Generalized finite operators and orthogonality

Smail Bouzenada

(Received November 7, 2009; Revised April 9, 2011)

Abstract. In this paper we prove that a spectraloid operator is finite, we present some generalized finite operators and we give a new class of finite operators. Also, the orthogonality of some operators is studied.

AMS 2010 Mathematics Subject Classification. 47B47, 47A30, 47A12

Key words and phrases. Finite operator, orthogonality, numerical range.

§1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H. For $A, B \in \mathcal{L}(H)$, the generalized derivation $\delta_{A,B} : \mathcal{L}(H) \to \mathcal{L}(H)$ is defined by

$$\delta_{A,B}(X) = AX - XB.$$

We denote $\delta_{A,A}$ by δ_A . Let E be a complex Banach space. We say [1] that $b \in E$ is orthogonal to $a \in E$ if for all complex λ there holds $||a + \lambda b|| \ge ||a||$. An operator $A \in \mathcal{L}(H)$ is called *finite* by J. P. Williams [12] if $||AX - XA - I|| \ge 1$ for all $X \in \mathcal{L}(H)$, i.e. the range of δ_A is orthogonal to the identity operator. The pair $(A, B) \in \mathcal{L}(H) \times \mathcal{L}(H)$ is said to be generalized finite operators [7] if $||AX - XB - I|| \ge 1$ for all $X \in \mathcal{L}(H)$. $\mathcal{F}(H)$ and $\mathcal{GF}(H)$ denote the class of finite operators and the class of generalized finite operators respectively.

For $A \in \mathcal{L}(H)$ the set $W(A) = \{(Ax, x) : x \in H \text{ and } ||x|| = 1\}$ is called the numerical range of A.

In the following we will denote the spectrum, the point spectrum, the approximate spectrum and the approximate reducing spectrum of $A \in \mathcal{L}(H)$ by $\sigma(A)$, $\sigma_p(A)$, $\sigma_a(A)$ and $\sigma_{ar}(A)$ respectively.

An operator $A \in \mathcal{L}(H)$ is said to be spectraloid if $\omega(A) = r(A)$, where r(A) (resp. $\omega(A)$) is the spectral radius (resp. numerical radius) of A, convexoid

if $\overline{W\left(A\right)}=co\sigma\left(A\right)$, where $co\sigma\left(A\right)$ is the convex hull of $\sigma\left(A\right)$, and transaloid if $r\left(\left(A-\lambda I\right)^{-1}\right)=\left\|\left(A-\lambda I\right)^{-1}\right\|$ for all $\lambda\notin\sigma\left(A\right)$. We have the following inclusions:

A bounded linear operator A is in the class \mathcal{Y}_{α} for certain $\alpha \geq 1$ if there exists a positive number k_{α} such that

$$|AA^* - A^*A|^{\alpha} \le k_{\alpha}^2 \left((A - \lambda I)^* (A - \lambda I) \right), \text{ for all } \lambda \in \mathbb{C}.$$

It is known that $\mathcal{Y}_{\alpha} \subseteq \mathcal{Y}_{\beta}$ for each α, β such as $1 \leq \alpha \leq \beta$ [11], where $\mathcal{Y} = \bigcup_{\alpha \geq 1} \mathcal{Y}_{\alpha}$.

In this paper we prove that a spectraloid operator is finite and that the operator of the form A + K is also finite, where A is convexoid and K is compact. We present some generalized finite operators and we give a new class of finite operators. Also we study the orthogonality of certain operators.

§2. Preliminaries

Lemma 1. Let $A \in \mathcal{L}(H)$. If $\sigma_{ar}(A)$ is not empty, then A is finite.

Proof. Let $\lambda \in \sigma_{ar}(A)$ and $\{x_n\}$ be a normalized sequence such that $(A - \lambda I)x_n \longrightarrow 0$ and $(A - \lambda I)^*x_n \longrightarrow 0$. If $X \in \mathcal{L}(H)$, then we have

$$\begin{aligned} \|AX - XA - I\| &= \|(A - \lambda I) X - X (A - \lambda I) - I\| \\ &\geq |\langle (A - \lambda I) X x_n, x_n \rangle - \langle X (A - \lambda I) x_n, x_n \rangle - 1| \,. \end{aligned}$$

Letting
$$n \longrightarrow \infty$$
, we obtain $||AX - XA - I|| \ge 1$.

Lemma 2. Let $A \in \mathcal{L}(H)$. If $\Re A \geq 0$, then $\sigma_a(A) \subset \sigma_{ar}(A)$.

Proof. For $\lambda \in \sigma_a(A)$, there exists a sequence $\{x_n\}$ such that $(A - \lambda I) x_n \longrightarrow 0$, and then

$$B = \mathcal{R}e(A - \lambda I) = \frac{1}{2} \left[(A - \lambda I) + (A - \lambda I)^* \right]$$

satisfies $\langle Bx_n, x_n \rangle \longrightarrow 0$. Since $B \ge 0$, it results that $Bx_n \longrightarrow 0$, i.e,

$$\frac{1}{2}\left[\left(A-\lambda I\right)x_n+\left(A-\lambda I\right)^*x_n\right]\longrightarrow 0.$$

Since
$$(A - \lambda I) x_n \longrightarrow 0$$
, we have $(A - \lambda I)^* x_n \longrightarrow 0$.

Lemma 3. For $A \in \mathcal{L}(H)$, $\partial W(A) \cap \sigma(A) \subset \sigma_{ar}(A)$.

Proof. By the transformation $A \longmapsto \alpha A + \beta$ the hypothesis $\lambda \in \partial W(A) \cap \sigma(A)$ can be replaced by $0 \in \partial W(A) \cap \sigma(A)$ with $\Re A \geq 0$. Since $0 \in \partial \sigma(A) \subset \sigma_a(A)$, it results from the previous lemmas that $0 \in \sigma_{ar}(A)$, hence $\partial W(A) \cap \sigma(A) \subset \sigma_{ar}(A)$.

§3. Main results

Theorem 1. Let $A \in \mathcal{L}(H)$ be convexoid. Then A is finite.

Proof. If A is convexoid, then $\overline{W(A)} = co\sigma(A)$. Hence $\partial W(A) \cap \sigma(A) \neq \phi$. It follows immediately from the previous lemmas that A is finite.

Remark 1. It is known that transaloid operators are convexed operators, and then $\mathcal{F}(H)$ contains all the transaloid operators.

Theorem 2. Let $A \in \mathcal{L}(H)$ be spectraloid. Then A is finite.

<u>Proof.</u> We have $\omega(A) = r(A)$. This implies that there exists $\lambda \in \sigma(A) \subset \overline{W(A)}$ such that $|\lambda| = \omega(A)$, hence $\lambda \in \partial W(A)$, then $\partial W(A) \cap \sigma(A) \neq \phi$, which implies that $A \in \mathcal{F}(H)$.

As a consequence of the previous theorem we obtain:

Corollary 1. The following operators are finite.

- (1) Hyponormal operators,
- (2) Transaloid operators,
- (3) Paranormal operators,
- (4) Normaloid operators.

Lemma 4. [9] For $A \in \mathcal{L}(H)$, the following holds

$$\overline{W\left(A\right)}=\cos\left(A\right)\Longleftrightarrow\forall\lambda\notin\cos\left(A\right):\ \left\|\left(A-\lambda I\right)^{-1}\right\|\leq\left[\operatorname{dist}\left(\lambda,\cos\left(A\right)\right)\right].$$

Hence a convexoid element on a C^* -algebra A, may be defined as an element $a \in A$ satisfying

$$\forall \lambda \notin co\sigma(a): \|(a-\lambda e)^{-1}\| \leq [dist(\lambda, co\sigma(a))]^{-1}.$$

Theorem 3. Let A be a C^* -algebra and let a be a convexoid element on A. Then a is finite.

Proof. It is known [6, p. 97] that there exist a Hilbert space H and a *-isometric homomorphism φ ($\varphi : \mathcal{A} \longrightarrow \mathcal{L}(H)$). Then φ (a) is convexoid. Since φ is isometric it results from Theorem 1 that a is finite.

Corollary 2. Let $A \in \mathcal{L}(H)$ be convexoid. Then T = A + K is finite, where K is a compact operator.

Proof. Since the Calkin algebra $\mathcal{L}(H) / \mathcal{K}(H)$ is a C^* -algebra (where $\mathcal{K}(H)$ is the set of compact operators), $[A] = \{A + K : K \in \mathcal{K}(H)\}$ is convexoid. Hence it follows from Theorem 3 [A] is finite and we have, for all $X \in \mathcal{L}(H)$

$$\begin{split} \|TX - XT - I\| &= \|[TX - XT - I]\| \\ &= \|[T][X] - [X][T] - [I]\| \\ &= \|[A][X] - [X][A] - [I]\| \\ &\geq 1. \end{split}$$

Lemma 5. For $A, T \in \mathcal{L}(H)$, if $A \in \mathcal{Y}$ and T is a normal operator such as AT = TA, then for all $\lambda \in \sigma_p(T)$

$$||AX - XA - T|| \ge |\lambda|$$
, for all $X \in \mathcal{L}(H)$.

Proof. Let $\lambda \in \sigma_p(T)$ and M_{λ} be the eigenspace associated with λ . Since AT = TA, we have $AT^* = T^*A$ by the Fuglede's theorem [4]. Hence M_{λ} reduces both A and T. According to the decomposition $H = M_{\lambda} \oplus M_{\lambda}^{\perp}$, we can write A, T and $X \in \mathcal{L}(H)$ as follows:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, T = \begin{bmatrix} \lambda & 0 \\ 0 & T_2 \end{bmatrix} \text{ and } X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$

Since the restriction of a class \mathcal{Y} operator to a reduced subspace is a class \mathcal{Y} operator and since $\mathcal{Y} \subset \mathcal{F}(H)$ [2], we have

$$||AX - XA - T|| = \left\| \begin{bmatrix} A_1X_1 - X_1A_1 - \lambda & * \\ * & * \end{bmatrix} \right\|$$

$$\geq ||A_1X_1 - X_1A_1 - \lambda||$$

$$\geq ||\lambda|| \left\| A_1(\frac{X_1}{\lambda}) - (\frac{X_1}{\lambda})A_1 - I \right\|$$

$$\geq ||\lambda||.$$

In the sequel, we need the Berberian technique, and it allows us to construct a Hilbert space which contains a given Hilbert space H on which we could speak about "approached eigenvectors" and those as regarded as eigenvectors.

Proposition 1 (Berberian technique). Let H be a complex Hilbert space, then there exist a Hilbert space $\widehat{H} \supset H$ and an *-isometric homomorphism $\varphi : \mathcal{L}(H) \longrightarrow \mathcal{L}(\widehat{H}) \ (A \longmapsto \widehat{A})$ preserving the order, i.e. for all $A, B \in \mathcal{L}(H)$ and for all $\alpha, \beta \in \mathbb{C}$ we have:

- $(1) \widehat{A}^* = \widehat{A}^*,$
- (2) $\widehat{I} = I$,

(3)
$$\alpha \widehat{A + \beta} B = \alpha \widehat{A} + \varphi \widehat{B}$$
,

$$(4) \widehat{AB} = \widehat{A}\widehat{B},$$

$$(5) \ \left\| \widehat{A} \right\| = \left\| A \right\|,$$

(6)
$$\sigma(\widehat{A}) = \sigma(A), \ \sigma_p(\widehat{A}) = \sigma_a(\widehat{A}) = \sigma_a(A),$$

(7) If A is positive, then \widehat{A} is positive and $\widehat{A}^{\alpha} = \widehat{A}^{\alpha}$ for all $\alpha > 0$.

Theorem 4. Let $A \in \mathcal{Y}$. Then for every normal operator T such that AT = TA, we have

$$||AX - XA - T|| > ||T||$$
, for all $X \in \mathcal{L}(H)$.

Proof. Let $\lambda \in \sigma(T) = \sigma_a(T)$ [5]. Then it follows from Proposition 1 that \widehat{T} is normal, $\widehat{A} \in \mathcal{Y}$, $\widehat{A}\widehat{T} = \widehat{T}\widehat{A}$ and $\lambda \in \sigma_p(\widehat{T})$. By applying Lemma 5, we get

$$||AX - XA - T|| = ||\widehat{A}\widehat{X} - \widehat{X}\widehat{A} - \widehat{T}|| \ge |\lambda|,$$

for all $X \in \mathcal{L}(H)$. Hence

$$||AX - XA - T|| \ge \sup_{\lambda \in \sigma(\widehat{T})} |\lambda| = r(\widehat{T}) = ||\widehat{T}|| = ||T||,$$

for all $X \in \mathcal{L}(H)$.

Theorem 5. Let $A, B \in \mathcal{L}(H)$. If $A, B^* \in \mathcal{Y}$, then

$$||AX - XB - T|| \ge ||T||,$$

for all $X \in \mathcal{L}(H)$ and for all $T \in \ker \delta_{A,B}$.

Proof. Let $T \in \ker \delta_{A,B}$. Then $T \in \ker \delta_{A^*,B^*}$ [11, Theorem 2]. Therefore, $ATT^* = TBT^* = TT^*A$. Since $A \in \mathcal{Y}$, TT^* is normal and $A(TT^*) = (TT^*)A$, the previous theorem implies that

$$\begin{split} \|T\|^2 &= \|TT^*\| &\leq \|TT^* - (AXT^* - XT^*A)\| \\ &= \|TT^* - (AXT^* - XBT^*)\| \\ &\leq \|T^*\| \, \|T - (AX - XB)\| \, . \end{split}$$

Thus

$$||AX - XB - T|| \ge ||T||.$$

Theorem 6. Let $A, B \in \mathcal{L}(H)$ be $A = \bigoplus_{i=1}^{n} A_i$, $B = \bigoplus_{i=1}^{n} B_i$. If there exists $j \leq n$ such that $(A_j, B_j) \in \mathcal{GF}(H_j)$, then $(A, B) \in \mathcal{GF}(H)$.

Proof. Let $j \leq n$ such that $(A_i, B_i) \in \mathcal{GF}(H_i)$. Then for all $X \in \mathcal{L}(H)$

Proposition 2. For $(A, B) \in \mathcal{GF}(H)$, the following assertions hold:

- (1) $(\alpha A + \beta, \alpha B + \beta) \in \mathcal{GF}(H)$, for each $\alpha, \beta \in \mathbb{C}$.
- (2) $(A^{-1}, B^{-1}) \in \mathcal{GF}(H)$, if A and B are invertible.
- (3) $(R,T) \in \mathcal{GF}(H)$, if R and T are simultaneously unitarily equivalent to A and B respectively.
- (4) $(B^*, A^*) \in \mathcal{GF}(H)$.
- (5) $(A^{2^m}, B^{2^m}) \in \mathcal{GF}(H)$, for all $m \in \mathbb{N}$.
- (6) $\sigma(A) \cap \sigma(B) \neq \phi$.

Proof. (1) If $(A, B) \in \mathcal{GF}(H)$ then [7, Theorem 18] there exists a state f on $\mathcal{L}(H)$ such that f(AX) = f(XB) for all $X \in \mathcal{L}(H)$. As a consequence of the linearity of f,

$$\forall \alpha, \beta \in \mathbb{C} : f((\alpha A + \beta) X) = f(X(\alpha B + \beta))$$

for all $X \in \mathcal{L}(H)$.

(2) Let f be a state on $\mathcal{L}(H)$ such that f(AX) = f(XB) for all $X \in \mathcal{L}(H)$. Then we have

$$f\left(A^{-1}X\right)=f\left(\left(A^{-1}XB^{-1}\right)B\right)=f\left(A\left(A^{-1}XB^{-1}\right)\right)=f\left(XB^{-1}\right),$$

for all $X \in \mathcal{L}(H)$.

(3) Let U be a unitary operator. Then by [7, Theorem 18] we have

$$(A,B) \in \mathcal{GF}(H) \iff 0 \in \overline{W(AX - XB)}, \forall X \in \mathcal{L}(H)$$

$$\iff 0 \in \overline{W(U^*(AX - XB)U)}, \forall X \in \mathcal{L}(H)$$

$$\iff 0 \in \overline{W(U^*(AUU^*X - XUU^*B)U)}, \forall X \in \mathcal{L}(H)$$

$$\iff 0 \in \overline{W((U^*AU)Y - Y(U^*BU))}, \forall Y \in \mathcal{L}(H)$$

$$\iff (U^*AU, U^*BU) \in \mathcal{GF}(H).$$

(4) Let f be a state on $\mathcal{L}(H)$ such that f(AX) = f(XB) for all $X \in \mathcal{L}(H)$. Then we have

$$f^*(B^*X) = \overline{f(B^*X)^*} = \overline{f(X^*B)}$$
$$= \overline{f(AX^*)} = \overline{f(XA^*)^*}$$
$$= f^*(XA^*),$$

for all $X \in \mathcal{L}(H)$. Since the adjoint of a state is a state, we have $(B^*, A^*) \in \mathcal{GF}(H)$.

(5) Let f be a state on $\mathcal{L}(H)$ such that f(AX - XB) = 0 for all $X \in \mathcal{L}(H)$. By recurrence we have:

For m = 0, $\left(A^{2^0}, B^{2^0}\right) = (A, B) \in \mathcal{GF}(H)$. Suppose that, for all $m \in \mathbb{N}$, there exists a state f on $\mathcal{L}(H)$ such that

$$f(A^{2^m}X - XB^{2^m}) = 0$$
, for all $X \in \mathcal{L}(H)$.

Then

$$f(A^{2^m}(A^{2^m}X) - (A^{2^m}X)B^{2^m}) = 0$$
 and $f(A^{2^m}(XB^{2^m}) - (XB^{2^m})B^{2^m}) = 0$,

hence

$$f\left(A^{2^{m+1}}X - XB^{2^{m+1}}\right) = 0.$$

(6) Suppose that $\sigma(A) \cap \sigma(B) = \phi$. In [10] M. Rosenblum proved that $\sigma(\delta_{A,B}) \subset \sigma(A) - \sigma(B)$, and then $\delta_{A,B}$ is invertible, hence there exists $X \in \mathcal{L}(H)$ for which $\|\delta_{A,B}(X) - I\| < 1$.

Theorem 7. Let $A, B \in \mathcal{L}(H)$. If there exist a normed sequence $(f_n)_{n\geq 1}$ in H and a scalar λ such that

$$\|(A-\lambda I)^* f_n\| \longrightarrow 0$$
 and $\|(B-\lambda I) f_n\| \longrightarrow 0$,

then $(A, B) \in \mathcal{GF}(H)$.

Proof. If $X \in \mathcal{L}(H)$. Then

$$||AX - XB - I|| = ||(A - \lambda I) X - X (B - \lambda I) - I||$$

$$\geq |([(A - \lambda I) X - X (B - \lambda I) - I] f_n, f_n)|$$

$$= |(X f_n, (A - \lambda I)^* f_n) - ((B - \lambda I) f_n, X^* f_n) - 1|.$$

By passage to the limit, we get $||AX - XB - I|| \ge 1$, for all $X \in \mathcal{L}(H)$. \square

Corollary 3. Let $A \in \mathcal{L}(H)$. Then, for all $\lambda \in \sigma_a(A)$ and for all $C \in \mathcal{L}(H)$,

$$((A - \lambda I)^*, C(A - \lambda I)) \in \mathcal{GF}(H)$$
.

Proof. Let $\lambda \in \sigma_a(A)$, then there exists a normed sequence $(f_n)_{n\geq 1}$ in H such that $\|(A-\lambda I)f_n\| \longrightarrow 0$. If $T=A-\lambda I$ and R=CT with $C\in \mathcal{L}(H)$, then

$$\|[(T-0)^*]^* f_n\| = \|(A-\lambda I) f_n\| \longrightarrow 0$$

and

$$||(R-0) f_n|| = ||C(A-\lambda I) f_n|| \longrightarrow 0,$$

hence

$$((A - \lambda I)^*, C(A - \lambda I)) = (T^*, R) \in \mathcal{GF}(H).$$

Corollary 4. For all $A \in \mathcal{L}(H)$, there exists $B \in \mathcal{L}(H)$ for which (A, B) is a generalized finite operator.

Proof. We say that the approximate spectrum is never empty. Let $\lambda \in \sigma_a(A^*)$, hence it follows from the previous corollary that

$$((A^* - \lambda I)^*, C(A^* - \lambda I)) = ((A - \overline{\lambda}I), C(A^* - \lambda I)) \in \mathcal{GF}(H),$$

for all $C \in \mathcal{L}(H)$, and by applying (1) of Proposition 2 we get

$$(A,B) \in \mathcal{GF}(H)$$
,

where
$$B = C(A^* - \lambda I) + \overline{\lambda}I$$
.

Corollary 5. $\mathcal{F}(H)$ contains the following class:

$$S\left(H\right) = \left\{A \in \mathcal{L}\left(H\right): \ A - \overline{\lambda}I = C\left(A^* - \lambda I\right) \ with \ \lambda \in \sigma_a\left(A^*\right) \ and \ C \in \mathcal{L}\left(H\right) \ \right\}.$$

Proof. It follows from the previous corollary that, if $A \in S(H)$, then $(A, A) \in \mathcal{GF}(H)$ i.e. $A \in \mathcal{F}(H)$.

Acknowledgement

I would like to thank the referee for his/her careful reading of the paper. The valuable suggestions, critical remarks, and pertinent comments made numerous improvements throughout.

References

- J. H. Anderson, On normal derivation, Proc. Amer. Math. Soc, 38(1973), 135-140.
- [2] A. Bachir and S. Mecheri, Some Properties of (Y) Class Operators, KYUNG-POOK Math. J. 49(2009), 203-209.
- [3] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc, 13(1962), 111-114.
- [4] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U. S. A., 36(1950), 35-40.
- [5] P. R. Halmos, Hibert space problem book, Springer, Verlag, New York, (1962).
- [6] D. A. Herrero, Approximation of Hilbert space operators I, Pitmann advanced publishing program, Boston-London, Melbourne (1982).
- [7] S. Mecheri, Finite operators, Demonstratio Math, 35(2002), 355-366.
- [8] S. Mecheri, The numerical range of linear operators. Filomat 22 No. 2, 1-8 (2008).
- [9] G. H. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75-79.
- [10] M. Rosenblum, On the operator equation BX XY = Q, Duke Math. J. 23 (1956), 263-269
- [11] A. Uchiyama and T. Yoshino, On the class $\mathcal Y$ operators, Nihonkai. Math. J. Vol. 8 (1997), 179-194.
- [12] J. P. Williams, Finite operators, Proc. Amer. Math. Soc, 26(1970), 129-135.

Smail Bouzenada

Department of Mathematics, University of Tebessa, 12002 Tebessa, Algeria E-mail: bouzenadas@gmail.com