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Abstract. The object of the present paper is to study some curvature con-
ditions on Kenmotsu manifolds. Also, we classify Kenmotsu manifolds which
satisfy P-C=0,C-C=0,Z-C=0,C-Z=0and C-C =0, where P is
the projective curvature tensor, Z is the concircular curvature tensor, C is the
quasi-conformal curvature tensor and C' is the conformal curvature tensor.
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§1. Introduction

The product of an almost contact manifold M and the real line R carries a
natural almost complex structure. However if one takes M to be an almost
contact metric manifold and supposes that the product metric G on M x R is
Kaehlerian, then the structure on M is cosymplectic ([6]) and not Sasakian.
On the other hand Oubina [9] pointed out that if the conformally related
metric e?!G, t being the coordinate on R, is Kaehlerian, then M is Sasakian
and conversely.

In [11], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold
M, the sectional curvature of plane sections containing £ is a constant, say c. If
¢ > 0, M is a homogeneous Sasakian manifold of constant sectional curvature.
If ¢ =0, M is the product of a line or a circle with a Kaehler manifold of con-
stant holomorphic sectional curvature. If ¢ < 0, M is a warped product space
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R x yC". In 1971, Kenmotsu studied a class of contact Riemannian manifolds
satisfying some special conditions ([8]). We call it Kenmotsu manifold.

The notion of the quasi-conformal curvature temsor was given by Yano
and Sawaki [12]. According to them a quasi-conformal curvature tensor C' is
defined by

(1.1) C(X,Y)Z = aR(X,Y)Z+b[S(Y,Z2)X —S(X,2)Y
+9(Y, 2)QX — g(X. Z)QY]
~ L+ 29(Y, 2)X — g(X. 2)Y ),

where a and b are constants and R, .S, () and 7 are the Riemannian curvature
tensor type of (1,3), the Ricci tensor of type (0,2), the Ricci operator defined
by ¢(QX,Y) = S(X,Y) and scalar curvature of the manifold respectively. If
a=1and b= ——L then (1.1) takes the form

C(X,Y)Z = R(X,Y)Z

(1.2) LIS, 2)X — S(X, 2)Y + (Y, 2)QX ~ 9(X, 2)QV]
+m[g(y> Z)X —g(X, Z2)Y]
- c(x,v)Z

where C' is the conformal curvature tensor ([5]). Thus the conformal curvature
tensor C' is a particular case of the tensor C. For this reason C is called the
quasi-conformal curvature tensor. A manifold (M™,g), n > 1, shall be called
quasi-conformally flat if the quasi-conformal curvature tensor C = 0. It is
known ([2]) that the quasi-conformally flat manifold is either conformally flat
if @ # 0 or, Einstein if @ = 0 and b # 0. Since, they give no restrictions for
manifolds if a = 0 and b = 0, it is essential for us to consider the case of a # 0
or b # 0.
We next define endomorphisms R(X,Y) and X A4 Y of x(M) by

RX, Y)W =VxVyW — VyVxW = Vix W,

(X Aa Y)W = A(Y, W)X — A(X, W)Y,
respectively, where X, Y, W € x(M) and A is the symmetric (0, 2)—tensor.

On the other hand, the projective curvature tensor P and the concircular
curvature tensor Z in a Riemannian manifold (M", g) are defined by

(1.3) P(X,Y)W = R(X, Y)W — ﬁ(x s Y)W,
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(1.4) Z(X, Y)W = R(X, Y)W — m(x Ny Y)W,

respectively.
An almost contact metric manifold is said to be an n—Einstein manifold if
the Ricci tensor S satisfies the condition

S(X,Y) = Mg(X,Y) + dan(X)n(Y),

where A1, A9 are certain scalars. A Riemannian or a semi-Riemannian manifold
is said to semisymmetric if R(X,Y)- R = 0, where R(X,Y) is considered as a
derivation of the tensor algebra at each point of the manifold for the tangent
vectors X, Y.

Kenmotsu manifolds have been studied by many authors such as De and
Pathak [3], Jun, De and Pathak [7], Ozgiir and De [10] and many others.

In the present paper we have studied some curvature conditions on Ken-
motsu manifolds. We have classified Kenmotsu manifolds which satisfy P-C' =
0,C-C=0,Z-C=0,C-Z=0and C-C =0, where P is the projective cur-
vature tensor, Z is the concircular curvature tensor, C is the quasi-conformal
curvature tensor and C' is the conformal curvature tensor.

§2. Preliminaries

Let (M"™,¢,£,1n,9) be an n-dimensional (where n = 2m + 1) almost contact
metric manifold, where ¢ is a (1,1)—tensor field, £ is the structure vector
field, n is a 1—form and g is the Riemannian metric. It is well known that the
(¢,&,m, g) structure satisfies the conditions ([1])

(2.1) P*X =X +n(X)¢, g(X, &) =n(X),

¢§ =0, n(¢pX) =0, n(§) =1,
9(¢X,0Y) = g(X,Y) —n(X)n(Y),

for any vector fields X and Y on M™".
If moreover

(Vxo)Y = —g(X,9Y )¢ —n(Y)9X,

where V denotes the Riemannian connection of g hold, then (M™, ¢,£,n,g) is
called a Kenmotsu manifold. In this case, it is well known ([8]) that

(2.2) R(X,Y)E =n(X)Y —n(Y)X,



92 A. YILDIZ, U.C. DE & B.E. ACET

(2.3) S(X,8) = =(n = 1)n(X),
where S denotes the Ricci tensor. From (2.2), it easily follows that

(2.4) R(X, Y = g(X,Y)§ = n(Y)X,

(2.5) R(X,£)¢ = n(X)§ — X.

In a Kenmotsu manifold, using (2.3) and (2.4), equations (1.3), (1.4), (1.2),
and (1.1) reduce to

(2.6) P& X)Y = —g(X,Y)§ — —S(X,V)E,

27 ZEXY = (4 ) (—g(X Y )E+n()X),
n—1+7

(2.8) CEY)W = m{Q(Y, W)E —n(W)Y'}

_ﬁ{S(Y, W)E - n(W)QY},

(2.9) CEY)W = K{nW)Y —g(¥,W)¢}
+o{S(Y, W)§ — n(W)QY},
respectively, where K = a + (n — 1)b+ (=% + 2b).

Let {e;} (1 <i < n) be an orthonormal basis of the tangent space at any
point. Then the Ricci tensor and the scalar curvature of M are defined by

S(X,Y) = g(R(e;, X)Y, ),
i=1

and

respectively.
Since S(X,Y) = ¢g(QX,Y), we have

S(¢X,9Y) = g(QoX, ¢Y),
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where @ is the Ricci operator. Using the properties g(X,¢Y) = —g(¢X,Y),
Q¢ = ¢Q, (2.1) and (2.3), we get

S(¢X,¢0Y) = S(X,Y) + (n = Dn(X)n(Y).
Also we have ([1])
(Vxn)Y = g(X,Y) = n(X)n(Y).

A Kenmotsu manifold M™ is said to be an n-Einstein manifold if its Ricci
tensor S is of the form

S(X,Y) = Mg(X,Y) + Aan(X)n(Y),

for any vector fields X and Y, where Ay = 1+ -=5 and A2 = —(n + -T5).
Now, we define P(X,Y)-C, Z(X,Y)-C, C(X,Y) - C, C(X,Y) - Z and
C(X,Y)-C as

(P(X,Y)-C)YUV)W = P(X,Y)C(UV)W —C(P(X,Y)U,V)W
(2.10) —C(U,P(X,Y)V)W — C(U,V)P(X,Y)W,

(Z(X,Y)-OWUVW = Z(X,Y)CU VW —C(Z(X,Y)U V)W
(2.11) —CWU, Z(X,Y)V)W - C(U,V)

CX,Y)-OYUVIW = CX,Y)C(U V)W —C(C(X, YU V)W
(2.12) —C(U,C(X,Y)V)W - C(U,V)

CX,Y)-2)0(UVW = CX,Y)Z(U V)W - Z(C(X,Y)U, V)W
(2.13) —Z(U,C(X,Y)V)W — Z(U,V)C(X, Y)W,

(C(X,Y)-C)U V)W = C(X,Y)C(U, V)W —C(C(X,Y)U, V)W
(2.14) —C(U,C(X,Y)V)W — C(U,V)C(X, Y)W,

respectively, where X, Y, U, VW € x(M).
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§3. Kenmotsu manifolds satisfying P(£,Y)-C =0
In this section we consider a Kenmotsu manifold M™ satisfying the condition
(3.1) PEY)-C=0.
From (2.10), we have

(P(&Y)-C)Z, U)W = P(EY)C(Z,UW - C(P(£,Y)Z,U)W
(3.2) —C(Z,P(&,Y)U)W — C(Z,U)P(E, Y)W = 0.

Taking the inner product with X and using (2.6) in (3.2), we have

g(ch(Z,U}W)n(X) 9(Y. Z)g(C&, u)w, X)
(3:3) —9(Y,U)g(C(Z, &)W, X) — g(Y,W)g(C(Z,U)¢, X)

F LSV, C(Z,0)W)(X) — (Y, 2)g(C(&, U)W, X)
—S(Y,U)g(C(Z,§)W, X) = S(Y,W)g(C(Z,U)¢, X)} = 0.
Taking U = ¢ in (3.3), we have
34) gV, C(Z,HW)n(X) — g(Y,W)g(C(Z,£), X)
F (S, C(Z,OW(X) - SV, W)g(C(Z,€)6 X)} = 0.

Using (2.9) in (3.4), we get

K{g(¥, 2)n(X)n(W) + ——S(Y, Z)n(X)n(W)
Y W)n(X)n(2) ~ o(Y, W)g(X, 2)
(35) F LSV Wn(X)n(Z) — = S(YV, W)g(X, 2)}

—B{S(Y, Z)n(X)n(IW) + ——S(QY, Z)n(X)n(W)

—5(X, Z2)g(Y, W) = (n = 1)g(Y, W)n(X)n(Z)

LSV, W)S(X, Z) = S(Y, W)n(X)n(Z)} =0,
where S(QY, Z) = S*(Y, Z).

Let {e;} (1 <i < n) be an orthonormal basis of the tangent space at any
point. Then the sum for 1 < i < n of the relation (3.5) for Y = W = ¢; gives

(3.6) {T+nn—1)}pS(X,Z2) — Kg(X,Z)+ {K + (n — 1)b}n(X)n(Z)] = 0.
Let Uy and Uy be a part of M satisfying 7+ n(n — 1) = 0 and
(3.7) bS(X,Z2) - Kg(X,Z)+{K + (n—1)b}n(X)n(Z) =0,
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respectively. In the case of 74+n(n—1) # 0, if b = 0, from (3.7) we get a = 0.
This is the contradiction. Thus we find b # 0. By virtue of (3.7), we obtain
& =14 I, which yields

-
n—1

S(X.2) = (1+ —=)g(X, 2) = (n+ ——n(X)n(2).

Hence we have the following;:

Theorem 1. Let M™ be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition P(,Y)-C =0. Then M is a part of

1. 7= —n(n —1), that is, the scalar curvature is the negative constant, or

2. an n— Einstein manifold.

§4. Kenmotsu manifolds satisfying C(£,Y)-C =0

In this section we consider a Kenmotsu manifold M™ satisfying the condition

C(,Y)-C=0.
From (2.12), we have
(CEY)-OYUVIW = CEY)CWUVIW =C(CEY)U,VIW
(4.1) —C(U,CEYVIV)W = C(U,V)C(EYIW =

Taking the inner product with X and using U = £ in (4.1), we obtain

(4.2) g@@Y@@WWX) @@@YKWWX)

Let {e;} (1 < i <n) an orthonormal basis of the tangent space at any point.
Now we put X =W =¢; in (4.2). Straightforwardly we calculate the equation
S g((CEY) - C) (&, ei)W,e;) = 0. Then we obtain

(43) 9(CEY)C(E e)Wsei) = g(C(C(E Y)E )W, es)
—9(C(& C(& Y)e)W, i) = g(C(&, &) C(&, Y)W, i) = 0.

Using (1.1) and (2.9) in (4.3), we get

{a+ (n—2)b}[bS(QY, W) — ﬁ{ah +nn—1))+2(n—1)br}S(Y,W)

—(n— 1)Kg(Y,W)] = 0.



96 A. YILDIZ, U.C. DE & B.E. ACET

Thus we have a + (n —2)b =0, or

(4.4) bS(QY, W) — {a(t+n(n—1))+2(n—1)br}S(Y,W)

_
n(n —1)
—(n—=1)Kg(Y,W) =0.

If b =0, then we get

a{t+n(n—1)HSY, W)+ (n—1)g(Y,W)} =0.
We can easily verify that

SY,W) =—(n—-1)g(Y,W).

Therefore we have the following;:

Theorem 2. Let M" be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C(£,Y) - C = 0. Then we get

1. a+(n—2)b=0, or
2. we find

i) if b= 0, then M is an Einstein manifold,
i) if b # 0, then we get

S(QY, W) = (% 1S, W) + (n— 1)%9(1/, W),

Now we need the following;:

Lemma 1. ([4]) Let A be a symmetric (0,2)-tensor at a point x of a semi-
Riemannian manifold (M"™,g), n > 1, and let T = g A A be the Kulkarni-
Nomizu product of g and A. Then, the relation

T -T=0aoQ(gT), aeR
1s satisfied at x if and only if the condition
A’=aA+)g, X€ER
holds at x.
From Theorem 2 and Lemma 1 we get the following:

Corollary 1. Let M™ be an n—dimensional (n > 1) Kenmotsu manifold sat-
isfying the condition C(&,Y)-C =0, then T -T = aQ(g,T), where T =gn A
and o = % —-n+1.
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§5. Kenmotsu manifolds satisfying Z(¢,Y)-C =0

In this section we consider a Kenmotsu manifold M™ satisfying the condition
Z(EY)-C=0.
From (2.11), we have

(Z(&Y)- O UVIW = Z(EY)CWU V)W = C(Z(EY)U, V)W
(5.1) —CU, Z(&,Y)V)W — C(U,V)Z(E, Y)W = 0.

Now using U = ¢ in (5.1), we have

(5.2) Z(EY)CEVIW = C(Z(EY)E, V)W
—C(&ZEY)V)W = C(EV)Z(E Y)W =0.

Taking the inner product with X in (5.2) and using (2.7), we get

{14 ————Hg(X.Y)n(C(&, V)W) — g(¥. C(¢, V)W )n(X)

(n—1)
(5.3) —g(X,C(Y, V)W) + g(C(&, V)W, X)n(Y)
—g(C(E Y)W, X)n(V) — g(C(£, V)Y, X)n(W)

+9(Y,W)g(C(€, V)€, X)} = 0.

Again from (2.7), we have 7 # —n(n — 1). Thus

9(X, Y )n(C(§, VIW) = g(V, C(&, V)W )n(X) = g(X, C(Y, V)W)
(5:4) +g(C(&, V)W, X)n(Y) — ( (& Y)W X)n(V) = g(C(E, V)Y, X)n(W)
+g(Y,W)g(C(€, V)€, X) =

Using (2.9) in (5.4), we get

—a{g(X,Y)g(V.W) + g(R(Y, V)W, X) — g(X,V)g(Y, W)}

—b(n — D{g(X,Y)g(V,W) — g(X, Y )n(V)n(W) — g(X, V)g(Y, W)
(5.5)  +g(Y,W)n(X)n(V)} +b{S(Y,W)g(X,V) — S(X,Y)g(V, W)

=S¥, W)n(X)n(V) + SX, Y )n(V)n(W)} = 0.

Let {e;} (1 < i < n) be an orthonormal basis of the tangent space at any
point. Then the sum for 1 < i < n of the relation (5.5) for Y = W = ¢; gives

(5.6) (b—a)S(X,V)={(n—1a+(n—1)%b+br}g(X,V)
—b{7 +n(n —1)in(X)n(V).
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If a = b(# 0), then we have a{7 + n(n — D)}H{g(X,V) — n(X)n(V)} = 0.
Because of (2.7), we find 7 + n(n — 1) # 0. Thus a # b holds. We obtain
{a+(n—2)bH{7+n(n—1)} =0 from (5.6), which means that a+ (n—2)b = 0.
Thus equation (5.6) can be rewritten as follows:

—)g(X,Y) (0 (X ().

S(X,V)=(1+ —

Hence we have the following;:

Theorem 3. An n—dimensional (n > 1) Kenmotsu manifold M™ satisfying
the condition Z(£,Y) - C =0 is an n—Finstein manifold.

§6. Kenmotsu manifolds satisfying C(£,Y)-Z =0

In this section we consider a Kenmotsu manifold M™ satisfying the condition

From (2.13), we have

CEY)-2) (U V)W = C(¢
(6.1) —Z

Putting U = £ in (6.1), we have

) (j*(»s,Y)N(&, V)W ((}“(& Y)& )

Taking the inner product with X € x(M) in (6.2) and using (2.9), we get

K{g(Y, Z(&, V)W)n(X) = n(Z(&, V)W)g(Y, X) = g(Z(&, V)W, X)n(Y)
+9(Z(Y, V)W, X) +g(Z (&, Y)W, X)n(V) — g(Y,W)g(Z (&, V>§ X)
+9(Z(& V)Y, X)n(W)} = b{S(Y, Z(&, V)W )n(X) — n(Z (£, V)W)S(Y, X)
+(n = Dg(ZEVIW, X)n(Y) + g(Z(QY, V)W, X) + g(Z (£, QY)W, X)n(V)
— S(Y,W)g(Z(&, V)&, X) + g(Z(£,V)QY, X)n(W)} = 0.

Using (1.4) and (2.7) in the above equation, we obtain

(6.3)  K{g(R(Y, V)W, X) +g(Y,X)g(V,W) — g(X,V)g(Y, W)}
—b{g(R(QY, V)W, X) + S(Y, X)g(V,W) = S(Y,W)g(X,V)} = 0.
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Let {e;} (1 < i < n) be an orthonormal basis of the tangent space at any
point. Then the sum for 1 <i < n of the relation (6.3) for X =V = e; gives

E{S(Y,W) + (n = 1)g(Y, W)} = b{S*(Y, W) + (n — 1)S(Y, W)} = 0.
When b = 0, the above equation can be rewritten as follows:
K{SY, W) + (n - g(Y, W)} = 0,
which means that K{7 +n(n—1)} = 0. From (2.7), we find 7+ n(n—1) # 0.

Thus we get K = 0, namely, a = 0. Therefore we get b # 0 and

(64)  SQYV,W)= (5 —n+ DSV, W) 4 (n — 1) 3 g(¥, W)

This leads to the following:

Theorem 4. In an n-dimensional (n > 1) Kenmotsu manifold M if the con-
dition C(£,Y) - Z = 0 holds on M, then the equation (6.4) is satisfied on
M.

From Theorem 4 and Lemma 1 we get the following:

Corollary 2. Let M be an n-dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C(,Y)-Z =0, then T -T = aQ(g,T), where T = gn A
and o = % —-n+1

§7. Kenmotsu manifolds satisfying C'(£,Y)-C =0

In this section we consider a Kenmotsu manifold M™ satisfying the condition

C(&,Y)-C=o.

From (2.14), we have

(CEY)-OUVIW = CEY)CWU VW = C(CEY)UVIW
(7.1) —C(U,C(E,Y)V)W — C(U,V)C(£,Y)W = 0.
Taking the inner product with X and using U = £ in (7.1), we obtain

(7:2) 9(C(&Y)C(E VIW, X) = g(C(C(E, Y)E, V)W, X)
—9(C(& C(&Y)VIW, X) — g(C(6, V)C(E, Y)W, X) =0.

Let {e;} (1 < i < n) be an orthonormal basis of the tangent space at any
point. Now we put X = V = ¢; in (7.2). Straightforwardly we calculate
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the equation 37, g((C(£,Y) - C)(£,e;)W, e;) = 0. Then from (1.1), (2.8) and
(2.9), we obtain

{

a
n—2

+OHSQY, W) ~ [+ — = — (n = L)IS(¥, W)
—[r+n-1gY,W)} =0.

Let U; and Us be a part of M satisfying a + b(n — 2) = 0 and

T

(73) S@QV,W)=[-——

+2—n|SY,W)+[r+n—1gY,IWV).

This leads to the following:

Theorem 5. In n—dimensional (n > 1) Kenmotsu manifold M™ satisfying
the condition C(£,Y) - C = 0. Then we get

1. a+(n—2)b=0, or

2. a+b(n —2) #0, then the equation (7.3) holds on M.

From Theorem 5 and Lemma 1 we get the following:

Corollary 3. Let M be an n—dimensional (n > 1) Kenmotsu manifold satis-
fying the condition C(,Y)-C =0, then T -T = aQ(g,T), where T = gn A
and o = -5 +2 —n.
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