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Abstract. We discuss exponential families admitting almost complex struc-
tures which are parallel relative to an exponential connection (e–connection)
or mixture connection (m–connection). The multinomial distribution, negative
multinomial distribution and multivariate normal distribution are important
examples of the exponential family. We give almost complex structures which
are parallel relative to the exponential or mixture connection for these expo-
nential families. Also, we prove spaces of the multinomial distribution and
negative multinomial distribution are of constant curvature with respect to the
α–connection.
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§1. Introduction

Statistical models in information geometry have a Fisher metric as a Rieman-
nian metric, and admit a torsion-free affine connection which is constructed
from expectations of derivatives of a probability density ([1], [2]). This affine
connection is called an α–connection, denoted by ∇(α), where α is a real num-
ber, and conjugate relative to the Fisher metric is a (−α)–connection. The
0–connection is a Levi-Civita connection with respect to the Fisher metric.
Particularly, ∇(1) (resp. ∇(−1)) is said to be an exponential connection (resp.
mixture connection) or e–connection (resp. m–connection) simply and de-
noted by ∇(e) (resp. ∇(m)). The statistical model of an exponential family
(resp. mixture family) is 1–flat (resp. (−1)–flat). The e–connection and
m–connection are conjugate with respect to the Fisher metric. The e and
m–connections include important concepts in information geometry.
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2 K. TAKANO

If a density function can be expressed in terms of functions C, F1, . . . , Fn

on the set χ and a function ϕ on Θ the subset of Rn as

p(x; θ) = exp

[
C(x) +

n∑
s=1

θsFs(x) − ϕ(θ)

]
,(1.1)

then an n–dimensional statistical model Mn = {p(x; θ) | θ = (θ1, . . . , θn) ∈ Θ}
is said to be an exponential family, and we say that θ = (θ1, . . . , θn) are its nat-
ural parameters. This statistical model M may be viewed as an n–dimensional
Riemannian manifold which has natural parameters (θ1, . . . , θn) as a local co-
ordinate system. We denote the Fisher metric and the α–connection by g and
∇(α), respectively. Then the triple (M, g,∇(α)) is a statistical manifold. Also,
the pair (g,∇(1)) is a Hessian structure ([4]). The multinomial distribution or
negative multinomial distribution which are discrete distributions, the multi-
variate normal distribution, Dirichlet distribution or von Mises-Fisher distri-
bution which are continuous distributions, these distributions are important
examples of the exponential family. Especially, the multivariate normal dis-
tribution is important on statistics. In [5], L. T. Skovgaard discussed a space
of a multivariate normal distribution as a Riemannian manifold. In [7], we
treated the statistical submersion with respect to statistical models. Also, we
studied geodesics relative to the α–connection such that special spaces of the
multivariate normal distribution with a covariance matrix diag (v11, . . . , vnn)
or diag (σ2, . . . , σ2) in [9].

Also, in [6] we defined a Kähler-like statistical manifold. Let J be an almost
complex structure. Then we can define another almost complex structure J∗

relative to the Riemannian metric. Moreover, J is parallel with respect to an
affine connection ∇ if and only if so is J∗ with respect to a conjugate ∇∗. We
gave examples of statistical models satisfying these properties in [10]. In [8],
we defined an analogy of a Sasakian structure on the statistical manifold.

§2. Statistical manifolds with almost complex structures

Let (M, g) and ∇ be a Riemannian manifold and affine connection, respec-
tively. We define another affine connection ∇∗ by

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ)(2.1)

for vector fields X, Y and Z on M . An affine connection ∇∗ is called conjugate
(or dual) of ∇ with respect to g. The triple (M, g,∇) is called a statistical
manifold if both ∇ and ∇∗ are torsion-free ([3]). Clearly (∇∗)∗ = ∇ holds.
It is easy to see that 1

2 (∇ + ∇∗) is a metric connection. We denote by R
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and R∗ the curvature tensors with respect to the affine connection ∇ and its
conjugate ∇∗, respectively. Then we find for vector fields X, Y, Z and W

g(R(X,Y )Z,W ) = −g(Z,R∗(X,Y )W ),(2.2)

where R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z. Thus R vanishes identically if and
only if so is R∗. If the curvature tensor R with respect to the affine connection
∇ satisfies

R(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y },(2.3)

then the statistical manifold (M, g,∇) is called a space of constant curvature
k.

An almost complex structure on a manifold M is a tensor field J of type
(1,1) such that J2 = −I, where I stands for an identity transformation. An
almost complex manifold is such a manifold with a fixed almost complex struc-
ture. An almost complex manifold is necessarily orientable and must have an
even dimension. If J preserves the metric g, that is,

g(JX, JY ) = g(X,Y )(2.4)

for vector fields X and Y on M , then (M, g, J) is an almost Hermitian mani-
fold. Now, we consider the Riemannian manifold (M, g) with an almost com-
plex structure J which has another tensor field J∗ of type (1,1) satisfying

g(JX, Y ) + g(X,J∗Y ) = 0.(2.5)

Then (M, g, J) is called an almost Hermite-like manifold. We see that (J∗)∗ =
J , (J∗)2 = −I and

g(JX, J∗Y ) = g(X,Y ).(2.6)

If J is parallel with respect to the affine connection ∇, then (M, g,∇, J) is
called a Kähler-like statistical manifold. By virtue of (2.5), we get

g((∇ZJ)X,Y ) + g(X, (∇∗
ZJ∗)Y ) = 0(2.7)

for vector fields X, Y and Z on M . Hence we have ([6])

Lemma A. (M, g, J) is an almost Hermite-like manifold if and only if so is
(M, g, J∗). Moreover, (M, g,∇, J) is a Kähler-like statistical manifold if and
only if so is (M, g,∇∗, J∗).

In a Kähler-like statistical manifold, we find

R(X,Y )JZ = JR(X,Y )Z.(2.8)
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If M is of constant curvature k, then we find from (2.3) and (2.8)

k{g(Y, JZ)g(X,W ) − g(X,JZ)g(Y,W )}

= k{g(Y,Z)g(JX,W ) − g(X,Z)g(JY,W )}.

We assume that k 6= 0. Then we obtain (n − 1)g(JX,W ) + g(X,JW ) −
(tr J) g(X,W ) = 0, from which g(JX,W ) = g(X,JW ) if n > 2. Thus we get
n g(JX,W )−(tr J) g(X,W ) = 0. Changing X to JX, we find (trJ) g(JX,W )+
n g(X,W ) = 0. From these two equations, we find g(X,W ) = 0. This is a
contradiction. Hence we have

Theorem 2.1. Let (Mn, g,∇, J) be a Kähler-like statistical manifold. If
M (n ≥ 4) is of constant curvature, then M is flat.

§3. α–connection on the statistical model

Let us consider an n–dimensional Riemannian manifold M as a statistical
model. For a probability density function p(x; θ), the parameter x runs through
a measure space χ with measure dx so that

∫
χ p(x; θ) dx = 1 for each θ. The

discrete case may be obtained by simply replacing occurrences of the integral∫
χ · · · dx with the sum

∑
x∈χ · · · . We put ` = `(x; θ) = log p(x; θ), ∂i = ∂/∂θi

and we assume that ∂1`, . . . , ∂`n are linearly independent. We define compo-
nents of the metric g on M by

gij = E[ ∂i` ∂j` ],(3.1)

where E denotes an expectation relative to p(x; θ). This metric is independent
of the choice of coordinates (θ1, . . . , θn), provided it is finite. It is called a
Fisher metric. Since E[ ∂i` ] = 0, it is possible to write gij as

gij = −E[ ∂i∂j` ].(3.2)

Also we set functions

Γ(α)
ij,k = E

[(
∂i∂j` +

1 − α

2
∂i` · ∂j`

)
∂k`

]
,(3.3)

where α is a real number. We define an α–connection ∇(α) by

g(∇(α)
∂i

∂j , ∂k) = Γ(α)
ij,k.(3.4)

Then the α–connection is torsion-free and ∇(−α) is conjugate of ∇(α) relative
to the Fisher metric. Thus the triple (M, g,∇(α)) is a statistical manifold.
Also, ∇(0) is the Levi-Civita connection with respect to the Fisher metric. We
call α–flat if the curvature tensor with respect to the α–connection vanishes
identically.
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§4. Exponential families admitting almost complex structures

In this section, we discuss an exponential family admitting almost complex
structures which are parallel relative to the exponential connection ∇(1) or
mixture connection ∇(−1).

The probability density function of the exponential family is given by the
equation (1.1). From the normalization condition

∫
χ p(x; θ) dx = 1, we find

exp ϕ(θ) =
∫

χ
exp

[
C(x) +

n∑
s=1

θsFs(x)

]
dx.(4.1)

We can get ∂iϕ · expϕ = exp ϕ · E[Fi ], which implies that

E[ Fi ] = ∂iϕ.(4.2)

Moreover, from ∂j(∂iϕ · expϕ) = exp ϕ · E[FiFj ] and ∂k{(∂i∂jϕ + ∂iϕ ·
∂jϕ) exp ϕ} = exp ϕ · E[ FiFjFk ], it is easy to see that

E[ FiFj ] = ∂i∂jϕ + ∂iϕ · ∂jϕ,(4.3)

E[ FiFjFk ] = ∂k∂j∂iϕ + ∂i∂jϕ · ∂kϕ + ∂j∂kϕ · ∂iϕ + ∂k∂iϕ · ∂jϕ(4.4)
+∂iϕ · ∂jϕ · ∂kϕ.

We set

`(x; θ) = log p(x; θ) = C(x) +
n∑

s=1

θsFs(x) − ϕ(θ).

Owing to (3.2) and ∂i∂j` = −∂i∂jϕ, we have components of the Fisher metric
g as follows:

gij = ∂i∂jϕ.(4.5)

Using of (3.3), (4.2), (4.3) and (4.4), we obtain

Γ(α)
ij,k =

1
2

(1 − α) ∂igjk.(4.6)

We put g−1 = (gij). Thus we find the α–connection from (3.4)

∇(α)
∂i

∂j =
1
2

(1 − α) ∂sgij · gst ∂t.(4.7)

Then the triple (M, g,∇(α)) is a statistical manifold. Also, the curvature
tensor R(α) relative to the α–connection is rewritten as follows:

R(α)(∂i, ∂j)∂k =
c(α)

4
(∂jgks · ∂ig

st − ∂igks · ∂jg
st)∂t,(4.8)
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where we put c(α) = (1 − α)(1 + α). S. Amari ([1]) proved that

Theorem B. The curvature tensor field of the exponential family is given by
(4.8). Especially, the exponential family is ±1–flat.

For any real number α, let J (α) be an almost complex structure on M .
We seek the condition that the almost complex structure J (α) is parallel with
respect to the α–connection. Because of(
∇(α)

∂i
J (α)

)
∂j =

{
∂iJ

(α) t
j +

1
2

(1 − α)
(
J

(α) r
j ∂igrs · gst− ∂igjs · gsrJ (α) t

r

)}
∂t,

we find ∇(α)J (α) = 0 is equivalent to following equations

∂iJ
(α) k
j +

1
2

(1 − α)
(
J

(α) r
j ∂igrs · gsk − ∂igjs · gsrJ (α) k

r

)
= 0.(4.9)

We consider a system of partial differential equations (4.9) satisfying J
(α)k
j (p)

= C
(α) k
j for any p ∈ M and any constants C

(α) k
j such that C

(α) r
j C

(α) k
r = −δ k

j .
We shall show that the system is completely integrable. Letting ∂h operate
on (4.9), we can easily get

∂h

(
∂iJ

(α) k
j

)
+

1
2

(1 − α)
{

J
(α) r
j (∂h∂igrs · gsk + ∂igrs · ∂hgsk)

−(∂h∂igjs · gsr + ∂igjs · ∂hgsr)J (α) k
r

}
+

1
4

(1 − α)2
{

J
(α) r
j ∂hgrs · ∂ig

sk + ∂igjs · ∂hgsr · J (α) k
r

+(∂hgjs · ∂igtu + ∂igjs · ∂hgtu)gsrJ (α) t
r guk

}
= 0,

which yields

∂h

(
∂iJ

(α) k
j

)
− ∂i

(
∂hJ

(α) k
j

)
= − c(α)

4

{
J

(α) r
j (∂igrs · ∂hgsk − ∂hgrs · ∂ig

sk)

−(∂igjs · ∂hgsr − ∂hgjs · ∂ig
sr)J (α) k

r

}
.

When α = ±1, we find ∂h

(
∂iJ

(α) k
j

)
− ∂i

(
∂hJ

(α) k
j

)
= 0. Thus the system of

(4.9) is completely integrable. Also, if α 6= ±1, then it is easy to see from (4.8)
that

∂h

(
∂iJ

(α) k
j

)
− ∂i

(
∂hJ

(α) k
j

)
= −J

(α) r
j R

(α) k
hir + R

(α) r
hij J (α) k

r ,
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where R
(α) k
hij are components of the curvature tensor R(α). By virtue of (2.5)

and (2.8), we can get J
(α) r
j R

(α) k
hir − R

(α) r
hij J

(α) k
r = 0, which implies that the

system of (4.9) is completely integrable. Hence we have

Theorem 4.1. The system of partial differential equations (4.9) is completely
integrable in the exponential family (M, g,∇(α)) for any real number α.

Especially, if α = 1, then we get components of an almost complex structure
J (1)

J
(1) k
j = P k

j ,(4.10)

where P k
j are constants satisfying P r

j P k
r = −δ k

j . It is easy to see from (2.5)

that
(
J (α)

)∗
= −g−1J (α)g. We put

J
(−1) k
j = −P s

r gsjg
rk.(4.11)

Hence we have

Theorem 4.2. We find

(1) (M, g, J (±1)) are almost Hermite-like manifolds,

(2) (M, g,∇(±1), J (±1)) are Kähler-like statistical manifolds.

If (M, g,∇(α)) is of constant curvature, then the curvature tensor of ∇(α)

can express from (4.7) and Theorem B

R
(α) `
ijk = c(α) A(gjkδ

`
i − gikδ

`
j ),

where A is a constant. Because of Theorem 2.1, we have

Theorem 4.3. Let (Mn, g,∇(α)) (n ≥ 4) be of constant curvature satisfying
A 6= 0. In order for M to admit a solution of (3.9) such that (J (α))2 = −I, it
is necessary and sufficient that α = ±1.

Remark 4.1. We put G k
ij = ∂igjs · gsk. Then we find from (4.9)

∂ J (α) +
1
2

(1 − α)[J (α), G ] = 0,

where G = (G k
ij ) and [J (α), G ] = J (α)G − GJ (α).
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§5. Examples of the exponential family admitting almost complex
structures

We consider examples of the discrete or continuous exponential family. We
verify exponential families admitting almost complex structures which is par-
allel relative to ∇(1) or ∇(−1).

Example 5.1 (The Multinomial Distribution). The probability function
of a multinomial distribution is given by

p(x; ξ) =
N !

x1!x2! · · ·xn+1!
px1
1 px2

2 · · · pxn+1

n+1 ,(5.1)

where ξ = (p1, . . . , pn), xk ∈ {0, 1, . . . , N} such that x1 +x2 + · · ·+xn+1 = N ,
and pk (> 0) satisfies p1+p2+· · ·+pn+1 = 1. This probability density function
is rewritten as follows:

p(x; ξ) = exp

(
log N ! −

n+1∑
s=1

log xs! +
n∑

s=1

xs log
ps

pn+1
+ N log pn+1

)
,

which implies that the multinomial distribution is an exponential family. We
put

C(x) = log N ! −
n+1∑
s=1

log xs!,

Fi(x) = xi, θi = log
pi

pn+1
(i = 1, 2, . . . , n),

ϕ(θ) = −N log pn+1

and Mn = {p(x; θ) | θ = (θ1, . . . , θn) ∈ Rn}. Owing to pi = pn+1e
θi

and

p1 + · · · + pn+1 = 1, we get pn+1 =
1

ω(θ)
, where we set ω(θ) = 1 +

n∑
s=1

eθs
,

which yields that

ϕ(θ) = N log ω(θ).(5.2)
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It is clear from (5.2) that

∂iϕ =
N eθi

ω(θ)
,(5.3)

∂i∂jϕ = N

{
eθi

ω(θ)
δij −

eθi
eθj

ω(θ)2

}
,(5.4)

∂i∂j∂kϕ = N

{
eθi

ω(θ)
δijδik − eθi

eθk

ω(θ)2
δij −

eθj
eθk

ω(θ)2
δik − eθi

eθj

ω(θ)2
δjk(5.5)

+
2eθi

eθj
eθk

ω(θ)3

}
,

where ∂i = ∂/∂θi. From (4.5) and (5.4), S. Amari ([1]) calculated the compo-
nents of the Fisher metric g as follows:

gij = N

{
eθi

ω(θ)
δij −

eθi
eθj

ω(θ)2

}
.(5.6)

Also, components gij of an inverse matrix of g are given by

gij =
ω(θ)
N eθi (δij + eθi

).(5.7)

By virtue of (4.6), (5.5) and (5.7), it is easy to see that

Γ(α) k
ij = Γ(α)

ij,s gsk =
1
2

(1 − α)

{
δijδik − eθj

ω(θ)
δik − eθi

ω(θ)
δjk

}
(5.8)

(see [1]). Thus we get

∇(α)
∂i

∂j =
1
2

(1 − α)

{
δij ∂i −

eθj

ω(θ)
∂i −

eθi

ω(θ)
∂j

}
.(5.9)

The space of a multinomial distribution (M, g,∇(α)) is a statistical manifold.
Moreover we have the curvature tensor relative to the α–connection

R(α)(∂i, ∂j)∂k

=
c(α)

4

[{
eθj

ω(θ)
δjk − eθj

eθk

ω(θ)2

}
∂i −

{
eθi

ω(θ)
δik − eθi

eθk

ω(θ)2

}
∂j

]
,

where c(α) = (1 − α)(1 + α). Hence we have
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Theorem 5.1. The space of a multinomial distribution is of constant curva-
ture c(α)

4N .

We discuss (M, g,∇(α)) admits an almost complex structure J (α) which is
parallel relative to an α–connection ∇(α). By virtue of Theorems 4.3 and 5.1,
we have

Theorem 5.2. Let (M, g,∇(α)) be a statistical manifold of the multinomial
distribution. In order for Mn (n ≥ 4) to admit almost complex structures
J (α) which are parallel with respect to ∇(α), it is necessary and sufficient that
α = ±1.

From (4.10), (4.11), (5.6) and (5.7), we put J
(1) k
j = P k

j and

J
(−1) k
j = − eθj

eθk

{(
P j

k + eθk
n∑

r=1

P j
r

)
− 1

ω(θ)

n∑
s=1

(
P s

k + eθk
n∑

r=1

P s
r

)
eθs

}
,

where P k
j are constants satisfying P r

j P k
r = −δ k

j . Hence we have

Theorem 5.3. In the space of a multinomial distribution, we have
(1) (M, g, J (±1)) are almost Hermite-like manifolds,
(2) (Mn, g,∇(±1), J (±1)) are Kähler-like statistical manifolds.

Remark 5.1. If an almost complex structure J (α) on the space of a multi-
nomial distribution is parallel relative to the α–connection, then we find from
(4.9), (5.6) and (5.7)

∂iJ
(α) k
j =

1
2

(1 − α)

{
(δij − δik)J

(α) k
j − eθj

ω(θ)
J

(α) k
i +

δik

ω(θ)

n∑
r=1

J
(α) r
j eθr

}
.

When n = 2 and α = 0, we can get

J
(0) 1
1 = −J

(0) 2
2 = ±

(
eθ1+θ2

1 + eθ1 + eθ2

) 1
2

,

J
(0) 2
1 = ± 1 + eθ2

eθ2

(
eθ1+θ2

1 + eθ1 + eθ2

) 1
2

,

J
(0) 1
2 = ∓ 1 + eθ1

eθ1

(
eθ1+θ2

1 + eθ1 + eθ2

) 1
2

.

Therefore (M2, g,∇(0), J (0)) is a Kählerian manifold.
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Remark 5.2. Let µ = (µ1, . . . , µn) be a mean vector. From µi = N eθi

ω(θ) , we
get

J
(−1) k
j = − µj

µk

{
P j

k +
µk

N pn+1

n∑
r=1

P j
r

− 1
N

n∑
s=1

(
P s

k +
µk

N pn+1

n∑
r=1

P s
r

)
µs

}
.

Example 5.2 (The Negative Multinomial Distribution). The proba-
bility function of a negative multinomial distribution is denoted by

p(x; ξ) =
Γ(m + x1 + · · · + xn)
Γ(m) x1!x2! · · ·xn!

pm
0 px1

1 · · · pxn
n ,(5.10)

where ξ = (p1, . . . , pn), Γ(x) is the gamma function, m is a positive constant,
xk ∈ {0, 1, 2, . . . } for k = 1, 2, . . . , n and pk (> 0) satisfies p0+p1+· · ·+pn = 1.
This probability density function is rewritten as follows:

p(x; ξ) = exp

{
log Γ(m + x1 + · · · + xn) − log Γ(m) −

n∑
s=1

log xs!

+
n∑

s=1

xs log ps + m log(1 − p1 − · · · − pn)

}
,

which means that the negative multinomial distribution is an exponential fam-
ily. We set

C(x) = log Γ(m + x1 + · · · + xn) − log Γ(m) −
n∑

s=1

log xs!,

Fi(x) = −xi, θi = − log pi (i = 1, 2, . . . , n),

ϕ(θ) = −m log(1 − p1 − · · · − pn)

and Mn = {p(x; θ) | θ = (θ1, . . . , θn) ∈ (R+)n}. Because of pi = e−θi
(i =

1, 2, . . . , n), we find

ϕ(θ) = −m log τ(θ),(5.11)
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where we put τ(θ) = 1 −
n∑

s=1

e−θs
. Therefore we get

∂iϕ = −m
e−θi

τ(θ)
,(5.12)

∂i∂jϕ = m

{
e−θi

τ(θ)
δij +

e−θi
e−θj

τ(θ)2

}
,(5.13)

∂i∂j∂kϕ = −m

{
e−θi

τ(θ)
δijδik +

e−θi
e−θk

τ(θ)2
δij +

e−θj
e−θk

τ(θ)2
δik(5.14)

+
e−θi

e−θj

τ(θ)2
δjk +

2e−θi
e−θj

e−θk

τ(θ)3

}
,

where ∂i = ∂/∂θi. Owing to (4.5) and (5.13), we have components of the
Fisher metric g as follows:

gij = m

{
e−θi

τ(θ)
δij +

e−θi
e−θj

τ(θ)2

}
.(5.15)

Also, components gij of an inverse matrix of g are denoted by

gij =
τ(θ)

me−θi (δij − e−θi
).(5.16)

By virtue of (4.6), (5.14) and (5.16), it is clear that following equations hold:

Γ(α) k
ij = Γ(α)

ij,s gsk = − 1
2

(1 − α)

{
δijδik +

e−θj

τ(θ)
δik +

e−θi

τ(θ)
δjk

}
.(5.17)

Thus we get the following α–connection ∇(α) for any real number α

∇(α)
∂i

∂j = − 1
2

(1 − α)

{
δij ∂i +

e−θj

τ(θ)
∂i +

e−θi

τ(θ)
∂j

}
.(5.18)

Therefore the space of a negative multinomial distribution (M, g,∇(α)) is a
statistical manifold. Moreover we find

R(α)(∂i, ∂j)∂k

= − c(α)
4

[{
e−θj

τ(θ)
δjk +

e−θj
e−θk

τ(θ)2

}
∂i −

{
e−θi

τ(θ)
δik +

e−θi
e−θk

τ(θ)2

}
∂j

]
,
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where c(α) = (1 − α)(1 + α). Hence we have

Theorem 5.4. The space of a negative multinomial distribution is of constant
curvature − c(α)

4m .

Next, we consider (M, g,∇(α)) admits an almost complex structure J (α)

which is parallel relative to an α–connection ∇(α). From Theorems 4.3 and
5.4, we have

Theorem 5.5. Let (M, g,∇(α)) be a statistical manifold of the negative multi-
nomial distribution. In order for Mn (n ≥ 4) to admit almost complex struc-
tures J (α) which are parallel with respect to ∇(α), it is necessary and sufficient
that α = ±1.

Taking account of (4.10), (4.11), (5.15) and (5.16), we set J
(1) k
j = P k

j and

J
(−1) k
j = − e−θj

e−θk

{
P j

k − e−θk
n∑

r=1

P j
r

+
1

τ(θ)

n∑
s=1

(
P s

k − e−θk
n∑

r=1

P s
r

)
e−θs

}
,

where P k
j are constants such that P r

j P k
r = −δ k

j . Then we have

Theorem 5.6. In the space of a negative multinomial distribution, we get

(1) (M, g, J (±1)) are almost Hermite-like manifolds,

(2) (M, g,∇(±1), J (±1)) are Kähler-like statistical manifolds.

Remark 5.3. If an almost complex structure J (α) on the space of a negative
multinomial distribution is parallel relative to the α–connection, then it is easy
to see from (4.9), (5.15) and (5.16) that following equations hold

∂iJ
(α) k
j =

1
2

(1 − α)

{
−(δij − δik)J

(α) k
j − e−θj

τ(θ)
J

(α) k
i +

δik

τ(θ)

n∑
r=1

J
(α) r
j e−θr

}
.
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When n = 2 and α = 0, we can get

J
(0) 1
1 = −J

(0) 2
2 = ±

(
e−θ1−θ2

1 − e−θ1 − e−θ2

) 1
2

,

J
(0) 2
1 = ∓ 1 − e−θ2

e−θ2

(
e−θ1−θ2

1 − e−θ1 − e−θ2

) 1
2

,

J
(0) 1
2 = ± 1 − e−θ1

e−θ1

(
e−θ1−θ2

1 − e−θ1 − e−θ2

) 1
2

.

Thus (M2, g,∇(0), J (0)) is a Kählerian manifold.

Remark 5.4. By virtue of µi = m e−θi

τ(θ) , we obtain

J
(−1) k
j = − µj

µk

{
P j

k − p0 µk

m

n∑
r=1

P j
r +

1
m

n∑
s=1

(
P s

k − p0 µk

m

n∑
r=1

P s
r

)
µs

}
,

where µi are components of a mean vector.

Example 5.3 (Special Cases of The Multivariate Normal Distribu-
tion). The probability density function of a multivariate normal distribution
is given by

p(x; ξ) =
1

(
√

2π)n
√

det Σ
exp

[
− 1

2
t(x − µ)Σ−1(x − µ)

]
,

where x = t(x1, . . . , xn) and µ = t(µ1, . . . , µn) are vectors of order n and µ
is called a mean vector, Σ = (σij) is a covariance matrix (symmetric positive
definite matrix) and ξ = (µ1, . . . , µn, σ11, σ12, . . . , σ1n, σ22, . . . , σ2n, . . . , σnn) ∈
R

1
2

n(n+3). The multivariate normal distribution is an exponential family. This
statistical model may be viewed as a 1

2 n(n + 3)–dimensional space which has
(µ1, . . . , µn, σ11, σ12, . . . , σ1n, σ22, . . . , σ2n, . . . , σnn) as a local coordinate sys-
tem. We shall introduce two special spaces of the multivariate normal distri-
bution with the covariance matrix Σ = diag (σ11, . . . , σnn) or diag (σ2, . . . , σ2).

At first, we discuss the space of a multivariate normal distribution with the
covariance matrix diag (σ11, . . . , σnn). Then the probability density function
is denoted by

p(x; ξ) =
1

(
√

2π)n

n∏
i=1

1
√

σii
exp

[
− (xi − µi)2

2σii

]
,
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where ξ = (µ1, . . . , µn, σ11, . . . , σnn). This statistical model M may be viewed
as a 2n–dimensional space Rn × (R+)n which has (µ1, . . . , µn, σ11, . . . , σnn)
as a local coordinate system. The Fisher metric g and α–connection ∇(α)

were given by [7] and [11]. Furthermore, we proved that the statistical man-
ifold (M, g,∇(α)) is Einstein. Also, in order for (M, g,∇(α)) to admit almost
complex structures J (α) which is parallel with respect to the α–connection,
it is necessary and sufficient that α = ±1. Therefore (M, g,∇(±1), J (±1)) are
Kähler-like statistical manifolds (see [10]).

Secondly, if the covariance matrix is diag (σ2, . . . , σ2), then the probability
density function of a multivariate normal distribution can be expressed by

p(x; ξ) =
1

(
√

2πσ)n

n∏
i=1

exp
[
− (xi − µi)2

2σ2

]
,

where ξ = (µ1, . . . , µn, σ). This statistical model L may be viewed as an
(n + 1)–dimensional upper half-space Rn × R+ which has (µ1, . . . , µn, σ) as
a local coordinate system. The Fisher metric g and α–connection ∇(α) were
given by [7] and [11]. In [9], the pair (L, g) is a doubly warped product space
and the statistical manifold (L, g,∇(α)) is of a constant curvature − c(α)

2n , where
c(α) = (1−α)(1+α). Also, for (L, g,∇(α)), in order to admit almost complex
structures J (α) which is parallel relative to the α–connection, it is necessary
and sufficient that α = ±1. Thus (L, g,∇(±1), J (±1)) are Kähler-like statistical
manifolds in [10].

Example 5.4 (The Dirichlet Distribution). The probability density
function of the Dirichlet distribution is denoted by

p(x; ξ) =
Γ(ν1 + · · · + νn)
Γ(ν1) · · ·Γ(νn)

xν1−1
1 · · ·xνn−1

n ,(5.19)

where ξ = (ν1, . . . , νn), xk (> 0) satisfies x1 + x2 + · · ·+ xn = 1 and νk > 0 for
k = 1, 2, . . . , n. This probability density function is rewritten as follows:

p(x; ξ) = exp

[
−

n∑
s=1

{log xs − νs log xs + log Γ(νs)} + log Γ(ν1 + · · · + νn)

]
,

which means that the Dirichlet distribution is an exponential family. We put

C(x) = −
n∑

s=1

log xs,

Fi(x) = log xi, θi = νi (i = 1, 2, . . . , n),

ϕ(θ) =
n∑

s=1

log Γ(νs) − log Γ(ν1 + · · · + νn)
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and Mn = {p(x; θ) | θ = (θ1, . . . , θn) ∈ (R+)n}. Thus we get

ϕ(θ) =
n∑

s=1

log Γ(θs) − log Γ(θ1 + · · · + θn).(5.20)

Because of (5.20), it is easy to see that

∂iϕ = ψ(θi) − ψ(θ1 + · · · + θn),(5.21)

∂i∂jϕ = ψ′(θi) δij − ψ′(θ1 + · · · + θn),(5.22)

∂i∂j∂kϕ = ψ′′(θi) δij δik − ψ′′(θ1 + · · · + θn),(5.23)

where ∂i = ∂/∂θi and ψ(z) = d
dz log Γ(z) = Γ′(z)

Γ(z) is the digamma function.
From (4.5) and (5.22), we have components of the Fisher metric g as follows:

gij = ψ′(θi) δij − ψ′(θ1 + · · · + θn).(5.24)

Also, components gij of an inverse matrix of g are given by

gij =
1

ψ′(θi)

{
δij +

ψ′(θ1 + · · · + θn)
ψ′(θj)Ψ(θ1, . . . , θn)

}
,(5.25)

where we put

Ψ(θ1, . . . , θn) = 1 − ψ′(θ1 + · · · + θn)
n∑

s=1

1
ψ′(θs)

.(5.26)

By virtue of (4.6), (5.23) and (5.25), we obtain

Γ(α) k
ij =

1
2

(1 − α)
{

δij δik
ψ′′(θi)
ψ′(θi)

+
1

ψ′(θk)
Φij(θ1, . . . , θn)

}
,(5.27)

where we set

Φij(θ1, . . . , θn) = δij
ψ′′(θi)ψ′(θ1 + · · · + θn)

ψ′(θi)Ψ(θ1, . . . , θn)
− ψ′′(θ1 + · · · + θn)

Ψ(θ1, . . . , θn)
.

Thus we get the α–connection ∇(α)

∇(α)
∂i

∂j =
1
2

(1 − α)
{

δij
ψ′′(θi)
ψ′(θi)

∂i(5.28)

+Φij(θ1, . . . , θn)
n∑

s=1

1
ψ′(θs)

∂s

}
.
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Therefore the space of a Dirichlet distribution (M, g,∇(α)) is a statistical man-
ifold. Moreover we have

R(α)(∂i, ∂j)∂k(5.29)

=
c(α)

4

{
Φik(θ1, . . . , θn)

ψ′′(θj)
ψ′(θj)2

Aj − Φjk(θ1, . . . , θn)
ψ′′(θi)
ψ′(θi)2

Ai

+(δjk − δik)
ψ′′(θk)ψ′′(θ1 + · · · + θn)

ψ′(θk)Ψ(θ1, . . . , θn)2

n∑
s=1

1
ψ′(θs)

∂s

}
,

where c(α) = (1 − α)(1 + α) and Ai = ∂i +
ψ′(θ1 + · · · + θn)

Ψ(θ1, . . . , θn)

n∑
s=1

1
ψ′(θs)

∂s.

Thus we find

Proposition 5.7. The curvature tensor field of the space of a Dirichlet dis-
tribution is given by (5.29).

Also, owing to (4.10), (4.11), (5.24) and (5.25), we put J
(1) k
j = P k

j and

J
(−1) k
j = −P j

k

ψ′(θj)
ψ′(θk)

+
ψ′(θ1 + · · · + θn)

ψ′(θk)

n∑
s=1

P s
k

+
ψ′(θ1 + · · · + θn)

ψ′(θk)Ψ(θ1, . . . , θn)

n∑
s=1

{
−P j

s

ψ′(θj)
ψ′(θs)

+
ψ′(θ1 + · · · + θn)

ψ′(θs)

n∑
t=1

P t
s

}
,

where P k
j are constants satisfying P r

j P k
r = −δ k

j . Hence we have

Theorem 5.8. If dimM is even, then we obtain in the space of a Dirichlet
distribution

(1) (M, g, J (±1)) are almost Hermite-like manifolds,

(2) (M, g,∇(±1), J (±1)) are Kähler-like statistical manifolds.

Remark 5.5. If an almost complex structure J (α) on the space of a Dirichlet
distribution is parallel relative to the α–connection, then we get

∂iJ
(α) k
j +

1
2

(1 − α)
{

(δik − δij)
ψ′′(θi)
ψ′(θi)

J
(α) k
j

+
1

ψ′(θk)

n∑
s=1

J
(α) s
j Φis(θ1, . . . , θn) − Φij(θ1, . . . , θn)

n∑
s=1

J
(α) k
s

ψ′(θs)

}
= 0,

where we have used (4.9), (5.24) and (5.25).
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Example 5.5 (The von Mises-Fisher Distribution). Let Sn−1 be an
unite sphere of Rn. For µ = (µ1, . . . , µn) ∈ Sn−1 and x = (x1, . . . , xn) ∈ Sn−1,

we put 〈µ, x〉 =
n∑

s=1

µsxs. The probability density function of the von Mises-

Fisher distribution is denoted by

p(x; ξ) = Cn(κ) exp
(
κ 〈µ, x〉

)
,(5.30)

where κ > 0 and ξ = (µ1, . . . , µn, κ). This is a probability distribution on the
sphere Sn−1 and

Cn(κ) =
κp

(2π)p+1Ip(κ)
,(5.31)

where p = (n−2)/2 and Ip(κ) is the modified Bessel function of the first kind.
This probability density function is rewritten as follows:

p(x; ξ) = exp{κ 〈µ, x〉 + log Cn(κ)},

which means that the von Mises-Fisher distribution is an exponential family.
We get C(x) = 0,

Fi(x) = xi, θi = κµi (i = 1, 2, . . . , n),

ϕ(θ) = − log Cn(κ)

and Mn = {p(x; θ) | θ = (θ1, . . . , θn) ∈ Rn}. This manifold Mn is a product
of the sphere Sn−1 and the half line R+. From µ ∈ Sn−1, we find κ = 〈θ, θ〉

1
2 .

Thus we can get

ϕ(θ) = log Ip(κ) − p log κ + (p + 1) log 2π.(5.32)

Because of (5.32), it is easy to see from following equations with respect to
the modified Bessel function of the first kind

I ′p(κ) =
1
2

{
Ip−1(κ) + Ip+1(κ)

}
,

2p

κ
Ip(κ) = Ip−1(κ) − Ip+1(κ)

that

∂iϕ = Fp(κ)θi,(5.33)

∂i∂jϕ = Fp(κ) δij +
F ′

p(κ)
κ

θiθj ,(5.34)

∂i∂j∂kϕ =
F ′

p(κ)
κ

(δijθ
k + δjkθ

i + δkiθ
j) +

1
κ

(
F ′

p(κ)
κ

)′

θiθjθk,(5.35)
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where ∂i = ∂/∂θi and

Fp(κ) =
Ip+1(κ)
κ Ip(κ)

.

From (4.5) and (5.34), we have components of the Fisher metric g as follows:

gij = Fp(κ) δij +
F ′

p(κ)
κ

θiθj .(5.36)

Also, components gij of an inverse matrix of g are given by

gij =
1

Fp(κ)
δij −

F ′
p(κ)

κFp(κ) {κFp(κ)}′
θiθj .(5.37)

By virtue of (4.6), (5.36) and (5.37), we obtain

Γ(α) k
ij =

1 − α

2Fp(κ)
{
F ′

p(κ) (δjk θi + δik θj)(5.38)

+F ′
p(κ)

(
1 − κ

{κFp(κ)}′

)
δijθ

k

+
Fp(κ)

(
F ′

p(κ)

κ

)′
− 2F ′

p(κ)2

κ {κFp(κ)}′
θiθjθk

 .

Therefore we obtain

∇(α)
∂i

∂j =
1 − α

2Fp(κ)
{
F ′

p(κ) (θi ∂j + θj ∂i)(5.39)

+F ′
p(κ)

(
1 − κ

{κ Fp(κ)}′

)
δij

n∑
s=1

θs∂s

+
Fp(κ)

(
F ′

p(κ)

κ

)′
− 2F ′

p(κ)2

κ {κFp(κ)}′
θiθj

n∑
s=1

θs∂s

 .

Thus the space of a von Mises-Fisher distribution (M, g,∇(α)) is a statistical
manifold. Moreover we have

R(α)(∂i, ∂j)∂k(5.40)

=
c(α)

4

[
F ′

p(κ)
κ2Fp(κ)

{
1 −

F ′
p(κ)

Fp(κ)

}
θk(θi∂j − θj∂i)

+
2κF ′

p(κ)2

{κ2Fp(κ)2}′
(δik∂j − δjk∂i)

−Hp(κ) (δjkθ
i − δikθ

j)
n∑

s=1

θs∂s

]
,
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where we put

Hp(κ) =
{

F ′
p(κ)

κ Fp(κ)

}2

+ F ′
p(κ)

{
2F ′

p(κ)
{κ2Fp(κ)2}′

}′

.

Thus we find

Proposition 5.9. The curvature tensor field of the space of a von Mises-
Fisher distribution is given by (4.39).

Also, by virtue of (4.10), (4.11), (5.36) and (5.37), we put J
(1) k
j = P k

j and

J
(−1) k
j = −P j

k −
F ′

p(κ)
κFp(κ)

θj
n∑

s=1

P s
k θs

+
F ′

p(κ)
κ{κFp(κ)}′

θk
n∑

r=1

{
P j

r +
F ′

p(κ)
κFp(κ)

θj
n∑

s=1

P s
r θs

}
θr,

where P k
j are constants satisfying P r

j P k
r = −δ k

j . Hence we have

Theorem 5.10. If dimM is even, then we obtain in the space of a von
Mises-Fisher distribution

(1) (M, g, J (±1)) are almost Hermite-like manifolds,
(2) (M, g,∇(±1), J (±1)) are Kähler-like statistical manifolds.

Remark 5.6. If an almost complex structure J (α) on the space of a von
Mises-Fisher distribution is parallel with respect to ∇(α), then we can get

∂iJ
(α) k
j +

1 − α

2κ Fp(κ)

[
F ′

p(κ)
{

1 −
κF ′

p(κ)
{κFp(κ)}′

} (
θkJ

(α) i
j − δij

n∑
s=1

θsJ (α) k
s

)

−F ′
p(κ)

(
θjJ

(α) k
i − δik

n∑
s=1

J
(α) s
j θs

)

+Kp(κ) θi
n∑

s=1

(
θkθsJ

(α) s
j − θjθsJ (α) k

s

)]
= 0,

where we put

Kp(κ) =
(

F ′
p(κ)
κ

)′

−
2F ′

p(κ)2

κ {κFp(κ)}′
−

κF ′
p(κ)

{κFp(κ)}′

(
F ′

p(κ)
κ

)′

.
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