On super mean labeling of some graphs

P. Jeyanthi, D. Ramya and P. Thangavelu

(Received July 23, 2009; Revised May 24, 2010)

Abstract. Let G be a (p,q)-graph and $f:V(G) \to \{k,k+1,k+2,k+3,\ldots,p+q+k-1\}$ be an injection. For each edge e=uv, let $f^*(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then f is called a k-super mean labeling if $f(V) \cup \{f^*(e):e\in E(G)\}=\{k,k+1,k+2,\ldots,p+q+k-1\}$. A graph that admits a k-super mean labeling is called k-super mean graph. In this paper, we present k-super mean labeling of $C_{2n}(n\neq 2)$ and super mean labeling of Double cycle C(m,n), Dumb bell graph D(m,n) and Quadrilateral snake Q_n .

AMS 2000 Mathematics Subject Classification. 05C78.

 $\mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Super mean labeling, super mean graph, k- super mean graph.

§1. Introduction

By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of a graph G are denoted by V(G) and E(G) respectively. The disjoint union of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Let C_m and C_n be two disjoint cycles with $u \in V(C_m)$ and $v \in V(C_n)$. The double cycle, denoted by C(m, n), is the graph obtained by identifying u and v. The dumb bell graph D(m, n) is obtained by joining the two vertices u and v with an edge.

The antiprism graph G on 2n vertices has the vertex set $\{u_i, v_i : 1 \le i \le n\}$ and the edge set $\{u_i u_{i+1}, v_i v_{i+1}, u_1 u_n, v_1 v_n : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\} \cup \{v_i u_{i-1}, v_1 u_n : 2 \le i \le n\}$.

Any quadrilateral snake Q_n is obtained from a path $u_1u_2u_3...u_n$ by joining u_i and u_{i+1} to new vertices v_i and $w_i (1 \le i \le n-1)$ respectively and joining v_i to $w_i (1 \le i \le n-1)$. That is, every edge of the path is replaced by the cycle C_4 . $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. For notations and terminology we follow $\lceil 2 \rceil$.

§2. Preliminary Results

The concept of super mean labeling was introduced in [6] and further discussed in [3, 4, 5]. B. Gayathri et al. extended the notion of k-super mean labeling of graphs [1]. Let G be a (p,q)-graph and $f:V(G) \to \{k,k+1,k+2,k+3,\ldots,p+q+k-1\}$ be an injection. For each edge e=uv, let $f^*(e)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. Then f is called a k-super mean labeling if $f(V) \cup \{f^*(e):e\in E(G)\}=\{k,k+1,k+2,\ldots,p+q+k-1\}$. A graph that admits a k-super mean labeling is called k-super mean graph. We use the following results in the subsequent theorems.

Theorem 2.1. [6] Any path P_n is a super mean graph.

Theorem 2.2. [6] Let $G_1 = (p_1, q_1)$ and $G_2 = (p_2, q_2)$ be two super mean graphs with super mean labeling f and g respectively. Let $f(u) = p_1 + q_1$ and g(v) = 1. Then the graph $(G_1)_f * (G_2)_g$ obtained from G_1 and G_2 by identifying the vertices u and v is also a super mean graph.

Theorem 2.3. [6] Any odd cycle C_{2n+1} is a super mean graph.

Remark 2.4. [6] C_4 is not a super mean graph.

§3. k-Super Mean Graph

In this section we establish k-super mean labeling of the graphs such as even cycle (except C_4), antiprism on 2n vertices (n > 4), the generalized prism $C_n \times P_m$ (n is odd) and the grid $P_m \times P_n$ with one random crossing edge in every square.

Theorem 3.1. Any even cycle $C_{2n}(n \neq 2)$ is a k-super mean graph.

Proof. Let $V(C_{2n}) = \{u_1, u_2, u_3, \dots, u_{2n}\}.$ For $n \neq 2$, define $f: V(C_{2n}) \to \{k, k+1, k+2, k+3, \dots, p+q+k-1 = 4n+k-1\}$ by

$$f(u_1) = k,$$

$$f(u_2) = k + 2,$$

$$f(u_3) = k + 6,$$

$$f(u_4) = k + 11,$$

$$f(u_{4+i}) = k + 11 + 4i \text{ for } 1 \le i \le n - 3,$$

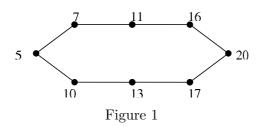
$$f(u_{n+1+i}) = 4(n-i)k \text{ for } 1 \le i \le n - 3,$$

$$f(u_{2n-1}) = k + 8,$$

$$f(u_{2n}) = k + 5.$$

Then $f(V) = \{k, k+2, k+5, k+6, k+8, k+11, k+12, k+15, k+16, \dots, k+4n-9, k+4n-8, k+4n-5, k+4n-4, k+4n-1\}$ and $\{f^*(e) : e \in E(C_{2n})\} = \{k+1, k+3, k+4, k+7, k+9, k+13, k+14, \dots, k+4n-7, k+4n-6, \dots, k+4n-3, k+4n-2\}$. Clearly $f(V) \cup \{f^*(e) : e \in E(C_{2n})\} = \{k, k+1, k+2, \dots, k+4n-1\}$. So f is a k-super mean labeling. Hence $C_{2n}(n \neq 2)$ is a k-super mean graph. \square

Example 3.2. The 5-super mean labeling of C_8 is given in Figure 1.



Theorem 3.3. An antiprism G on 2n vertices (n > 4) is a k-super mean graph.

Proof. Let $\{u_i, v_i : 1 \le i \le n\}$ be the 2n vertices of the antiprism graph G. Case (i) n is odd. Take n = 2s + 1.

Define
$$f: V(G) \to \{k, k+1, k+2, k+3, \dots, p+q+k-1 = 6n+k-1\}$$
 by

$$f(u_1) = k;$$

$$f(u_2) = k + 5;$$

$$f(u_{2+i}) = k + 5 + 4i \text{ for } 1 \le i \le s - 1;$$

$$f(u_{s+2}) = k + 4s - 2;$$

$$f(u_{s+2+i}) = k + 4s - 2 - 4i \text{ for } 1 \le i \le s - 1;$$

$$f(v_1) = k + 8s + 4;$$

$$f(v_2) = k + 8s + 9;$$

$$f(v_{2+i}) = k + 8s + 9 + 4i \text{ for } 1 \le i \le s - 1;$$

$$f(v_{s+2}) = k + 12s + 2;$$

$$f(v_{s+2+i}) = k + 12s + 2 - 4i \text{ for } 1 \le i \le s - 1.$$

It can be verified that f is a k-super mean labeling of G.

Case (ii) n is even. Take n = 2s.

Define
$$f:V(G) \rightarrow \{k,k+1,k+2,k+3,\ldots,p+q+k-1=6n+k-1\}$$
 by
$$f(u_1) = k;$$

$$f(u_2) = k+2;$$

$$f(u_3) = k+6;$$

$$f(u_4) = k+11;$$

$$f(u_{4+i}) = k+11+4i \text{ for } 1 \leq i \leq s-3;$$

$$f(u_{s+2}) = k+4s-4;$$

$$f(u_{s+2+i}) = k+4s-4-4i \text{ for } 1 \leq i \leq s-3;$$

$$f(u_{2s}) = k+5;$$

$$f(v_1) = k+8s+5;$$

$$f(v_2) = k+8s;$$

$$f(v_2) = k+8s+1;$$

$$f(v_3) = k+8s+1;$$

$$f(v_5) = k+8s+11;$$

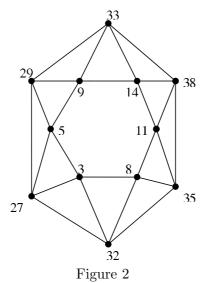
$$f(v_{5+i}) = k+8s+11+4i \text{ for } 1 \leq i \leq s-3;$$

$$f(v_{s+3+i}) = k+12s-4;$$

$$f(v_{s+3+i}) = k+12s-4-4i \text{ for } 1 \leq i \leq s-3.$$

Clearly the induced edge labels are distinct. Therefore f is a k-super mean labeling of G. Hence G is a k-super mean graph. \Box

Example 3.4. The 3-super mean labeling of antiprism on 12 vertices is given in Figure 2.



Theorem 3.5. The graph $C_n \times P_m$ is a k-super mean graph where n is an odd integer and m is any integer.

Proof. Let $\{u^i_j: 1 \leq j \leq n, 1 \leq i \leq m\}$ be the vertices of $C_n \times P_m$. Take n=2s+1.

Define $f: V(C_n \times P_m) \to \{k, k+1, k+2, k+3, \dots, p+q+k-1 = n(3m-1) + k-1\}$ by

$$f(u_{j}^{1}) = k + 2j - 2 \text{ for } 1 \le j \le s + 1;$$

$$f(u_{s+2}^{1}) = k + 2s + 3;$$

$$f(u_{s+2+j}^{1}) = k + 2s + 3 + 2j \text{ for } 1 \le j \le s - 1;$$

$$f(u_{1}^{2}) = k + 8s + 3;$$

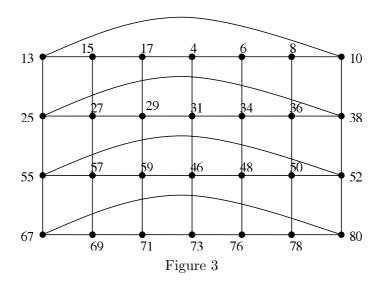
$$f(u_{1+j}^{2}) = k + 8s + 4 + 2j \text{ for } 1 \le j \le s;$$

$$f(u_{s+2}^{2}) = k + 6s + 3;$$

$$f(u_{s+2+j}^{2}) = k + 6s + 3 + 2j \text{ for } 1 \le j \le s - 1.$$

For m > 2, $f(u_j^m) = f(u_j^{m-2}) + 6n$ for $1 \le j \le n$. One can prove that f is a k-super mean labeling of $C_n \times P_m$. Hence the theorem.

Example 3.6. The 4-super mean labeling of $C_7 \times P_4$ is give in Figure 3.

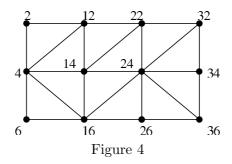


Theorem 3.7. The grid $P_m \times P_n$ with one random crossing edge in every square is a k-super mean graph.

Proof. Let $\{u_i^j: 1 \leq j \leq m, 1 \leq i \leq n\}$ be the vertices of $P_m \times P_n$. Define f as follows: $f(u_i^j) = k+2j-2+(2i-2)(2m-1)$ for all $1 \leq j \leq m, 1 \leq i \leq n$. Hence

the edges $u_i^j u_{i+1}^j$ will get the label k+2j-2+(2i-1)(2m-1) and the edge $u_i^j u_i^{j+1}$ will get the label k+2j-1+(2i-2)(2m-1). A crossing edge is either $u_i^j u_{i+1}^{j+1}$ or $u_{i+1}^j u_i^{j+1}$ and both will get the label k+2j-1+(2i-1)(2m-1). Clearly f is a k-super mean labeling. Hence the grid $P_m \times P_n$ with one random crossing edge in every square is a k-super mean graph.

Example 3.8. The 2-super mean labeling obtained from $P_3 \times P_4$ is given in Figure 4.

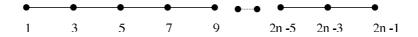


Note 3.9. The k-super mean labeling of the graph G is the generalization of super mean labeling of G.

§4. Super Mean Graph

Theorem 4.1. Let $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ be two super mean graphs with $u \in V(G_1)$ has the label $p_1 + q_1$ and $v \in V(G_2)$ has the label 1. Then the graph G which is obtained by joining u to v by any path P_n is a super mean graph.

Proof. Let f and h be the super mean labelings of G_1 and G_2 respectively. Let $u_1, u_2, u_3, \ldots, u_n$ be vertices of path P_n . By Theorem 2.1, P_n is a super mean graph. Let g be the super mean labeling of P_n as follows.



Then $g(u_1) = 1$ and $g(u_n) = 2n - 1$. By Theorem 2.2, $(G_1)_f * (P_n)_g = G_3$ (say) is a super mean graph. Let k be the super mean labeling of G_3 . Again by Theorem 2.2, $(G_3)_k * (G_2)_h = G$ is a super mean graph. Hence G is a super mean graph.

Theorem 4.2. The double cycle C(m,n) is a super mean graph for all $m \geq 3$ and $n \geq 3$.

Proof. Case (i) $m \neq 4$ and $n \neq 4$.

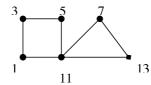
Since all cycles except C_4 are super mean graphs, by Theorem 2.2, C(m, n) is a super mean graph.

Case (ii) At least one of m, n is 4. Assume m = 4.

Let u_1, u_2, u_3, u_4 be the vertices of C_4 and $V(C_n) = \{v_i : 1 \le i \le n\}$. Identify u_4 and v_1 . Then $V(C(m, n)) = \{u_i, v_j : 1 \le i \le 4, 1 \le j \le n \text{ with } u_4 = v_1\}$.

Subcase (i) n is odd. Take n = 2s + 1.

A super mean labeling of C(4,3) is given by



For n > 3, define $f: V(C(4, n)) \to \{1, 2, 3, \dots, p + q = 2n + 7 = 4s + 9\}$ by

$$f(u_1) = 1;$$

$$f(u_2) = 3;$$

$$f(u_3) = 5;$$

$$f(u_4) = f(v_1) = 11;$$

$$f(v_2) = 7;$$

$$f(v_3) = 12;$$

$$f(v_4) = 4s + 9;$$

$$f(v_{4+i}) = 2(2s - i) + 9 \text{ for } 1 \le i \le s - 2;$$

$$f(v_{s+2+i}) = 2(4 - i) + n + 3 \text{ for } 1 \le i \le s - 1.$$

It can be established that f is a super mean labeling.

Subcase (ii) n is even. Take n = 2s.

Define
$$f: V(C(4, n)) \to \{1, 2, 3, \dots, p + q = 2n + 7 = 4s + 7\}$$
 by

$$f(u_1) = 1;$$

$$f(u_2) = 3;$$

$$f(u_3) = 5;$$

$$f(u_4) = f(v_1) = 11;$$

$$f(v_2) = 7;$$

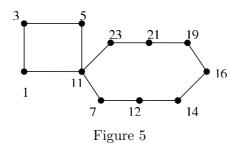
$$f(v_3) = 12;$$

$$f(v_{3+i}) = 12 + 2i \text{ for } 1 \le i \le s - 2;$$

$$f(v_{s+1+i}) = 2s + 2i + 9 \text{ for } 1 \le i \le s - 1.$$

It can be verified that f is a super mean labeling. Hence the double cycles C(m,n) are super mean graphs for all $m \geq 3$ and $n \geq 3$.

Example 4.3. The super mean labeling of C(4,8) is given in Figure 5.



Theorem 4.4. The dumb bell graph D(m, n) is a super mean graph for all $m \ge 3$ and $n \ge 3$.

Proof. We consider the following two cases.

Case (i) $m \neq 4$ and $n \neq 4$.

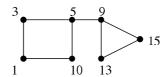
The proof follows from fact that all cycles except C_4 are super mean graphs and by Theorem 4.1.

Case (ii) At least one of m, n is 4. Let m = 4.

Let
$$V(C_m) = \{u_i : i = 1, 2, 3, 4\}$$
 and $V(C_n) = \{v_i : 1 \le i \le n\}$.

Subcase (i) n is odd. Take n = 2s + 1.

Join u_3 and v_3 by an edge. Then $V(D(m,n)) = V(C_m) \cup V(C_n)$ and $E(D(m,n)) = E(C_m) \cup E(C_n) \cup \{u_3v_3\}$. A super mean labeling of D(4,3) is given below:



For
$$n > 3$$
, define $f: V(D(m, n)) \to \{1, 2, 3, \dots, p + q = 2n + 9 = 4s + 11\}$ by

$$f(u_1) = 1;$$

$$f(u_2) = 3;$$

$$f(u_3) = 5;$$

$$f(u_4) = 10;$$

$$f(v_1) = 15;$$

$$f(v_2) = 12;$$

$$f(v_3) = 9;$$

$$f(v_4) = 16;$$

$$f(v_{4+i}) = 16 + 2i \text{ for } 1 \le i \le s - 2;$$

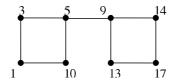
$$f(v_{s+3}) = 2s + 15;$$

$$f(v_{s+3+i}) = 2s + 15 + 2i$$
 for $1 \le i \le s - 2$.

One can verify that f is a super mean labeling.

Subcase (ii) n is even. Take n = 2s.

Join u_3 and v_2 with an edge. Then $V(D(m,n)) = V(C_m) \cup V(C_n)$ and $E(D(m,n)) = E(C_m) \cup E(C_n) \cup \{u_3v_2\}$. For n = 4, a super mean labeling of D(4,n) is given by



For n > 4, define $f: V(D(m, n)) \to \{1, 2, 3, \dots, p + q = 2n + 9 = 4s + 9\}$ by

$$f(u_1) = 1;$$

$$f(u_2) = 3;$$

$$f(u_3) = 5;$$

$$f(u_4) = 10;$$

$$f(v_1) = 13;$$

$$f(v_2) = 9;$$

$$f(v_3) = 14;$$

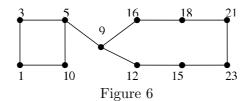
$$f(v_{3+i}) = 14 + 2i \text{ for } 1 \le i \le s - 2;$$

$$f(v_{s+2}) = 2s + 13;$$

$$f(v_{s+2+i}) = 2s + 13 + 2i \text{ for } 1 \le i \le s - 2.$$

It can be established that f is a super mean labeling. Hence the dumb bell graphs D(m, n) are super mean graphs for all $m \geq 3$ and $n \geq 3$.

Example 4.5. The super mean labeling of D(4,7) is given in Figure 6.



Theorem 4.6. Let $C_n (n \geq 3)$ be an odd cycle. Consider n copies of an odd cycle $C_m(m \geq 3)$. If G is a graph obtained by identifying a vertex of each cycle C_m with a vertex of the cycle C_n is a super mean graph.

Proof. Let $u_1, u_2, u_3, \ldots, u_n$ be the vertices of the cycle C_n . Let $u_{1j}, u_{2j}, u_{3j}, \ldots, u_n$ $u_{nj}, 1 \leq j \leq m$, be the vertices of the cycles $C_m^{(1)}, C_m^{(2)}, C_m^{(3)}, \dots, C_m^{(n)}$ respectively, identified at each vertex of C_n such that $u_1 = u_{1m}, u_2 = u_{21}, u_3 = u_{21}$ $u_{3m}, \ldots, u_{n-1} = u_{n-1,1}$ and $u_n = u_{nm}$ which means that $u_{1m}, u_{21}, u_{3m}, u_{41}, \ldots, u_{m-1}$ $u_{n-1,1}, u_{nm}$ are the vertices of the cycle C_n .

Take n = 2s + 1 and m = 2t + 1.

Define
$$f: V(G) \to \{1, 2, 3, \dots, (2m+1)n = 8st + 6s + 4t + 3\}$$
 as follows:
For the cycle $C_m^{(1)}, f(u_{1j}) = \begin{cases} 2j - 1 & \text{for } 1 \leq j \leq t + 1 \\ 2j & \text{for } t + 2 \leq j \leq m. \end{cases}$

For the cycle $C_m^{(k)}$, where $2 \le k \le s+1$,

$$f(u_{kj}) = \begin{cases} 2(k-1)m + 2(j-1) + k & \text{for } 1 \le j \le t+1\\ 2(k-1)m + 2(j-1) + k + 1 & \text{for } t+2 \le j \le m. \end{cases}$$

For the cycle $C_m^{(k)}$, where $s+2 \le k \le n$.

$$f(u_{kj}) = \begin{cases} 2(k-1)m + 2(j-1) + k + 1 & \text{for } 1 \le j \le t+1 \\ 2(k-1)m + 2(j-1) + k + 2 & \text{for } t+2 \le j \le m. \end{cases}$$

Now we have $\bigcup_{i=1}^n \{f(V(C_m^{(i)})) \cup f^*(E(C_m^{(i)}))\} = \{1, 2, 3, \dots, 2m\} \cup \{2m+2, 2m+2, 2m+2,$ $3, \ldots, 4m+1$ $\cup \{4m+3, 4m+4, \ldots, 6m+2\} \cup \cdots \cup \{(2m+1)s+1, (2m+1)s+1, (2m+1)s+1$ $2, \ldots, (2m+1)s+2m$ \cup { $(2m+1)(s+1)+2, (2m+1)(s+1)+3, \ldots, (2m+1)(s+1)$ $\{(2m+1)(n-1)+2,\ldots,(2m+1)n\}$. Clearly these labels are all distinct. Further the labels of the edges $u_1u_2, u_2u_3, u_3u_4, \ldots, u_{s+1}u_{s+2}, u_{s+2}u_{s+3}, \ldots$ $u_n u_1$ of the cycle C_n are $2m+1, 4m+2, 6m+3, \ldots, (2m+1)(s+1)+1, (2m+1)(s+1)+1$ $1)(s+2)+1\dots(2m+1)(s+1)$ respectively. It can be easily verified that $f(V) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, \dots, n(2m+1)\}$. Hence G is a super mean graph.

Corollary 4.7. The graph $C_{2n+1} \odot K_2$ is a super mean graph for all n.

Example 4.8. The super mean labeling of G obtained from C_3 by identifying a vertex of the cycle C_5 with each vertex of the cycle C_3 is given in Figure 7.

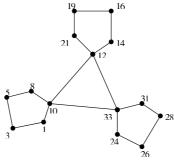


Figure 7

The graph Q_2 is C_4 , and hence it is not a super mean graph [6]. Next we prove Q_n is a super mean graph for all odd values of n.

Theorem 4.9. The quadrilateral snake Q_n , where n is odd, is a super mean graph.

Proof. Let
$$V(Q_n) = \{u_i, v_i, w_i, u_n : 1 \le i \le n-1\}$$
.
Define $f: V(Q_n) \to \{1, 2, 3, \dots, 7n-6\}$ by
$$f(u_1) = 1;$$

$$f(u_{2i}) = f(u_{2i-1}) + 10 \text{ for } 1 \le i \le s;$$

$$f(u_{2i+1}) = f(u_{2i}) + 4 \text{ for } 1 \le i \le s;$$

$$f(v_1) = 3;$$

$$f(v_{2i}) = f(v_{2i-1}) + 4 \text{ for } 1 \le i \le s;$$

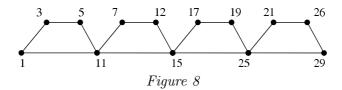
$$f(v_{2i+1}) = f(v_{2i}) + 10 \text{ for } 1 \le i \le s-1;$$

$$f(w_1) = 5;$$

$$f(w_{i+1}) = f(w_i) + 7 \text{ for } 1 \le i \le n-1.$$

Clearly $f(V) \cup \{f^*(e) : e \in E(Q_n)\} = \{1, 2, 3, \dots, 7n - 6\}$. Hence, Q_n where n is odd, is a super mean graph. \square

Example 4.10. The super mean labelig of Q_5 is given in Figure 8.



Theorem 4.11. Let $C_n : u_1u_2u_3...u_nu_1(n \text{ is odd})$ be a cycle. Let G be the graph with $V(G) = V(C_n) \cup \{v_i : 1 \le i \le n\}, E(G) = E(C_n) \cup \{u_iv_i, u_{i+1}v_i : 1 \le i \le n-1\} \cup \{u_nv_n, u_1v_n\}.$ Then G is a super mean graph.

Proof. Take n=2s+1. Define $f:V(G)\to\{1,2,3,\ldots,p+q=5n\}$ by

$$f(u_1) = 1;$$

$$f(u_i) = 5i - 4 \text{ for } 2 \le i \le s + 1;$$

$$f(u_{s+2}) = 5s + 8;$$

$$f(u_{s+2+i}) = 5s + 8 + 5i \text{ for } 1 \le i \le s - 1;$$

$$f(v_1) = 3;$$

$$f(v_i) = 5i - 2 \text{ for } 2 \le i \le s;$$

$$f(v_{s+1}) = 5s + 6;$$

$$f(v_{s+2}) = 5(s+2);$$

$$f(u_{s+2+i}) = 5(s+2) + 5i \text{ for } 1 \le i \le s - 1.$$

Clearly the vertex labels, the induced edge labels are distinct and $f(V) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, \dots, 5n\}$. Hence G is a super mean graph. \square

Theorem 4.12. Let $C_n: u_1u_2u_3 \ldots u_nu_1$ (n is odd) be a cycle. Let G be the graph obtained from C_n by joining the vertices u_i and u_{i+1} by the path P_m^i (m is odd) $1 \le i \le n-1$ and joining the vertices u_n and u_1 by the path P_m^n . Then G is a super mean graph.

Proof. By Theorem 4.11, the theorem is true when m=3. We prove the theorem for m>3. Let $v_1^j, v_2^j, v_3^j, \ldots, v_m^j$ for $1 \leq j \leq m$ be the vertices of the path $P_m^i (1 \leq i \leq n)$ such that $v_m^j = v_1^{j+1} = u_{j+1}$ for $1 \leq j \leq n-1$ and $v_m^n = v_1^1 = u_1$. Take n=2s+1 and m=2t+1.

Define
$$f: V(G) \to \{1, 2, 3, \dots, p + q = n(2m - 1)\}$$
 by

$$f(v_i^1) = 2i - 1 \text{ for } 1 \le i \le t + 1;$$

$$f(v_i^1) = 2i \text{ for } t + 2 \le i \le 2t + 1;$$

$$f(v_i^j) = f(v_i^{j-1}) + 2m - 1 \text{ for } 1 \le i \le 2t + 1 \text{ and } 2 \le j \le s;$$

$$f(v_1^{s+1}) = f(v_m^s) = 1 + (2m - 1)s;$$

$$f(v_2^{s+1}) = 4 + (2m - 1)s;$$

$$\begin{split} f(v_{2+i}^{s+1}) &= 4 + (2m-1)s + 2i \text{ for } 1 \leq i \leq t-2; \\ f(v_{t+1}^{s+1}) &= 2t(2s+1) + s+4; \\ f(v_{t+1+i}^{s+1}) &= 2t(2s+1) + s+4 + 2i \text{ for } 1 \leq i \leq t; \\ f(v_i^{s+2}) &= 4t(s+1) + s+2 + 2i \text{ for } 1 \leq i \leq t+1; \\ f(v_i^{s+2}) &= 4t(s+1) + s+3 + 2i \text{ for } t+2 \leq i \leq 2t+1; \\ f(v_i^j) &= f(v_i^{j-1}) + 2m-1 \text{ for } 1 \leq i \leq 2t+1 \text{ and } s+3 \leq j \leq 2s; \\ f(v_{1+i}^{2s+1}) &= f(v_m^{2s}) + 2i \text{ for } 1 \leq i \leq 2t-1. \end{split}$$

It can be verified that f is a super mean labeling of G. Hence G is a super mean graph. \Box

Example 4.13. The super mean labeling of G with m = 5 and n = 7 is given in Figure 9.

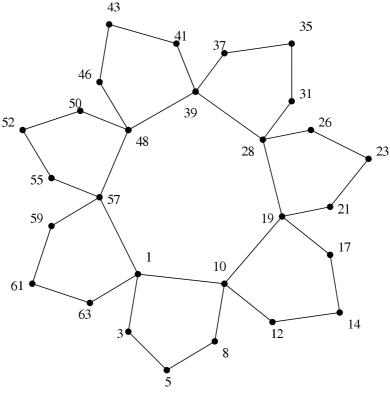


Figure 9

References

- [1] B.Gayathri, M.Tamilselvi and M.Duraisamy, *k Super mean labeling of Graphs*, Proceedings of the International Conference on Mathematics and Computer Sciences, (2008),107-111.
- [2] F.Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).
- [3] P.Jeyanthi, D.Ramya and P.Thangavelu, On Super mean graphs, AKCE J. Graphs. Combin., **6**(1) (2009),103-112.
- [4] P. Jeyanthi, D. Ramya and P. Thangavelu, *Some construction of k-super mean graphs*, International Journal of Pure and Applied Mathematics, **56**(1) (2009), 77-86.
- [5] R. Ponraj and D. Ramya, On super mean graphs of order \leq 5, Bulletin of Pure and Applied Sciences, **25** E (1) 2006, 143 -148.
- [6] D. Ramya, R. Ponraj and P. Jeyanthi, Super mean labeling of graphs, Ars Combin., (To appear).

P. Jeyanthi

Department of Mathematics Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India. E-mail: jeyajeyanthi@rediffmail.com

D. Ramya

Department of Mathematics Dr.Sivanthi Aditanar College of Engineering Tiruchendur- 628 215, Tamil Nadu, India. E-mail: aymar_padma@yahoo.co.in

P. Thangavelu

Department of Mathematics Aditanar College of Arts and Science Tiruchendur- 628 216, Tamil Nadu, India.