-space form if it has a con-
stant holomorphic sectional curvature. We know that the Riemannian curva-
ture tensor R of an l.c.K.-space form with the constant holomorphic sectional
curvature c is given by ([5])

(2.3) AR(X,Y,Z,W) = g(X, W)§(Y,Z) — §(X, Z)§(Y, W)
+g(JX,W)g(JY,Z) — g(JX, Z)g(JY, W)

—29(JX,Y)g(JZ, W)} + 3{P(X,W)g(Y,
_P(sz) (Y7W) +9(X7W) ( ’ )
~§(X, Z)P(Y,W)} = P(X,W)3(JY, Z)
+P(X,2)g(JY, W) — g(JX,W)P(Y, Z)
+3(J X, Z)P(Y W) +2{P(X,Y)g(JZ, W)
+§(JX,Y)P(Z,W)}

forany X, Y, Z W € ['TM, where P and P are respectively defined by

2.4 P(X,Y) = =(Vxa)Y — a(X)a(Y) + 3]la|?3(X,Y),
| P(X,Y)=P(JX,Y)

for any X,Y € I'TM, where || is the length of the Lee form a.

Remark. To get (2.3), we have to assume that the symmetric (0,2)-tensor P
defined by (2.4) is hybrid or equivalently P is skew-symmetric. This means
the Ricci tensor R; is hybrid.

We write an l.c.K.-space form with the constant holomorphic sectional cur-
vature ¢ by M(c)
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83. (CR-submanifolds in an l.c.K.-manifold

In generally, between a Riemannian manifold (M, §) and its submanifold, we
know the Gauss and Weingarten formulas

(3.1) VxY =VxY +0(X,Y),

(3.2) Vxé=—AcX + Vi

for any X,Y € I'TM and &€ € T'T+M, where o is the second fundamental form
and Ag is the shape operator with respect to {. Moreover, we know the Gauss
equation

(3.3) R(X,Y,Z,W) = RX,Y,Z, W)+ g(o(X,W),o(Y,Z2))
_g(J(X7Z)7G(KW))

for any X,Y,Z,W € I'TM, where R (resp. R) denotes the Riemannian cur-
vature tensor with respect to g (resp. the induced metric) ([3]).

A submanifold M in an l.c.K.-manifold M is called a CR-submanifold if
there exists a differentiable distribution D : x — D, C T, M on M satisfying
the following conditions;

(i) D is holomorphic, i.e., JD, = D, for each x € M and

(ii) the complementary orthogonal distribution D+ : 2 — DL C T, M is
totally real, i.e., JDy C T;-M for each x € M, where T,M (resp. Ty M)
denotes the tangent (resp. normal) vector space at = of M ([1],[4], [6], etc.).

If dimD; = 0 (resp. dimD, = 0) for each # € M, then the CR-
submanifold is holomorphic (resp. totally real). A CR-submanifold M is said
to be anti-holomorphic if JDy = T;-M for any z € M.

In [6], we proved that

Proposition 3.1([6]). In a CR-submanifold M in an l.c.K.-manifold M, we
have

(i) the distribution D+ is integrable,

(ii) the distribution D is integrable if and only if

(3.4) G(o(X,JY) —o(Y,JX) 4+ 25(JX,Y)ab, JZ) =0
for any X,Y € D and Z € D*.

A CR-submanifold is said to be proper if it is neither holomorphic nor
totally real.

In a CR-submanifold M in an l.c.K.-manifold M, we know the following
formulas ([6]);

(3.5) i(Vuz.X) = §(JA;zU X) +§(cf, 2)§(U, X)
+3(U, Z)§(o*, X) — §(8%, 2)§(JU, X),
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(3.6) ApzW = Agw Z + §(B%, Z)W — (8, W) Z

forany U e I'TM, X € D and Z,W € D+,

A CR-submanifold is said to be mized geodesic if the second fundamental
form o satisfies o(D, D) = {0} and to be D-geodesic if the second fundamen-
tal form o satisfies o(D, D) = {0}.

For a CR-submanifold M of an almost Hermitian manifold M, we denote
by v the complementary orthogonal subbundle of JD* in the normal bundle
T+M. Then we have the following direct sum decomposition

(3.7) T+M = JDt @ v, JD 1.

Remark 3.1. By the definition of v, a C R-submanifold is anti-holomorphic
if v, = {0} for any z € M.

Since the distribution D~ is integrable, we consider a maximal integral
submanifold M of the distribution. Let us cosider a necessary and sufficient
condition that M is totally geodesic in M, that is, Vz;W € Dt for any
Z,W € D*. This condition is equivalent to G(JVzW,I'TM) = {0}. The
condition means (i) g(JVzW, X) =0 and (ii) g(JVzW,V) =0 for any X € D
and Z, W,V € D+. But, the case (ii) is trivial. So, we only consider the case
(i).

Using (2.2), we have

gJIVW, X) = g(VzJW, X) - g((VzJ)W, X)
= g(U(X? Z)aJW) - g(za W)ﬁﬁaX)
= —{3(0(X,2) - 4(o*, JX)J Z, W)}

Thus we have

Proposition 3.2. In a CR-submanifold M of an l.c.K.-manifold M, a maa-
imal integral submanifold M| of the distribution D+ is totally geodesic in M
if and only if

(3.8) o(X,2) - g(af, JX)JZ c v
for any X € D and Z,W € D+.

Corollary 3.3. Under the same assumption of the above proposition, if the
Lee vector field of is orthogonal to D, then M| is totally geodesic in M if and
only if o(D,D) C v.

Remark 3.2. The above corollary is the same with a Kaehlerian case ([2]).
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84. Pseudo-umbilical C R-submanifolds in an l.c.K.-manifold

Now, we put dim M = m, dim M = n, dimD = 2p, dim D+ = ¢ (2p+qg=n)

and dimv = 2s. Let {e1,...,ep, €], ...,ep}, {€ap+1, s €2prq}, {€5,415 0 €3pig)
and {€n4q4+1; -, Entgr2s} (n+ ¢+ 2s =m) be a local orthonormal basis of D,
D+, JD and v, respectively, where ef = Je; for i € {1,...,p} and e§£+a =
Jegpiq for a € {1,...,q}. We call such local basis an adapted frame of M.

Remark 4.1. It is known that the dimensions of the distributions D and v

are even and they have an almost complex tructure, respectively.

A CR-submanifold M in an l.c.K.-manifold M is said to be pseudo-umbilical
if the shape operator A satisfies, with respect to the adapted frame,

A *

62p+aX = a2p+aX + b2p+a§](X7 62p+a)62p+a7

q
o 2p+a
en+q+OtX - an+Q+aX + an"’_q—"_o‘g(X’ e2p+a)€2p+a7

(4.1) A
2p+ -
Ae:b+q+a = O(n+q+a)* X + Zb £+Z+a)*g(X’ 62p+a)€2p+a
2p+a 2p+a
for any X € I'T'M, where agp+a; n+q+as G(ntg+a)*s 02p+as Optgtra and b(n+q+a)

are differentiable functions on M for any a € {1,2,...,q} and a € {1,2...,, s}

([1)-

Now, we proved that

Proposition 4.1([6]). Let M be a pseudo-umbilical CR-submanifold in an
l.c. K.-manifold M. If dimD, > 1 at each point x € M, then the func-
tions agpya; ntqra A Q(piqra)« are vanish for each a € {1,...,q} and a €

{1,2,...,s}.

By virtue of Proposition 4.1, the equation (4.1) can be written as

Aeg o’ b2p+a§(X> e2p+a)€2p+a,

2p+
(42) 5n+q+o<X anﬁqiag X7 62p+a)62p+a7

2+
n+q+aX Zb(fi—k;—ka)* X €2p+a)€2p+a
for any X € I'T'M.
The equation (4.2) teaches us

Proposition 4.2. A pseudo-umbilical CR-submanifold M in an l.c.K.-manifold
M is D-geodesic, that is, o(D, D) = {0}.
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Next, we prove

Proposition 4.3. A pseudo-umbilical CR-submanifold M in an l.c. K.-manifold
M is a mized geodesic, that is, o(D, D) = {0}.

Proof. It is enough to show §(o(X,Z),N) = 0 for any X € D, Z € D+ and
N eI'T+M.

We solve the above equation into three cases;
Case 1.

g(g(eiv €2P+a)’ Je?p-l—b) = Q(Ae;p+beia 62p+a)
= b2p+b§(eia 62p+b>§(62p+b7 €2p+a) =0

for any i € {1,2,...,2p} and a,b € {1,2,...,q}.
Case 2.

g(g(eia 62p+a)u €n+q+a) = Q(A€n+q+a €i, 62p+a)

2p+b ~
Z bnz-):(—]-i-ag (es €2p+b>9(e2p+ba €2pta) =0

for any i € {1,2,...,2p}, a € {1,2,...,q} and « € {1,2, ..., s}.
Case 3.

Q(O'(ei, 62p+a)v €Z+q+a) = g(A €t gta €i, eQIH—a)

2p+b ~
- Z b(ﬁiqw g(ei, e2ptb)9(€2p1ps €2p1a) = 0

for any i € {1,2,...,2p}, a € {1,2,...,q} and « € {1,2, ..., s}.
The proof is complete. O

By virtue of Propositions 3.2 and 4.3, we have

Proposition 4.4. In a pseudo-umbilical CR-submanifold M in an lc.K.-
manifold M, if the Lee vector field o is not orthogonal to D, the mazimal
integral submanifold M| of the distribution D+ is never totally geodesic in M.

By virtue of Propositions 3.1 and 4.4, we have

Proposition 4.5. In a pseudo-unbilical CR-submanifold M in an l.c.K.-
manifold M, the distribution D is integrable if and only if §(of,JZ) = 0
for any Z € D*, that is, the Lee vector field of is orthogonal to JD*, or
equivalently, the vector field 3% is orthogonal to D+.
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85. The length of the second fundamental form and the mean
curvature

In this section, we consider the length of the second fundamental form and
the mean curvature in a pseudo-umbilical C'R-submanifold M in an l.c.K.-
manifold M.

Let M be an n-dimensional pseudo-umbilical C'R-submanifold in an m-
dimensional 1.c.K.-manifold M. The equation (4.2) implies

q
(5'1) O'(U, V) = Z b2p+a§(Ua €2p+a)§(‘/a €2p+a)e§p+a
a=1
+ Z Z{biif]iag U, 62p+a)§(vv e2p+a)€n+q+a
a=1a=1
+b?£i;+a) 9, e2p1a)9(V, €pta)enygiat

for any U,V € I'TM.

Next, using (5.1), we calculate the length ||o| of the second fundamental
form o and the length ||H|| (the mean curvature) of the mean curvature vector
field H, where the mean curvature vector field H is given by

1 n
(5'2) . Z e#v e.U«
pn=1

3

for an adapted frame {eq,ea,...,e,}.
The length ||o|| of the second fundamental form o is defined by

(5:3) o] = Zg L CTSVEICROE

A A=1

And it is separated to

n q

5.3 ol = > D glolen en) espa)’
wA=1 a=1
S S
+ Z glo(eu, ex), €n+q+a)2 + Z g(o(eus ex), e:+q+a)2}'

a=1 a=1

The mean curvature || H|| is defined

1 n
(5.4) [HI* = =5 > (ol en),o(er,en)).
wA=1
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By virtue of Propositions 4.1, 4.2 and 4.3, the nontrivial components of ¢ are
q

(5'5) U(€2p+07 e2p+b) = Z b2p+a§(e2p+07 €2p+a)§(62p+ba e2p+a)e§p+a
a=1

2p+a .
+ Z Z {bnl—)i—q+ag €2p+t-c) 62p+a)g(€2p+b7 e2p+a)€n+q+a
a=1a=1

2p+ ~ -
+b(£+§+a)* 9(e2ptc, €2p+a)g(€2p-+b, 62p+a)e:1+q+a}

2
= Z b2p+a55a5ab€2p+a + Z Z{bnﬁ-—tﬁ-aécadbaen—kq-i-a

a=1a=1

2p+a
+b(n+q+a) Oca%baCntqta )

Using (5.5), the equation (5.3) is written as

q q s
||0-H2 = Z §(0(62p+c7 62p+b)) 6;p+a)2 + Z {§(0(62p+05 62p+b)7 €n+q+ﬁ)2
¢,b,a=1 c,b=1p=1

+§(G(e2p+m €2p+b)7 €Z+q+g)2}
q

q s
= Z (b2p+b60b5ba)2+ Z Z {(bii—;iaécb(sﬁaﬁ

¢,b,a=1 c,b=1 g,a=1
2
(b(fbiqm) Oebdga)”}
q
2 +b 2p+b
= > (bata) +ZZ{ (bfrgta)” + (b(£+q+a)*)2}'
a=1 b=1a=1

Hence, we get

q s
(5.6) ol = D [(bapea)® + SLOP 2 + (B0, )%,

a=1 a=1

Moreover, we have from (5.5)

* 2p+b 2p+b *
(5-7) 0(62p+b’ 62p+b) = b2p+662p+b + z:l{bnljl-z+aen+Q+a + b(ﬁqura)*en—&-q—i-a}'
o=
By virtue of (5.4) and (5.7), we obtain
q
(58) n2 H}IH2 = Z 62p+b7 e?p—i—b) (e2p+a7 e2p+a))

a:

q
2 + 2p+
= Z b2p+a + Z Z{ nl-)‘rqﬁ-a 2 (b(£+g+a)*)2}
a=1 a=1a=1
q s

2p+b 2p+a 2p+b 2p+a
+ >0 2 Berabiidia + Vo gra) intara)
b#a=1a=1
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Thus we have from (5.6) and (5.8)

q s
2 2 2 2 +b 2p+ 2p+b 2p+
59) I = ol + 3 S0+ s L)
a=1a=

The equation (5.9) means

Theorem 5.1. If an n-dimensional pseudo-umbilical CR-submanifold M in
an Lc.K.-manifold M is anti-holomorhpic, then the submanifold M is totally
geodesic or the length || o || of the second fundamental form o and the mean
curvature ||H|| have the relation ||o|| = n||H]||.

86. Pseudo-umbilical C'R-submanifolds in an l.c.K.-space form

Let M(c) be an l.c.K-space form with the constant holomorphic sectional
curvature c. Then, by virtue of (3.3), we have

(6.1) Rioop = R + 300, 000) — 300, 00),

where R, and 0, are respectively the componernt of R and o with respect
to the adapted frame, that is,

(6'2) Rwuu)\ = R(@w, €vs Cu, 6)\)7 Oux = U(e,uv 6>\).

From (6.1), we have

n
(63) r= Z Ruz\)\u + TL2”H||2 - ||U||27
HyA=1
where r is the scalar curvature with respect to the induced metric.
n
Next, we calculate Z RHM# in an l.c.K.space form M(c)
puA=1
We can separate it as

no 2p poa
Y. R = D R +2) ) ARjepra)epra)
A A=1

Gi=1 j=1a=1

R pya)pta)is} T D Riaptn)@pta)2pta)2pih)
b,a=1

p
= > A{Rjiij + 2Rjiinj + Rjrivinje }
ji=1
P a4 q
+4ZZR (2p-+a)(2p+a); Z (2p-+b)(2p+a)(2p-+a) (2p-+b) -
j=1a=1
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Since we know Rj«jxi=j» = Rjijj and Ry (2pya)(2pta)j* = Lj2p+a)(2pta)js the
above equation is

n p p q
(6.4) Z Ry = 2 Z (Rjiij + Rjirivj) + 42 Z Rj(2p+a)(2p+a)j
wA=1 Jyi=1 j=1la=1
q ~
+ D~ Repit)epra)@pa)@pit)-
b,a=1
Thus using (6.4), (6.3) is written as
P g

p
(6.5) ro= 2% (Rjij+ Rjirirj) +4) Y Riopra)2p+a)i
Jii=1 j=la=1

q
+ " Repiny@pra)@prayepts) + 02 HI? = llo].
b,a=1

We have from (2.3)

4Rjiij = (85561 — 65i6j:) + 3(8:i Pjj — 6;i Pji + 055 Py — 65:Pij).
So, we obtain
P P

(6.6) 43 Rjij = (p—1)(pc+6_ Py).

ji=1 i=1
Similarly, we have from (2.3)

4R;iij = c(8j30i — 8ji8js) + 3(0:iPy; — 6jiPyi).

So, we have

P P
(6.7) 43" Rjmirj = (p—1)(pc+3>_ Py).

ji=1 i=1

Moreover, we have from (2.3)

4R;(9p+a)(2p+a)j = €0jj0aa + 3(Pjj0aa + 65 Popta)(2pta))-

Thus we get

p q p q
(6.8) 4> Y Rjopra)@pra)y = Pic+3{aY_ Pii+p Y Popia)2pra)}-
j=la=1 j=1 a=1
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Finally, since we get

ARty @pta) 2pra)2prt) =  C(OubOaa — Obadba) + 3(6aaPap-b)(2p+b)
—0baF(2p+5)(2p+a) T ObE(2p+a)(2p+a)
—0baP(2pta)(2p+a))
we obtain

q

q
(6.9) 4 Z R(2p+b)(2p+a)(2p+a)(2p+b) =(qg—1)(gc+6 Z P(2p+b)(2p+b))'
b,a=1 b=1

Substituting (6.6), (6.7), (6.8) and (6.9) into (6.5), we obtain

p
(6.10) r = (n*—n—2p)c+6(2n—3—p)> P
7j=1

q
+6(n —1) Y Paprayzpra) + 407 H|* = 4]o]*.
a=1

From (5.3), we have

Theorem 6.1. In an n-dimensional pseudo-umbilical CR-submanifold M in
an l.c.K.-space form M(c), the mean curvature ||H|| satisfies the following
inequality.

p
(6.11) |H|? > 4n2{47’—(n —n—2p)c—6(2n—3—p)> P}
j=1

q
_6<n - 1) Z P(2p+a)(2p+a)}‘

a=1

In particular, in the equality case of (6.11), we have from (6.10) and (6.11),
the submanifold M is totally geodesic and the scalar curvature r with respect
to the induced metric satisfies

(6.12) 4r = (n* —n—2p)c+6(2n—3—p ZP]]—I—G -1) ZP(2p+a )(2p+a)-
J=1 a=1

Corollary 6.2. In an n-dimensional pseudo-umbilical CR-submanifold M in
a complez space form M(c), the mean curvature |H|| satisfies the following
equality.

1
2 2
(6.13) |H|* > 2 {4r — (n* —n —2p)c}.
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In particular, in the equality case of (6.13), we have from (6.10) and (6.11),
the submanifold M is totally geodesic and the scalar curvature v with respect
to the induced metric satisfies

(6.14) 4r = (n® —n — 2p)e.

Substituting (5.9) into (6.10), we obtain

p q
(6.15) 4r = (n® —n—2p)c+6(2n—3—p) Y _Pj;+6(n—1) > Popia)@pta)

j=1 a=1
I - 2p+b 2 2p+b 2
P+ pt+a D+ pt+a
Y Y e g T Ve ) Vi ar )
b#a=1a=1

Thus we have

Proposition 6.3. In a pseudo-umbilical CR-submanifold M in an l.c. K.-space

form M(c), the scalar curvature r with respect to the induced metric is given
by (6.15).

Corollary 6.4. In a pseudo-umbilical CR-submanifold M in a complex space
form M(c), the scalar curvature r with respect to the induce metric is given by

q S
b
(6.16) dro= (0 —n=2p)c+4 > DO bl
b#a=1a=1
2p+b 2p+a
Hntqra)Untrar)
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