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Abstract. This paper addresses necessary and sufficient factorizability condi-
tions for classes of second order linear ordinary differential equations (ODEs)
characterized by the degrees of their corresponding polynomial functions coef-
ficients. A pure algebraic method is used to solve a system of linear algebraic
equations whose solutions satisfy a compatibility criterion and generate two
first order differential operators factorizing the considered second order differ-
ential operator. Concrete examples are probed, including special cases of Bécher
ODEs like Heun, extensions of Wangerin and Heine’s differential equations.
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8§1. Introduction

The mathematical description of natural and physical phenomena very of-
ten leads to differential equations (DEs). DEs can be also derived from the
transformations performed on equations modeling given systems. For exam-
ple, many important equations, pertaining to physical and technical applica-
tions, are reducible to Helmhotz equation [1] if time dependence is separated.
This property extends to equations generally describing quite the propaga-
tion of waves like the diffusion equation, the wave equation, the damped wave
equation, the transmission line equation and the vector wave equation. The
Helmhotz and Laplace equations are expressible, using a separation of variables
in appropriate coordinate systems, into linear ordinary differential equations
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206 M. N. HOUNKONNOU AND P. A. DKENGNE

(ODEs) which belong to the class of Bécher equations [2]. For instance, Heine
and Wangerin equations [2, 3], which are special cases of Bocher equations,
appear when the Laplace’s equation is solved in the bi-cyclide and flat-ring
cyclide coordinate systems, respectively.

A great number of methods, including algorithmic and symbolic computa-
tional (e.g. Maple and Mathematica codes) approaches, have been elaborated
in order to study and solve the DEs. However, their efficiency remains lim-
ited to particular forms of DEs with specific properties. Thus, tanh method
[4] and Hirota’s bilinear method [5, 6, 7] aim at constructing particular so-
lutions of soliton, traveling waves and Wronskian types. The supersymmetry
factorization [8, 9, 10] is adapted to solve and to determine the spectrum of
certain classes of differential operators. The Lie method for symmetry reduc-
tion [11, 12] is used for reducing the order when the considered equation has
some infinitesimals. Even the Beke’s method [14] and van Hoiej’s methods
[15] for factorization of ordinary linear differential operators are also restric-
tive in their application. Unfortunately, none of these methods of factorization
does give indication on what type of ODE’s is factorizable or not. In other
words, the existing factorization methods and symbolic computation codes do
not tell us what kinds of linear equations are factorizable. More specifically,
they do not answer to the question: given a second order linear differential
equation, does it admit a factorizable form? The principal goal of this paper
is to partially fulfill such a lack by proceeding to a systematic classification
of factorizable second order linear ODEs with polynomial coefficients whose
degrees satisfy some particular relations, using an algebraic method [13-17] of
differential operator decomposition into a product of lower order differential

operators.
Consider the n-order linear ODEs of the form:
(1.1) P, Dyu =0, D=l
. n u = = —
7 ) d;[‘ )

where u is an unknown function, differentiable in an open subset I' of R, and
P(n, D) is an n-order differential operator defined by:

(1.2) P(n,D) = 3 gu(x)D,
k=0

the gi being differentiable functions in an open subset 2 D I' of R. The method
of factorization consists in seeking a decomposition of the differential operator
(1.2) in the following form:

l l
(1.3) P(n,D) = H Qi(ni, D), with an =n and

=1 =1
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(1.4) Qi(ni, D) = iﬁij($)pj7
=0

where the £;; are differentiable functions in the open subset Q2 of R.

Proposition 1. Let P(n,D) be an operator which can be decomposed into the
form (1.3). If the function ug is a solution of

(1.5) Qi(nu, D)ug = 0,
and uy, ..., u_1 are solutions of the system
l
(1.6) I %Dy = v, j=12...,1-1,
k=l—j+1

where vj, j =1, 2,..., 1 — 1, are solutions of

l—j
(1.7) [[2i(ni.D)w; = o,

i=1
then ug, ui, ..., w—1 are l particular solutions of the equation (1.1).

Proof. Let up and uj, j = 1,2,..., 1 — 1 be solutions of (1.5) and (1.6), re-
spectively. Then

-1

P(n, D)UO = <H Q,(nl, D)) QZ(HZ,D)UO = 0,

i=1

and for j=1,2,...,1—1,

I—j !
P(n,D)u; = < Qi(ni,D)> H Qr(nk, D) | uj

i=1 k=l—j+1
l—j
- H Qz(nl) D)Uj = 07
i=1
where the use of (1.6) and (1.7) has been made. O

Expanding (1.3) leads to the relations between unknown functions L;; of
the differential operators Q;(n;, D) and the known functions g of the original
differential operator P(n, D).
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In the framework of this work, our study is restricted to the second order
linear differential operator

(1.8) P(2,D) = gg(a:)D2 + g1(z)D + go(x).
Provided the factorized form
(1.9) P(2,D) = Q1(1,D)Q2(1,D) = (L11D + L10)(L21D + Lag),

the functions L;; satisfy the following algebraic and differential equations
(1.10)-(1.12):

(1.10) Ll = g,
(1.11) L1oLo1 + £11<£21)x + L1l = g1,
(1.12) L10L20 + L11(L20)z = o

Finally, two particular solutions ug and u; of the equation associated with
the operator P(2, D) defined by (1.8) can be obtained by solving the following
differential equations:

(1.13) Q2(1, D)ug(z) = Lor(z)uj(x) + Loo(x)uo(z) =0,
(1.14) Q1(1,D)vi(x) = Ly(x)vi(x) + Lio(z)v1(x) =0,
(1.15) Q2(1, D)ur(z) = Lo(z)uf(z) + Log(x)ui(z) = v1(2).

Every first order right factor of (1.9) leads to a hyperexponential solution [19],
ug, of the differential equation associated with (1.8) which can be written in
terms of exponential functions. Another solution, u;, of the same equation is
obtained with the functions ug and v;, solutions of (1.13) and (1.14), respec-

tively, as follows:
vi(z)
= —————dx.
ui(z) uo(a:)/uo(m) Lor(7) T

Now, we probe various classes of factorizable second order linear ODEs with
rational coefficients. Dealing with the second order linear differential operator
(1.8), where, for analysis convenience, we define

(1.16)  ga(x) i= Pplz) = Y _ow’,  gi(x) := Qqlz) =Y a7,
i=1 j=1

r

(117) go(CC) = RT(:’C) = Zplxla p,q, TE Na Oiy Vjy Pl € R’
=1

one can deduce from (1.10)-(1.12) the following three types of second order
linear ODEs:

(1.18) Pepi(x)u"(2) + Qper(2) v/ (2) + Rp(z) u(x) =0, keN;
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(1.19) Py(z) v (2) + Qponir(x) v/ () + Rpyn(z)u(z) =0, (k, h) € N* x N;

(1200 Pra(@) o’ (2) + Qi (0) v/ (2) + Re(z) u(z) =0, keN.

Depending on the relations between the degrees p, q, r of the polynomial func-
tions g;, (i =0, 1,2), these ODEs can be factorized into the form (1.9). They
are worth something as they contain a large class of relevant second order
linear ODEs of mathematical physics such as the equations of Heun, Heine
and Wangerin, which will be treated in the sequel.

Recall that, by the fundamental theorem of algebra, the polynomial P, can
be put in the form: Py(z) = a, [[22,(x — X\i)™, where ap, A\; are complex
numbers such that A\; # \; for ¢ # j and a, # 0; pg, m; are positive integers
such that py < p and > *°, m; = p. In what follows, without loss of generality,
we set a, = 1. Besides, using the Euclidean division and the partial fraction
expansion theorem in the set of rational functions with complex coefficients
ClX),

>0 ijj A i, 5
(1.21) = - = E(x) + —d
% @~ A 22 oy
where f1; ; are complex numbers; E(x) is a nonzero polynomial of degree ¢ —p
if ¢ > pand E(x) =0 if ¢ < p. There results that equation (1.8) together with
(1.16) and (1.17) can be transformed into the following canonical form:

po m; o r .’L’l
(122) @)+ | B+ 30 Y s | o)+ = i) = .
i=1 j=1 ’ =1 E

Remark 1. Bécher equations

e 4 zt
(1.23) u”(z) + Z - _])\j u'(z) + Hﬁ%ézoflAi)mi u(x) =0,

=1

where n, r, m; € N, €, a;, pp € C, \j # \j for © # j, are particular cases of
(1.22) with E(x) = 0.

82. Classes of factorizable equations of the first type

In this section, we investigate the classes of factorizable second order linear
ODEs of the type

(2.1)  Perr(z) v(2) + Qs () u'(2) + Ri() u(z) = 0, keN
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explicitly written as

Po k+1 k
(2.2) (H(x - )\Z)mz> u”(x) + Z’ijj u'(z) + (Z plazl> u(z) =0,
j=0 =0

=1

where Y ¥, m; = k + 1, or, equivalently, in the canonical form: (Ey # 0)

pPo m; k l
%, — X
(23) () + [Eo+ Y > '(2) + pOZl—Opl u(z) = 0.

— 0 | u

Proposition 2. (Necessary condition for the factorization of (2.1))
Let equation (2.1) be factorizable into the form (1.9). Then, the degrees of the
polynomials L;; satisfy the following relations:

(2.4) degLq1 +degLoy =k+1 and
degL19 =p
(2:5) { degLog=k—p, O0<p<k or
‘ deg L19 = J, 0<j<p-—1,
where p = deg L.

Proof. The system (1.10)-(1.12) becomes:

(2.7) Li11L21 = Pita,
(2.8) L10Lo1 + L11(La1)z + L11L20 = Qk1,
(2.9) Li0L20 + L11(L20)z = Ry

The identification of both sides of the equation (2.7) yields:
deg (L11 L21) = deg (Py+1)

which implies

(2.10) deg (L11) +deg (Lo1) = k + 1.

Since p = deg L£11, we have from the relation (2.10):

(2.11) deg (Lo1) =k +1—p.
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From the equation (2.8), we can write:

deg (L10L21 + L11(L21)z + L11L20) = deg (Qr+1)
giving
k+1 = max {deg (,Cloﬁgl) ,deg (ﬁn(ﬁgl)x) ,deg (ﬁllﬁgo)}
= max {deg (L10) + deg (L21),deg (L11) + deg ((L21)z) ,
(2.12) deg (L11) + deg (L20)}

= max{deg (L10) + deg (L21),deg (L11) + [deg (L21) — 1],
deg ([,11) + deg (520)} .

The substitution of (2.11) into (2.13) gives:

k+1 = max{deg (L10)+k+1—p,p+[(k+1—p)—1],p+deg (L)}
= max{deg (L10) + k+ 1 —p,k,p+deg (L20)}
= max{deg (L10) + k+1—p,p+deg (L20)} =m.

Besides, the identification of both sides of the equation (2.9) allows to write:
deg (L10L20 + L11(L20)s) = deg (Rg)
or equivalently

(2.13) k& = max{deg (L10L20),deg (L11(L20)z)}
= max {deg (L19) +deg (L20),deg (£11) + deg ((L20)z)}
= max{deg (L10) + deg (La0),p + [deg (L20) — 1]} = ma.

o If m; =deg (L19) +k+1—p then deg (Li9)=p and
my = max {p + deg (La0),p + deg (L2) — 1} = p+ deg (La0)
which gives, taking into account (2.14), deg (L20) = k — p.
o If my =p+deg (Ly) then deg (Loy)=k+1—p and

me = max{deg (L190)+k+1—pp+[(k+1—p)—1]}
= max{deg (L10) +k+1—p,k}

which gives, taking into account (2.14),
deg (L10) +k+1—p <k, ie deg (L10)=j, 0<j<p-1
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The polynomials L9 and Lo are characterized by (j+1)+ (k+1—p+1) =

k+j

—p+3 constants, 0 < j < p—1. The results of the Proposition 3 are deter-

mined in the case where j = p — 1 because all these constants can be obtained
by solving a system of linear algebraic equations coming from the identification
of all coefficients of polynomials in the equation (2.8) only. After substitution
of polynomials L1, L19, L£21, L20 determined by equations (2.7) and (2.8) into
the equation (2.9), a simple identification of coefficients gives a set of relations
expressing the p; as functions of the constants \;, Ey and p; ;. These relations
can be easily computed using a symbolic computational software, for instance
Maple. The two following situations are worthy of attention:

(i)

the first order equation associated with the left factor of (1.9) admits
the solution v; given by:

vi(z) = e BT if p=0,

q My —

- —Hi 1 Hi _ Min,g+1
(214 ’Ul x) = e on (1' — )\n Hip,,1 eXp - ), i ’
) vl [T —x) ; G s

n=1

if 1 < p < k+1, while the first order equation of the right factor of (1.9)
admits the solution wug :

Po—q mj, —1

L Wi
(2.15) up(z) = H (z — \j,)™n "Hint exp Z - 'uﬂni’"‘lz
n=1 i=1 ¢ (.’L’ - A]n)

which is a particular solution of equation (2.3).

the first order equation associated with the left factor of (1.9) admits
the solution v; given by:

My, —

q
1
(216) vl(x) = H(m — Ain)_ﬂin,l eXp Z - /J’Zn,]‘i'l).
n=1 : 'Ln

.

while the first order equation corresponding to the right factor of (1.9)
generates the solution ug given by:

(2.17)
Po—q mjn_ll (i el
—FEox M, — g In st
up(a) = e P07 T (&= Ay, "o Homt exp L M)
Tg ’ i=1 ¢ (:’E )\jn)z

which is a particular solution of equation (2.3).
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Here (1, 1, tj 0 € {111, -5 Mpo,mpo}a p=>11my, 1<q<po;
My, My, € {ml, RN mpo}; >‘ln 75 /\jna )‘inv )\jn € {)\1, RN )‘po}'

Proposition 3. (Sufficient condition for the factorization of (2.3))
Consider the equation (2.3) and assume that the polynomial

k
(2.18) Ri(z) =Y pa’
=0

satisfies the relation

(2.19) Ry(x) = Lio(x)Loo(z) + L11(2)(L20)2 ()
with

Lufa) =1 i p=0
(2.20) { L’E(m) =11 (e = Niy,)™in if ]19 <p<k+1,

and L19 and Log explicitly given by one of the two following situations:

(1)
(2.21) ﬁlo(iﬁ) = E() if p = 0,
q My, —1 q
Lioz) = Z(x — )\in)mi"_l pi, 1+ Z o ,Uzn,JJrl H )™
n=1 j=1 1=1
I#n
q
+ B [[@=X)™ if 1<p<k+1
po—q
(2.22) Loo(x) = Y (@ =)™ (gan —mj,)
n=1
mjn, —1 i i Po—q
Jn i+ . i .
* Z m H(:E_)‘Jl)m“?
=1 =1
l#n
(ii)
q My, —1 q
Lio(x Z )" i1+ Z Mzmzﬂ H )"

n=1 =1
l#n
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Po—q
Loo(x) = > (x=X )" (1ju1 —my,)
n=1
Mjp =1 i i Po—q
Jnyi+ \my
* Z (x —Nj,)! H(x_)\.?l) t
=1 =1
l#n
Po—q

+EB [[@=x)m™n if 1<p<k+1,
n=1

where My Ml € {:U’l,l’ SR Mpmmpo}u p= Z?:l My, 1 < q < po;
My, My € {mlv ARE) mp0}5 Niy, # Ajus Ny Aj € {/\17 ARE) )‘po}'

Then, the second order differential operator governing the equation (2.3)
can be written in the form (1.9) where

po—q
(2.23) Lor(z) = H (z — Aj,)"m
n=1
s such that
PO
(2.24) Ly (@) Lo (z) = [J (@ = 2)™.
i=1

Proof. Given the expressions of £11 and L91 from Proposition 3, then £19 and
Lo can be explicitly determined using (1.13) and (1.14) as follows:

vy (z)

2.2 = — 1
(2.25) Lio(z) Ell(w)vl(x)
(2.26) Log(z) = —Loi(2) up()

: 20 = 21 wo(z)’

L]

Example 1. Consider the confluent Heun equation [13, 18]
29 " E H1,1 H2.1 ’ po + p1x _
( 7)u(:c)+< O+a:—)\1+:n—)\2 u(x)+(l‘—)\1)(l‘—)\2)u(:£) 0,

where Ey, A1, A2, p1,1, 2,1, po, p1 are constants such that Ey # 0 and Ay #
Ao. We distinguish here the following three formal factorisable classes:

(i) First class, py = Eop1+Eopz1—2E,  po = p1,1+p2,1—2—Eopi1de—
Eopai 1 + EgA1 + EgAs -

EH(ZL‘) = 1, Ezl(l‘) = (ZL‘—/\l)(ZU—)\Q),
Lio(x) = ho,  Lao(z) = ko + k1 7,
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ho = Eo, ko= —p11A2 — p21A1 + A1+ A2, ki =p11+ po1 — 2.
Two particular solutions emerge, given by
ug(z) = (z— )P (o — Ag)tH2r,

ul(x) = uo(x) /(x — )\1)“1’172(.’1’} _ /\2)u2,172 e~ Eot g,

(i1) Second class, pg = —Eo A —Eopi i o+ ape1—p11, p1= Eo+Eopi

Eu(x) = (w — )\1), ﬁgl(.%') = (.%' — )\2),
Lio(x) = ho,  Lao(z) = ko + k1 2,

ho = p11, ko= —Eoa+ 21 —1, ki = Ep.
There exist the following two particular solutions:
upla) = (a—Ag)! i e o,

Ul(ﬂ?) = U()(J,‘) /(gj — )\2)/‘«2,1*2(1, . )\1)*#1,1 eEOI da.

(ZZZ) Third class, py = E())\l*E0u271)\1*#171+u171,u271, p1 = *E0+E0,u271 :

ﬁu(.%’) = (.%' — )\1), ﬁgl(l') = (3? — )\2),
ﬁlo(x) = hg + hix, ﬁzo(l‘) = ko,

hg = —Eg\ + H11, ko=-1+ H2.1, hy = Ey.

Two particular solutions of the corresponding equation (2.27) are given
by
UO(.T) = (33 — )\2)17#2’1,

u1(33) = uo(x) /(m — )\2)M2,172(x . )\1>7u1,1 eona: dz.

Example 2. Consider the following second order linear ODE
(2.28)

2
w(@) + (Bo+ 255 + G455 + G ) o(x) + B u(z) o,

T—A1

where Eo, A1, p1,1, 41,2, 41,3, P0, P1, p2 are constants such that Ey # 0. When
pi13 = 0, (2.28) is reduced to the double confluent Heun equation [13, 18].
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Then, the equation (2.28) admits a unique formal factorizable class character-
ized by:

po = —2u11A1 46X+ g1 — 3FoN] + Fou1 1 AT + Eoprs — Eop 2,
p1 = —6+4+2u11 —2Eop1,1 M + 6EgA + Eop 2,
p2 = —3Eo+ Eop1;

Li1(x) =1, Lo(x)= (v — 1),
Lio(x) =ho,  Loo(x) = ko + k1 + kya®,

k1= —=2p11A1 +6X1 + p12,  ho = Eop,
ko = —3A] + A} + s — pod, ke = =3+ p.
Two particular solutions of the related equation (2.28) are given by

B2 1 M1,3
uo(a:) = (x—)\l)?’f“l’l e M 2(1—)\1)2,

B12 1 K1,3

u1(x) = ug(x) /(x — )\1)//41,1*66 T=X1 " 2 (z—x1)2 e*Eom de.

83. Classes of factorizable equations of the second type

In this section, we examine the classes of factorizable second order linear ODEs
of the type

(3.1) Pu(x) u"(2) + Quener(2)w/(2) + Resn(e)u(z) =0, (k, h) € N* x N
explicitly written as
PO k+h+1 k+h
(3.2) <H(a: - )\,)ml> u”(x) + Z yixd |l (z) + (Z plxl> u(z) =0,
i=1 j=1 =1

where Y ¥, m; = k, or, equivalently, in the canonical form: by # 0
(3.3)

h+1 po m; i ZkJrh pll“
bjzl + Z’] u'(z) + 1=0 -u(z) = 0.
S L LT ENEEEN

Proposition 4. (Necessary condition for the factorization of (3.1))
Let equation (3.1) be decomposable into the form (1.9). Then, the degrees of
polynomials L;; satisfy the following relations:

(3.4) deg L11 +deg Loy =k and
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(35) degﬁlozh—i-p—i—l

' degLog=k—p—1, 0<p<k—-1 or
(3.6) degLog=k+h+1—p, 1<p<k

: deg Lo = 7, 0<j<p-—1,
where p=degLy;.

Proof. The system (1.10)-(1.12) becomes:

(3.7) Li1Lo = Py,
(3.8) Li0Lo1 + L11(L21)z + L11L20 = Qkth+1,
(3.9) L10L20 + L11(L20)0 = Riyn-

The identification of both sides of the equation (3.7) yields:
deg (L11 L21) = deg (P)
which implies
(3.10) deg (£11) + deg (L21) = k.
Since p = deg £11 we have from the relation (3.10):
(3.11) deg (L21) =k —p.
From the equation (3.8), we can deduce:
deg (L10L21 + L11(L21)z + L11L20) = deg (Qrth+1)
which implies

k+h+1 = max {deg (,Cloﬁgl) ,deg (ﬁll(ﬁgl)x) ,deg (ﬁllﬁgo)}
= max {deg (L10) + deg (L21),deg (L11) + deg ((L21)z) ,
(3.12) deg (L£11) +deg (L20)}

= max{deg (L10) + deg (L21),deg (L11) + [deg (L21) — 1],

deg (,611) + deg (ﬁzo)} .

The substitution of (3.11) into (3.13) gives:

k+h+1 = max{deg (L10)+k—p,p+[(k—p)—1],p+deg (L20)}

= max{deg (L10) + k—p,k —1,p+deg (L20)}
= max {deg (L10) +k — p,p +deg (L20)} = ma.

217
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Besides, the identification of both sides of the equation (3.9) yields:

deg (L10L20 + L11(L20)z) = deg (Ri+n)
which implies

k+h = max{deg (L10L2),deg (L11(L20)z)}
= max{deg (L10) + deg (L20),deg (L11) + deg ((L20)x)}
= max {deg (L10) + deg (L20),p + deg [(L20) — 1]} = ma.

o If m; =deg (L19) +k—p then deg (Li9)=h+p+1 and

my = max{h+p—+1-+deg (L2),p+deg (L) — 1}
h+p+1+deg (L)

which gives, taking into account (3.3), deg (L20) =k —p — 1.
o If m; =p-+deg (Lo) then deg (Lo)=k+h+1—p and

mg = max{deg (L10)+k+h+1—pp+[(k+h+1—-p) —1]}
= max{deg (L10) +k+h+1—pk+h}

which implies, taking into account (3.3),
deg (L10) +k+h+1—p<k-+h,ie deg (L19)=J, 0<j<p-—1.

O]

The polynomials L9 and Lo are characterized by (j+1)+(k+h+1—p+1) =
k+h+j—p+ 3 constants, 0 < j < p — 1. The results of the Proposition 5
are determined in the case where j = p — 1 because all these constants can
be obtained by solving a system of linear algebraic equations coming from
the identification of all coefficients of polynomials in the equation (3.8) only.
After substitution of polynomials £11, £19, £o21, L£29 determined by equations
(3.7) and (3.8) into the equation (3.9), a simple identification of coefficients
gives a set of relations expressing the p; as functions of the constants \;, b;
and p; j. As in the previous case, these relations can be also easily computed
using a symbolic computational software, for instance Maple. There follow
two possibilities:

(i) the corresponding first order left factor of (1.9) admits the solution v;
given by:
—(ZhH by i1

vi(x) = e \=9=0 it ) it p=0,
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i —1
(st b g L R iy j+1

Ul(x) = (& (Z] 0 J“rl > H(x_)\zn) “1",1 exp Z 37(x7'_"])\1 )j

J=1 "

n=1

if 1<p<k,

while the first order right factor of (1.9) admits the solution ug given by:

T el L phjiv
. iy
wle) = [ = ng)meeren | Zm
n=1 i=1 In

which is a particular solution of equation (3.3).

(ii) the corresponding first order left factor of (1.9) admits the solution vy

given by:
vi(z) =1 if p=0,
q mln 1
= H(m — Ai, ) Himt exp Z - M”’]H . if 1<p<k,
n=1 j=1 ‘7 n)

while the first order right factor of (1.9) admits the solution ug given by:

h41 b i+1 pPo—q mjn—l 1 o
uo(x) (ZJ =0 j+ 196] ) H (x _ )\jn)mjn—ujn,1 exp Z ; % 7
n=1 i—1 Jn

which is a particular solution of the equation (3.3).

IN

In all these expressions, i, 1, fj,1 € {#1,15 - -5 Npo,mp0}> p=>1,my, 1
q < po; My, My, € {ma, ooy Mg} Niy 7 Njos Nis Mg € {1, -0y Apo )

Proposition 5. (Sufficient condition for the factorization of (3.3))
Consider the equation (3.3) and assume that the polynomial

kth
(3.13) Rin(x Z pz!
satisfies the relation
(3.14) Riyn(z) = Lio(w)Lao(x) + L11(x)(L20)x ()
with
Ly1(z) =1 if p=0,
Lii(z) =T}y (@ = X,)™n if 1<p<k,

and L9 and Loy explicitly given by one of the two following situations:
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(i)
h+1
Lio(z Z b; 2J if p=0,
q mln /,L 1 q
Li(x) = D (x=X )™ i1+ Z l"’]+ | TI =)™
n=1 Z" fii
h+1 q
Zb al | T —=N)™ if 1<p<k,
n=1
Po—q
Loo(x) = Y (x=X,)"™ " (11 —my,)
n=1
Mjp =1 (i el Po—q
In,t+ ms, .
© 2 oy | Mo
=1 n =1
l#n
(1)
Lio(x) = 0 if p=0,
q mg, —1 q
G0 ™ _Mtn,em 1 )
Lu) = 3e-n)" it 3 Mot | T = hi)™
n=1 =1
l#n
if 1<p<k;
Po—q
Loo(x) = D (&=, (kg0 —my,)
n=1
Mjp— /.L 1 pPo—q
+ Z .7’)7.7Z+ H (]} _ )\jl)mjl
IZn
h+1 ' po—q
> b | T] (o= )™,
where Wi, 1y gt € L1, s Hpompy bs P = D01y My 1< q < po;

mi,, Mj, € {ml, RN mpo}; )‘in + /\jna /\inv )\jn S {/\1, ceey )\pg}.
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Then, the equation (3.3) can be written in the form (1.9) where

pPo—q

(3.15) Lo(z) = [] (@ = xj)mm
n=1
s such that
Po
(3.16) Li1(z) Lo (z) = H(x — )™
i=1
Proof. 1t is similar to that of the Proposition 3. O

Example 3. Consider the biconfluent Heun equation [13, 18]

+ p1x
1 " H1,1 ’ Po _
(3.17) u'(x) + <bo + bz + P u'(x) + s u(z) =0,

where by, b1, A1, p11, po, p1 are constants such that by # 0. Then, the equation
(8.17) gives two formal factorizable classes:

(i) First class, po = 2b1, p1 =by — b1y :

Lii(z) =1, La(x)=(z—\1),
Lio(z) =0,  Loo(x) = ko +k1a + ko 2?,

ko= p11 —boAr — 1, ki =1bo—biA1, ko =01.

Two particular solutions of the equation (3.17) are given by

wp(x) = (x—A)imHr e oo she?,

ui(z) = uo(q;)/(g; )2 ghoatibia? g

(it) Second class, po = bo(p1,1 — 1), p1="bi(p11—1):
Li1(x) =1, Loi(x) = (x — N\1),
Lio(x) = ho + hy z, Loo(x) = ko,
ho =by, hi=0b1, ko=p11—1
Two particular solutions of the equation (3.17) are provided by
up(z) = (z =),

’LL].(-T) = UO(.CL') /(IL‘ — )\1)/11,1—2 e—bo x_%bl 22 do.
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84. Classes of factorizable equations of third type

In this section, we deal with the classes of factorizable second order linear
ODEs of the type

(4.1) Prro(z)u"(2) + Qpa1(z) ' (2) + Ri(z) u(x) =0, keN
explicitly written as
Po k+1 A k
(42) <H<m - Ai)’”’) W)+ [ S | i)+ (Z mxl> u(w) =0,
i=1 §=0 1=0

where >0, m; = k + 2, or, equivalently, in the canonical form:

Po my; o & l
4.3 u'(x) + L o () + leo T ) — 0.
43) @ | LD G | YO g

Proposition 6. (Factorizability necessary condition of (4.1))
Let equation (4.1) be decomposable into the form (1.9). Then, the degrees of
polynomials L;; satisfy the following relations:

(4.4) degL11 +degLloy =k+2 and
(45) degﬁgozk—p-‘rl, 1<p<k+1
’ deg‘clO:ju Ogjgp_]-a

where p=deg L.
Proof. The system (1.10)-(1.12) becomes:

(4.6) Li1Lo1 = Pryo,
. LioLo1 + L11(L21)e + L11L20 = Qkt1,
(4.8) L10Log + £11(£20)x = R;.

The identification of both sides of the equation (4.6) yields:
deg (L11 L21) = deg (Pry2)

which implies

(4.9) deg (L11) +deg (L21) =k + 2.

Since p = deg L11, we get from the relation (4.9):

(4.10) deg (L21) =k +2—p.
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The equation (4.7) also allows to write:

deg (L10L21 + L11(L21)e + L11L20) = deg (Qr+1)
which implies

E+1 = max{deg (L10L21),deg (L11(L21)z),deg (L11L20)}
= max {deg (L19) + deg (L21),deg (L11) + deg ((L21)) ,
(4.11) deg (L11) + deg (L20)}
= max {deg (L19) + deg (L21),deg (L11) + [deg (L21) — 1] ,
deg (L£11) +deg (L20)} -

The substitution of (4.10) into (4.12) gives:

kE+1 = max{deg (L10) +k+2—p,p+[(k+2—p)—1],p+deg (L)}
= max{deg (L10) +k+2—p,k+ 1,p+deg (L20)}.

Therefore,
deg (Lio)+k+2—p<k+1
p+deg (L20) <k +1,
that is
' deg (Lao) =i, 0<i<k+1—p.

Besides, the identification of both sides of the equation (4.8) leads to:
deg (L10L20 + L11(L20)z) = deg (Ry)
which implies

k = max {deg (ﬁloﬁgo) ,deg ([,11(,620)3;)}
= max {deg (L19) + deg (L20),deg (L11) + deg ((L20)2)}
= max{deg (L10) + deg (L20),p + [deg (L20) — 1]} = m.

o If m =deg (L19) +deg (Lo9) then deg (Lo0)=k—j which yields
by the first equality of (4.12) k+1—p <k —j < k. Therefore, by the
second equality of (4.12) we must have deg (L90) =k+1—p.

o If m=p+[deg (Lo0) — 1] then deg (Lo)=k+1—p.
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The polynomials L9 and Lo are characterized by (j+1)+ (k+1—p+1) =
k+7—p+3 constants, 0 < j < p—1. The results of Proposition 7 are determined
in the case where 7 = p — 1 because all these constants can be obtained by
solving a system of linear algebraic equations coming from the identification of
all coefficients of polynomials in the equation (4.7) only. After substitution of
polynomials L1, L9, Lo21, L9 determined by equations (4.6) and (4.7) into
the equation (4.8), a simple identification of coefficients gives a set of relations
expressing the p; as functions of the constants A\; and p; ;. For each of such
relations, the corresponding first order left factor of (1.9) admits the solution
v1 given by:

q Mip —1
1 ..
@ = Jle-x)meren | 3 S5 i 1<p <k,
n=1 J
(

while the first order right factor of (1.9) possesses the solution ug given by:

pPo—q mj, —1 1 i i1
= — X\ )Un T Hin,1 S 2 L e -
u () IT =) exp Z v
n=1 i=1 n
which is a particular solution of equation (4.3). pi, 1, fj,1 € {H1,1, -5 Hpo,mp, }>
P:Zlq:ﬂnip 1 ngpOa mg,, My, € {m17 ~-7mpo}§ >‘Zn 7é)‘jn7 )‘in7>\jn S

{0 Aot
Proposition 7. (Sufficient condition for the factorization of (4.3))
Consider the equation (4.3) and assume that the polynomial

k
(4.13) Ri(z) =Y pa’
=0
satisfies the relation
(4.14) Rk(l‘) = Elg(l‘)ﬁzo(l‘) + ﬁn(l‘)(ﬁzo)m(l‘)
with
(4.15) Lu(z) =1 A S
Li(x) =T (@ = Ai,)™ if 1<p<k+1,
and Lo and Log explicitly given by
[/10(1') =0 Zf b= 07
q My, —1 i i1 q
Lol@) = Do(e=d)™ et Do G T - am
n=1 i=1 tn 1=1
l#n

if 1<p<k+1
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po—q
Loo(x) = Y (w =)™ (g, —my,)

n=1

Mjn =1 Wi i Po—q

Jn i+ S\my
* Z (= Nj,)! H (= Ajp)™t.
i=1 ' 1=1
l#n
where fui,, 1, 1,1 € {11, -y Hpompy bs P = 2i—1 Miyy 1< q < po; miy, my, €

{ml, RN mpo}; )‘in ?é )‘jm )‘ina )\jn S {)\1, ey )\PO}'

Then, the equation (2.3) can be written in the form (1.9) where

pPo—q

(4.16) Loy (z) = H (z = Aj,)"om
n=1
s such that
Po
(4.17) Li1(z) Lo (z) = H(x — )™
i=1
Proof. Tt is similar to that of the Proposition 3. O

Example 4. Consider the following second order linear ODE

u//($)+ ( H11 + ( ,u1,2)2 + H2,1 + ©3,1 > u/(x)

T—A1 T—A1 T—No T—A3

+p124poz? _
ez 4(%) =0,

(4.18)

where 11,1, 1,2, U2,1, 43,1, A1, A2, A3, po, p1, p2 are constants such that \; #
Aj for i # j. When pio = 0, p11 = 1 and poy = p31 = %, (4.18) is an
extension of the Wangerin’s equation [2]. Then,

(i) One of the factorizable classes is characterized by

p2 = H21 — 2+ p31+ p1apen — 2p10 + U3k,

po = H21A] — 207 4 p3a AT — 1,1\ As + i A p2a A3 — L1 Ae
Fp3, 11,1 A1 A2 + p12A3 — p1 202123 + 12X — 13,141,272,

p1 = —2p21A1 + 4N — 2p3101 — paaAipen + 2p11
—H3,1H1,1A1 + H12p21 — 2012 + p3,1H1,2 + 1,173
—H1,1H21A3 + p11A2 — p31p11A2
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Li1(z) = (= A1)%  Loa(z) = (x— A2) (x— A3),
,Clo(x) =hy+ hix, ﬁgo(x) =ko+ k1,

hi=up11,  ho= —p11A1 + p12,
k1= o1 —24+p31, ko= A3 — p21A3 + A2 — 31 Ae.

Two particular solutions of equation (4.18) are given by

up(z) = (z—A3)'7H31 (2 — Ng)lTH21,
H1,2

ui(z) = wo(x) /(:c — )\3)“3’1*2 (x — )\2)“2’1*2(:1: — A1) Mt er=A da.

(i) Another factorizable class is given by

p2 = —2+4p11 — 2u21 + p1ape1 — 2p3,1 + p3,1H1,1,

po = —2X2A3+ p11A0A3 — 2131 1 2 — p31p1,2 2 + pH3101,1 A1 A2
=242, 1A\ A3 — 11,202,123 + [11,1 A1 42,173,

p1 = 2X2 — p11A2 + 2A3 — p11A3 + 2p3,1 A2 — @3 1441,1A2
+2021A3 — p1,102,1A3 + 202101 + p1 2421 — 1,1 1421
+2p31 A1 + p3,1001,2) — H3,141,1A1

Lii(z) = (x = Xo) (&= X3),  Laa(z) = (z = M),
ElO(«T) =hy+ hix, ﬁgo(x) =ko+ k1,

hi = p21 + p31, ho = —p3 A2 — p2,1A3,
ki =—=2+p11,  ko=2\+p12— p11.

Two particular solutions of the equation (4.18) can be written as:

2

B,
up(x) = (z—A)> Fter A,
w12

ui(z) = wo(x) /(x — )\1)’“71*4 (x — Ag) 7H2(x — A3) " H3te =1 du.

Example 5. Consider the following second order linear ODE

T— Ao T—\3

po+prz+prx®+pa’ _
T I e gy W) = 0,

(4 19) u//($)+ (x,u_l,;l + (:E,lil),\Ql)2 + H2,1 + ($62Az)2 + H13,1 ) u’(x)
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where py 1, P12, p2,1, 12,2, 43,1, A1, A2, A3, Po, P1, P2, p3 are constants such that
Ni # \j fori # j. When pio = pop = po1 =0, g1 = 1 and psy = 5, (4.19) is
an extension of the Heine’s equation [2]. Then, one of the factorizable classes
1s characterized by

p3 = —6+2u31+2u21 — 3p1,1 + 31,0+ p1 2,1,

po = —2u31ATA2 + A A2 + 20T A3 — 21 AT A2 + fi22A] — p21 AT As
+ 2100 A2 + 1,1 M A3 — i3 1001105 + 1A 2,23 — 1,1\ 12,1 A2\
— 2u10003 — p12A5 + 31 101,205 — f1,202,208 + 1,202, A2 A3,

p1 = —2p11A1A3 — 4pra A e — 2p11 23 + 2021 A1 A3 + 2p2,1 A1 A0 — 41 A3
8A1 A2 + 43 1 M A + 41 9o + 201 903 + 2u310] + 2u21 0] — 1,103
—  2up9N — 2u3.111 202 + 13,101,105 — 6T + i1 2122 + 203,141,100 A
—  H1,1M22A3 — p12H2,1A3 + p11A1M2,1 A2 + 1 1A 2,1 A3 + p1,1 42,1 A28
—  P11A1H2,2 — H1,2/2,1A2,

p2 = 12X\1 —4puzi A —4poaA — 2u31 2 +4Xo + 2A3 — pi2 1A + 22
H2,1A3 + 311 1 — (3 101,1A1 — M1 1A H2,1 — p1,2 + M3 112 + 22,1
— 2u31p1aAe +4ApraAe + 201103 — p1p2,1 A2 + p1 22 — H1,142,173 ¢

Lu(z) = (= N)?%  Lalz)=(z—X)*(z - A3),
,Clo(:z) =hg+ hyx, ,Cgo(x) =ko+ kix+ ko x2,

ko = =3+ pu31+p21, hi=p11, ho=—p11A1 + pie,

k1 = —2uzi1Xa+4Xo +2X3 — o1 A2 + po2 — p2,173,
ko = —2XoX3 — A3+ p31A3 — f12.203 + p21 A2 s

Two particular solutions of equation (4.19) are given by

12,2
U0($) — (l‘ _ )\3)1—M3,1 (l’ _ )\2)2—M2,1 er Az
b2 B2

ui(z) = wuo(z) /(x — )72 (1 — Ag)H2a T (g — A)) ML e A2 @7 .
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