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Abstract. A simple graph G admits an H-covering if every edge in E(G) be-
longs to a subgraph of G isomorphic to H. The graph G is said to be H-magic if
there exists a bijection f : V (G)∪E(G) → {1, 2, 3, · · · , |V (G)∪E(G)|} such that
for every subgraph H ′ of G isomorphic to H,

P

v∈V (H′) f(v) +
P

e∈E(H′) f(e)

is constant. Additionally, G is said to be H-supermagic if f(V (G)) =
{1, 2, 3, · · · , |V (G)|}. In this paper, we study H-supermagic labelings of two
classes of connected graph namely fans and ladders.
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§1. Introduction

We consider finite, undirected and simple graphs. The vertex and edge sets of
a graph G are denoted by V (G) and E(G), respectively. Let H be a graph.
An edge-covering of G is a family of subgraphs H1, . . . ,Hk such that each edge
of E(G) belongs to at least one of the subgraphs Hi, 1 ≤ i ≤ k. If every Hi is
isomorphic to a given graph H then we say that G admits an H-covering.
Suppose G admits an H-covering. A total labeling f : V (G) ∪ E(G) →
{1, 2, 3, . . . , |V (G) ∪ E(G)|} is said an H-magic labeling of G if for every
subgraph H ′ of G isomorphic to H,

∑
v∈V (H′) f(v) +

∑
e∈E(H′) f(e) is con-

stant. An H-magic labeling f is said an H-supermagic labeling if f(V (G)) =
{1, 2, 3, . . . , |V (G)|}. A graph that admits H-(super)magic labeling is called
H-(super)magic. The sum of all vertex labels and all edge labels on H (under
a labeling f) is denoted by

∑
f(H). In Figure 1, we show C4-magic and

C4-supermagic labelings of L4.
The H-supermagic labeling was first introduced by Gutiérrez and Lladó [5]

in 2005. They considered star-supermagic and path-supermagic labelings of
some graphs. In [8], Lladó and Moragas gave Cn-supermagic labelings of
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Figure 1: (a). a C4-magic labeling of L4 (b). a C4-supermagic labeling of L4

wheels, windmills, prisms and theta graphs. Cycles-supermagic labeling of
chain graphs kCn-snake, triangle ladders TLn, grids Pm×Pn, for n = 2, 3, 4, 5,
and books Bn can be found in [13]. Maryati et al. [9] proved that some classes
of trees such as subdivision of stars, shrubs, and banana tree graphs are Ph-
supermagic for some h and prove that certain shackles and amalgamations of
a connected graph H are H-supermagic [10].

For H ∼= P2, an H-supermagic graph is also called a super edge-magic graph.
The notion of a super edge-magic graph was introduced by Enomoto at al. [2]
as a particular type of edge-magic graph given by Kotzig and Rosa [6]. There
are many graphs that have been proved to be (super) edge-magic graphs,
see for instance [3, 11, 12, 14, 15]. For further information about (super)
edge-magic graphs, see [4]. The H-magic labeling is related to a face-magic
labeling of a plane graph introduced by Lih [7]. A total labeling f of a plane
graph is said to be face-magic if for every positive integer s, all s-sided faces
have the same weight. The weight of a face under a labeling f is the sum of
labels carried by the edges and vertices surrounding it. Lih [7] allows different
weights for different s. If a plane graph G contains only n-sided faces, then
face-magic labeling of G is also Cn-magic labeling. Other results about this
labeling can be found in [1].

In this paper, we study Cm and Fm-supermagic labelings of fans Fn, and
Cm and Lm-supermagic labelings of ladders Ln for all possible values of m
and n.

§2. Supermagic coverings of fans

In this section we consider Cm and Fm-supermagic labelings of the fans Fn.
We define the fans Fn

∼= Pn + {c} as a graph with

V (Fn) = {c, xi|i = 1, 2, 3, . . . , n}
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and

E(Fn) = {cxi|i = 1, 2, 3, . . . , n} ∪ {xixi+1|i = 1, 2, 3, . . . , n − 1}.

In [7], Lih proved that Fn is C3-supermagic for every n except n ≡ 2 (mod 4).
Furthermore, Ngurah et al. [13] proved that Fn is C3-supermagic for any n ≥ 2.
In the following theorem, we show that Fn is Cm-supermagic for any integer
4 ≤ m ≤ bn+4

2 c.

Theorem 1. Let n ≥ 4 be a positive integer. Then the fan Fn is Cm-
supermagic for any integer 4 ≤ m ≤ bn+4

2 c.

Proof. First, label every vertex in the following way.

• Label the vertex c with 1.

Case 1: n ≡ 0 (mod m − 1)

• Label x1, xm, x2m−1, x3m−2, x4m−3, . . ., xn−m+2 with 2, 3, 4, 5, 6, . . .,
n

m−1 + 1, respectively.

• For 1 ≤ k ≤ m − 2, label x1+k, xm+k, x2m+k−1, x3m+k−2, x4m+k−3,
. . ., xn−m+k+2 with k( n

m−1) + 2, k( n
m−1) + 3, k( n

m−1) + 4, k( n
m−1) + 5,

k( n
m−1) + 6, . . ., (k + 1)( n

m−1) + 1, respectively.

Case 2: n ≡ 1 (mod m − 1)

• Label x1, xm, x2m−1, x3m−2, x4m−3, . . ., xn−m+1, xn with 2, 3, 4, 5, 6,
. . ., n−1

m−1 + 1, n−1
m−1 + 2, respectively.

• For 1 ≤ k ≤ m − 2, label x1+k, xm+k, x2m+k−1, x3m+k−2, x4m+k−3,
. . ., xn−m+k+1 with k( n−1

m−1) + 3, k( n−1
m−1) + 4, k( n−1

m−1) + 5, k( n−1
m−1) + 6,

k( n−1
m−1) + 7, . . ., (k + 1)( n−1

m−1) + 2, respectively.

Case 3: n ≡ t (mod m − 1), where t = 2, 3, 4, . . . ,m − 2

• Label x1, xm, x2m−1, x3m−2, x4m−3, . . ., xn−m−t+2, xn−t+1 with 2, 3,
4, 5, 6, . . ., n−t

m−1 + 1, n−t
m−1 + 2, respectively.

• Label xn−t+2, xn−t+3, xn−t+4, . . . , xn with 2( n−t
m−1) + 3, 3( n−t

m−1) + 4,
4( n−t

m−1) + 5, . . . , t( n−t
m−1) + t + 1, respectively.

• For 1 ≤ k ≤ t, label x1+k, xm+k, x2m+k−1, x3m+k−2, x4m+k−3, . . .,
xn−m−t+k+2 with γk

1 +2, γk
1 +3, γk

1 +4, γk
1 +5, γk

1 +6, . . ., γk
1 +( n−t

m−1 +1),
respectively, where γk

1 = k( n−t
m−1 + 1).
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• For t+1 ≤ k ≤ m−2, label x1+k, xm+k, x2m+k−1, x3m+k−2, x4m+k−3, . . .,
xn−m−t+k+2 with γk

2 +2, γk
2 +3, γk

2 +4, γk
2 +5, γk

2 +6, . . ., γk
2 +( n−t

m−1)+1,

respectively, where γk
2 = k( n−t

m−1) + t.

Next, label every edge as follows.

• For 1 ≤ i ≤ n, label cxi with 3n + 1 − i.

For labeling the remaining edges, let ei = xixi+1, 1 ≤ i ≤ n − 1, and let
q = n − 1.

Case 1: q ≡ 0 (mod m − 2)

• Label e1, em−1, e2m−3, e3m−5, e4m−7, . . ., eq−m+3 with n+2, n+3, n+4,
n + 5, n + 6, . . ., n + q

m−2 + 1, respectively.

• For 1 ≤ k ≤ m− 3, label e1+k, em−1+k, e2m−3+k, e3m−5+k, e4m−7+k, . . .,
eq−m+3+k with γk

3 +2, γk
3 +3, γk

3 +4, γk
3 +5, γk

3 +6, . . ., γk
3 +( q

m−2)+1,

respectively, where γk
3 = k( q

m−2) + n.

Case 2: q ≡ 1 (mod m − 2)

• Label e1, em−1, e2m−3, e3m−5, e4m−7, . . ., eq with n + 2, n + 3, n + 4,
n + 5, n + 6, . . ., n + q−1

m−2 + 2, respectively.

• For 1 ≤ k ≤ m− 3, label e1+k, em−1+k, e2m−3+k, e3m−5+k, e4m−7+k, . . .,
eq−m+2+k with γk

4 +3, γk
4 +4, γk

4 +5, γk
4 +6, γk

4 +7, . . ., γk
4 +( q−1

m−2)+2,

respectively, where γk
4 = k( q−1

m−2) + n.

Case 3: q ≡ t (mod m − 2), where t = 2, 3, 4, . . . ,m − 3

• Label e1, em−1, e2m−3, e3m−5, e4m−7, . . ., eq−t+1 with n+2, n+3, n+4,
n + 5, n + 6, . . ., n + q−t

m−2 + 2, respectively.

• Label eq−t+2, eq−t+2, eq−t+3, . . . , eq with n+2( q−t
m−2)+3, n+3( q−t

m−2)+4,
n + 4( q−t

m−2) + 5, . . . , n + t( q−t
m−2) + t + 1, respectively.

• For 1 ≤ k ≤ t, label e1+k, em−1+k, e2m−3+k, e3m−5+k, e4m−7+k, . . .,
eq−t−m+3+k with γk

5 +2, γk
5 +3, γk

5 +4, γk
5 +5, γk

5 +6, . . ., γk
5 + q−t

m−2 +1,

respectively,γk
5 = k( q−t

m−2 + 1) + n.

• For t + 1 ≤ k ≤ m− 3, label e1+k, em−1+k, e2m−3+k, e3m−5+k, e4m−7+k,
. . ., eq−t−m+3+k with γk

6 +2, γk
6 +3, γk

6 +4, γk
6 +5, γk

6 +6, . . ., γk
6 + q−t

m−2 +1,

respectively, γk
6 = k( q−t

m−2) + n + t.
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Let us denote the total labeling defined above by h. It can be checked that
h(V (Fn)) = {1, 2, 3, . . . , n + 1}; for 1 ≤ i ≤ n−m + 1, h(xi) = h(xi+m−1)− 1,
h(xixi+1) = h(xi+m−2xi+m−1) − 1, and h(cxi) + h(cxi+m−2) = h(cxi+1) +
h(cxi+m−1) + 2.

For 1 ≤ i ≤ n − m + 2, let C
(i)
m be the subcycle of Fn with V (C(i)

m ) =
{c, xj |i ≤ j ≤ i + m − 2} and E(C(i)

m ) = {cxi, cxi+m−2} ∪ {xjxj+1|i ≤ j ≤ i +
m−3}. It is easy to verify that for 1 ≤ i ≤ n−m+1,

∑
h(C(i)

m ) =
∑

h(C(i+1)
m ).

Thus, for 1 ≤ i ≤ n−m+2,
∑

h(C(i)
m ) is constant. Hence, Fn is Cm-supermagic

for any integer 4 ≤ m ≤ bn+4
2 c.

Next, we consider fan-supermagic labelings of fan. Notice that Fn is C3
∼=

F2-supermagic [13] and Fn is trivially Fn-supermagic. In the following theorem,
we show that Fn is Fm-supermagic for all remaining possible values of m.

Theorem 2. Let n ≥ 4 be a positive integer. The fan Fn is Fm-supermagic
for every integer 3 ≤ m ≤ n − 1.

Proof. Define a total labeling of Fn as follows.

• For 1 ≤ i ≤ n − 1, label xixi+1 with n + 1 + i.

• For 1 ≤ i ≤ n, label cxi with 3n + 1 − i.

• Label the vertex c with 1.

For the remaining vertices, we consider three following cases.

Case 1: n ≡ 0 (mod m)

• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−m+1 with 2, 3, 4, 5, . . . , n
m + 1,

respectively.

• For 1 ≤ k ≤ m − 1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . ,
xn−m+1+k with k( n

m)+2, k( n
m)+3, k( n

m)+4, k( n
m)+5, . . . , (k+1)( n

m)+1,
respectively.

Case 2: n ≡ 1 (mod m)

• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−m, xn with 2, 3, 4, 5, . . . , n−1
m +1,

n−1
m + 2, respectively.

• For 1 ≤ k ≤ m−1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . , xn−m+k

with k(n−1
m )+3, k(n−1

m )+4, k(n−1
m )+5, k(n−1

m )+6, . . . , (k +1)(n−1
m )+2,

respectively.

Case 3: n ≡ t (mod m), where t = 2, 3, 4, . . . ,m − 1
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• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−t+1 with 2, 3, 4, 5, . . . , n−t
m + 2,

respectively.

• Label xn−t+2, xn−t+3, xn−t+4, . . . , xn with 2(n−t
m ) + 3, 3(n−t

m ) + 4,
4(n−t

m ) + 5, . . . , t(n−t
m ) + t + 1, respectively.

• For 1 ≤ k ≤ t, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . , xn−m−t+1+k

with k(n−t
m +1)+2, k(n−t

m +1)+3, k(n−t
m +1)+4, k(n−t

m +1)+5, . . . , (k+
1)(n−t

m + 1), respectively.

• For t + 1 ≤ k ≤ m − 1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . ,
xn−m−t+1+k with k(n−t

m ) + t + 2, k(n−t
m ) + t + 3, k(n−t

m ) + t + 4, k(n−t
m ) +

t + 5, . . . , (k + 1)(n−t
m ) + t + 1, respectively.

Denote the total labeling defined above by f . It can be checked that
f(V (Fn)) = {1, 2, 3, . . . , n + 1}; for 1 ≤ i ≤ n − m + 1,

i+m−1∑
j=i

f(xj) = −1 +
i+m∑

j=i+1

f(xj),

i+m−2∑
j=i

f(xjxj+1) = 1 − m +
i+m−1∑
j=i+1

f(xjxj+1),

and
i+m−1∑

j=i

f(cxj) = m +
i+m∑

j=i+1

f(cxj).

For 1 ≤ i ≤ n−m+1, let F
(i)
m be the subfan of Fn with V (F (i)

m ) = {c, xj |i ≤
j ≤ i + m − 1} and E(F (i)

m ) = {xjxj+1|i ≤ j ≤ i + m − 2} ∪ {cxj |i ≤ j ≤
i + m − 1}. It is a routine procedure to verify that for 1 ≤ i ≤ n − m,∑

f(F (i)
m ) =

∑
f(F (i+1)

m ). So, f is an Fm-supermagic labeling of Fn. Hence,
Fn is Fm-supermagic.

In Figure 2, we show a C4-supermagic labeling of F8 and an F4-supermagic
labeling of F10 as defined in the proof of Theorems 1 and 2, respectively.

§3. Supermagic coverings of ladders

Let Ln
∼= Pn × P2 denote the ladder of order 2n and size 3n − 2. Clearly Ln

admits a cycle covering of some even order. As a direct consequence of Lladó
and Moragas’s result (see Theorem 7 [8]), Ln is C4-supermagic for odd n.
Later, Ngurah et al. [13] solved for the remaining cases. In the next theorem,
we show that Ln is also C2m-supermagic for the remaining possible values of
m.
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Figure 2: (a). a C4-supermagic labeling of F8 (b). an F4-supermagic labeling
of F10

Theorem 3. Let n ≥ 4 be a positive integer. Then the ladder Ln is C2m-
supermagic for every integer 3 ≤ m ≤ bn

2 c + 1.

Proof. First, let Ln be a graph with

V (Ln) = {xi, yi|1 ≤ i ≤ n}

and
E(Ln) = {xixi+1, yiyi+1|1 ≤ i ≤ n − 1} ∪ {xiyi|1 ≤ i ≤ n}.

Next, label every edge in the following way.

• For 1 ≤ i ≤ n − 1, label xixi+1 with 2n + i.

• For 1 ≤ i ≤ n − 1, label yiyi+1 with 4n − 1 − i.

• For 1 ≤ i ≤ n, label xiyi with 5n − 1 − i.

Label every vertex in the following way.

Case 1: n ≡ 0 (mod m)

• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−m+1 with 1, 2, 3, 4, . . . , n
m , respec-

tively.

• For 1 ≤ k ≤ m−1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . , xn−m+1+k

with k( n
m)+1, k( n

m)+2, k( n
m)+3, k( n

m)+4, . . . , (k+1)( n
m), respectively.

Case 2: n ≡ 1 (mod m)

• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−m, xn with 1, 2, 3, 4, . . . , (n−1
m ),

(n−1
m ) + 1, respectively.

• For 1 ≤ k ≤ m − 1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . . , xn−m+k

with k(n−1
m )+2, k(n−1

m )+3, k(n−1
m )+4, k(n−1

m )+5, . . . , (k +1)(n−1
m )+1,

respectively.
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Case 3: n ≡ t (mod m), where t = 2, 3, 4, . . . ,m − 1

• Label x1, xm+1, x2m+1, x3m+1, . . . , xn−t+1 with 1, 2, 3, 4, . . . , (n−t
m )+1, re-

spectively.

• Label xn−t+2, xn−t+3, . . . , xn with 2(n−t
m + 1), 3(n−t

m + 1), . . . , t(n−t
m + 1),

respectively.

• For 1 ≤ k ≤ t, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . ., xn−m−t+1+k

with k(n−t
m + 1) + 1, k(n−t

m + 1) + 2, k(n−t
m + 1) + 3, k(n−t

m + 1) + 4, . . .,
k(n−t

m + 1) + n−t
m , respectively.

• For t + 1 ≤ k ≤ m − 1, label x1+k, xm+1+k, x2m+1+k, x3m+1+k, . . .,
xn−m−t+1+k with k(n−t

m )+t+1, k(n−t
m )+t+2, k(n−t

m )+t+3, k(n−t
m )+t+4,

. . ., (k + 1)(n−t
m ) + t, respectively.

Finally, for 1 ≤ i ≤ n, label yi with n + (the label of xi).
Let us denote the total labeling defined above by f . It can be checked that

f(V (Ln)) = {1, 2, 3, . . . , 2n}; for 1 ≤ i ≤ n − m,

f(xi) + f(yi) = f(xm+i) + f(ym+i) − 2,
f(xiyi) + f(xm+i−1ym+i−1) = f(xi+1yi+1) + f(xm+iym+i) + 2;

for 1 ≤ i ≤ n − 2,

f(xixi+1) + f(yiyi+1) = f(xi+1xi+2) + f(yi+1yi+2).

For 1 ≤ i ≤ n − m + 1, let C
(i)
2m, be the subcycle of Ln with

V (C(i)
2m) = {xj , yj |i ≤ j ≤ i + m − 1}

and

E(C(i)
2m) = {xjxj+1, yjyj+1|i ≤ j ≤ i + m − 2} ∪ {xiyi, xi+m−1yi+m−1}.

It is easy to verify that V (C(i)
2m) ∩ V (C(i+1)

2m ) = {xj , yj |i + 1 ≤ j ≤ i + m − 1}
and E(C(i)

2m) ∩ E(C(i+1)
2m ) = {xjxj+1, yjyj+1|i + 1 ≤ j ≤ i + m − 2}.

By using these facts, for 1 ≤ i ≤ n − m, we obtain∑
f(C(i)

2m) =
∑i+m−1

j=i [f(xj) + f(yj)] +
∑i+m−2

j=i [f(xjxj+1) + f(yjyj+1)]+
f(xiyi) + f(xi+m−1yi+m−1)

=
∑i+m

j=i+1[f(xj) + f(yj)] +
∑i+m−1

j=i+1 [f(xjxj+1) + f(yjyj+1)]+
f(xi+1yi+1) + f(xi+myi+m)

=
∑

f(C(i+1)
2m ).

So, for 1 ≤ i ≤ n − m + 1,
∑

f(C(i)
2m) is constant. Hence, f is a C2m-

supermagic labeling of Ln.



ON SUPERMAGIC COVERINGS OF FANS AND LADDERS 75

Figure 3: (a). a C6-supermagic labeling of L6, (b). a C8-supermagic labeling
of L6

In Figure 3 we show a C6-supermagic labeling and a C8-supermagic labeling
of L6 as defined in the proof of Theorem 3.

Next, we consider a Lm-supermagic labeling of Ln. Notice that, Ln is
L2

∼= C4-supermagic and Ln is trivially Ln-supermagic. So, in the following
theorem, we consider a Lm-supermagic labeling of Ln for any integer 3 ≤ m ≤
n − 1.

Theorem 4. Let n ≥ 4 be a positive integer. Then the ladder Ln is Lm-
supermagic for every integer 3 ≤ m ≤ n − 1.

Proof. For proving this theorem, we define the ladder Ln as a graph with
V (Ln) = {xi, yi|1 ≤ i ≤ n} and E(Ln) = {xixi+1, yiyi+1|1 ≤ i ≤ n − 1} ∪
{xiyn+1−i|1 ≤ i ≤ n}.

Define a total labeling of Ln in the following way.

• For 1 ≤ i ≤ n, label xi as in the proof of Theorem 3.

• For 1 ≤ i ≤ n, label yi with n + (the label of xn+1−i).

• For 1 ≤ i ≤ n − 1, label xixi+1 with 2n + i.

• For 1 ≤ i ≤ n, label xiyn+1−i with 5n − 1 − i.

For labeling yiyi+1, we consider two following cases. First, let q = n − 2.
Case 1: q ≡ 0 (mod m − 1)

• Label y1y2, ymym+1, y2m−1y2m, y3m−2y3m−1, y4m−3y4m−2, . . .,
yn−myn−m+1, yn−1yn with 3n, 3n+1, 3n+2, 3n+3, 3n+4, 3n+5, . . .,
3n + ( q

m−1 − 1), 3n + ( q
m−1), respectively.
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• For 1 ≤ k ≤ m − 2, label y1+ky2+k, ym+kym+k+1, y2m+k−1y2m+k,
y3m+k−2y3m+k−1, y4m+k−3y4m+k−2, . . ., yn−m+kyn−m+k+1 with
3n + k( q

m−1) + 1, 3n + k( q
m−1) + 2, 3n + k( q

m−1) + 3, 3n + k( q
m−1) + 4,

3n + k( q
m−1) + 5, . . ., 3n + (k + 1)( q

m−1), respectively.

Case 2: q ≡ t (mod m − 1), where t = 1, 2, 3, . . . ,m − 2

• Label y1y2, ymym+1, y2m−1y2m, y3m−2y3m−1, y4m−3y4m−2, . . .,
yq−t−m+2yq−t−m+3, yq−t+1yq−t+2 with 3n, 3n+1, 3n+2, 3n+3, 3n+4,
3n + 5, . . ., 3n + ( q−t

m−1 − 1), 3n + ( q−t
m−1), respectively.

• Label yαyα+1, yα+1yα+2, yα+2yα+3, . . ., yα+t−1yα+t with 3n+2( q−t
m−1)+1,

3n+3( q−t
m−1)+2, 3n+4( q−t

m−1)+3, . . ., 3n+(t+1)( q−t
m−1)+ t, respectively,

where α = q − t + 2.

• For 1 ≤ k ≤ t + 1, label yk+1yk+2, ym+kym+k+1, y2m+k−1y2m+k,
y3m+k−2y3m+k−1, y4m+k−3y4m+k−2, . . .,yq−t−m+k+2yq−t−m+k+3, with βk

1 ,
βk

1 + 1, βk
1 + 2, βk

1 + 3, βk
1 + 4, . . ., βk

1 + ( q−t
m−1 − 1), respectively, where

βk
1 = k( q−t

m−1 + 1) + 3n.

• For t + 2 ≤ k ≤ m − 2, label yk+1yk+2, ym+kym+k+1, y2m+k−1y2m+k,
y3m+k−2y3m+k−1, y4m+k−3y4m+k−2, . . .,yq−t−m+k+2yq−t−m+k+3, with βk

2 ,
βk

2 + 1, βk
2 + 2, βk

2 + 3, βk
2 + 4, . . ., βk

2 + ( q−t
m−1 − 1), respectively, where

βk
2 = k( q−t

m−1) + 3n + t + 1.

Let us denote the labeling defined above by g. For 1 ≤ i ≤ n − m + 1, it
can be checked that

i+m−1∑
j=i

[g(xj) + g(yn+1−j)] = −2 +
i+m∑

j=i+1

[g(xj) + g(yn+1−j)],

i+m−2∑
j=i

g(xjxj+1) = 1 − m +
i+m−1∑
j=i+1

g(xjxj+1),

i+m−2∑
j=i

g(yn+1−jyn−j) = 1 +
i+m−1∑
j=i+1

g(yn+1−jyn−j),

and
i+m−1∑

j=i

g(xjyn+1−j) = m +
i+m∑

j=i+1

g(xjyn+1−j).

For 1 ≤ i ≤ n − m + 1, let L
(i)
m be the subladder of Ln with V (L(i)

m ) =
{xj , yn+1−j |i ≤ j ≤ m + i − 1} and E(L(i)

m ) = {xjxj+1, yn+1−jyn−j |i ≤ j ≤
m + i − 2} ∪ {xjyn+1−j |i ≤ j ≤ m + i − 1}.



ON SUPERMAGIC COVERINGS OF FANS AND LADDERS 77

In a similar way as in the proof of Theorem 3, for 1 ≤ i ≤ n−m, it is easy
to verify that

∑
g(L(i)

m ) =
∑

g(L(i+1)
m ).

So,
∑

g(L(i)
m ) is constant for all possible values of i. Hence, Ln is Lm-

supermagic for every integer 3 ≤ m ≤ n − 1.

An example of the labeling obtained in the above proof is showed in Figure 4.

Figure 4: an L3-supermagic labeling of L9
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