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Abstract. In this paper we prove that a spectraloid operator is finite, we
present some generalized finite operators and we give a new class of finite op-
erators. Also, the orthogonality of some operators is studied.
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§1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of all bounded linear operators on H. For A,B ∈ L(H),
the generalized derivation δA,B : L(H) → L(H) is defined by

δA,B(X) = AX −XB.

We denote δA,A by δA. Let E be a complex Banach space. We say [1] that b ∈
E is orthogonal to a ∈ E if for all complex λ there holds ‖a+ λb‖ ≥ ‖a‖ . An
operator A ∈ L(H) is called finite by J. P. Williams [12] if ‖AX −XA− I‖ ≥
1 for all X ∈ L(H), i.e. the range of δA is orthogonal to the identity operator.
The pair (A,B) ∈ L(H) × L(H) is said to be generalized finite operators [7]
if ‖AX −XB − I‖ ≥ 1 for all X ∈ L(H). F (H) and GF (H) denote the class
of finite operators and the class of generalized finite operators respectively.

For A ∈ L(H) the set W (A) = {(Ax, x) : x ∈ H and ‖x‖ = 1} is called
the numerical range of A.

In the following we will denote the spectrum, the point spectrum, the ap-
proximate spectrum and the approximate reducing spectrum of A ∈ L(H) by
σ (A), σp (A), σa (A) and σar (A) respectively.

An operator A ∈ L(H) is said to be spectraloid if ω (A) = r (A), where r (A)
(resp. ω (A)) is the spectral radius (resp. numerical radius) of A, convexoid
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if W (A) = coσ (A) , where coσ (A) is the convex hull of σ (A), and transaloid

if r
(
(A− λI)−1

)
=

∥∥∥(A− λI)−1
∥∥∥ for all λ /∈ σ (A). We have the following

inclusions:

paranormal −→ normaloid
↗ ↘

hyponormal ↗ spectraloid
↘ ↗

transaloid −→ convexoid

A bounded linear operator A is in the class Yα for certain α ≥ 1 if there
exists a positive number kα such that

|AA∗ −A∗A|α ≤ k2α ((A− λI)∗ (A− λI)) , for all λ ∈ C.

It is known that Yα ⊆ Yβ for each α, β such as 1 ≤ α ≤ β [11], where
Y = ∪α≥1Yα.

In this paper we prove that a spectraloid operator is finite and that the
operator of the form A + K is also finite, where A is convexoid and K is
compact. We present some generalized finite operators and we give a new
class of finite operators. Also we study the orthogonality of certain operators.

§2. Preliminaries

Lemma 1. Let A ∈ L (H). If σar (A) is not empty, then A is finite.

Proof. Let λ ∈ σar (A) and {xn} be a normalized sequence such that (A− λI)xn −→
0 and (A− λI)∗ xn −→ 0. If X ∈ L (H), then we have

‖AX −XA− I‖ = ‖(A− λI)X −X (A− λI)− I‖
≥ |〈(A− λI)Xxn, xn〉 − 〈X (A− λI)xn, xn〉 − 1| .

Letting n −→ ∞, we obtain ‖AX −XA− I‖ ≥ 1.

Lemma 2. Let A ∈ L (H). If ReA ≥ 0, then σa (A) ⊂ σar (A).

Proof. For λ ∈ σa (A), there exists a sequence {xn} such that (A− λI)xn −→
0, and then

B = Re (A− λI) =
1

2
[(A− λI) + (A− λI)∗]

satisfies 〈Bxn, xn〉 −→ 0. Since B ≥ 0, it results that Bxn −→ 0, i.e,

1

2
[(A− λI)xn + (A− λI)∗ xn] −→ 0.

Since (A− λI)xn −→ 0, we have (A− λI)∗ xn −→ 0.
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Lemma 3. For A ∈ L (H), ∂W (A) ∩ σ (A) ⊂ σar (A).

Proof. By the transformation A 7−→ αA+β the hypothesis λ ∈ ∂W (A)∩σ (A)
can be replaced by 0 ∈ ∂W (A) ∩ σ (A) with ReA ≥ 0. Since 0 ∈ ∂σ (A) ⊂
σa (A), it results from the previous lemmas that 0 ∈ σar (A), hence ∂W (A) ∩
σ (A) ⊂ σar (A) .

§3. Main results

Theorem 1. Let A ∈ L (H) be convexoid. Then A is finite.

Proof. If A is convexoid, then W (A) = coσ (A). Hence ∂W (A)∩σ (A) 6= φ.
It follows immediately from the previous lemmas that A is finite.

Remark 1. It is known that transaloid operators are convexoid operators, and
then F (H) contains all the transaloid operators.

Theorem 2. Let A ∈ L (H) be spectraloid. Then A is finite.

Proof. We have ω (A) = r (A). This implies that there exists λ ∈ σ (A) ⊂
W (A) such that |λ| = ω (A), hence λ ∈ ∂W (A) , then ∂W (A) ∩ σ (A) 6= φ,
which implies that A ∈ F (H).

As a consequence of the previous theorem we obtain:

Corollary 1. The following operators are finite.

(1) Hyponormal operators,

(2) Transaloid operators,

(3) Paranormal operators,

(4) Normaloid operators.

Lemma 4. [9] For A ∈ L (H), the following holds

W (A) = coσ (A) ⇐⇒ ∀λ /∈ coσ (A) :
∥∥∥(A− λI)−1

∥∥∥ ≤ [dist (λ, coσ (A))] .

Hence a convexoid element on a C∗-algebra A, may be defined as an element
a ∈ A satisfying

∀λ /∈ coσ (a) :
∥∥∥(a− λe)−1

∥∥∥ ≤ [dist (λ, coσ (a))]−1 .

Theorem 3. Let A be a C∗-algebra and let a be a convexoid element on A.
Then a is finite.
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Proof. It is known [6, p. 97] that there exist a Hilbert space H and a *-
isometric homomorphism ϕ (ϕ : A −→ L (H)). Then ϕ (a) is convexoid. Since
ϕ is isometric it results from Theorem 1 that a is finite.

Corollary 2. Let A ∈ L (H) be convexoid. Then T = A+K is finite, where
K is a compact operator.

Proof. Since the Calkin algebra L (H)�K(H) is a C∗-algebra (where K(H)
is the set of compact operators), [A] = {A+K : K ∈ K(H)} is convexoid.
Hence it follows from Theorem 3 [A] is finite and we have, for all X ∈ L (H)

‖TX −XT − I‖ = ‖[TX −XT − I]‖
= ‖[T ] [X]− [X] [T ]− [I]‖
= ‖[A] [X]− [X] [A]− [I]‖
≥ 1.

Lemma 5. For A, T ∈ L(H), if A ∈ Y and T is a normal operator such as
AT = TA, then for all λ ∈ σp (T )

‖AX −XA− T‖ ≥ |λ| , for allX ∈ L (H) .

Proof. Let λ ∈ σp (T ) and Mλ be the eigenspace associated with λ. Since
AT = TA, we have AT ∗ = T ∗A by the Fuglede’s theorem [4]. Hence Mλ

reduces both A and T . According to the decomposition H = Mλ⊕ M⊥
λ , we

can write A, T and X ∈ L (H) as follows:

A =

[
A1 0
0 A2

]
, T =

[
λ 0
0 T2

]
and X =

[
X1 X2

X3 X4

]
.

Since the restriction of a class Y operator to a reduced subspace is a class Y
operator and since Y ⊂ F (H) [2], we have

‖AX −XA− T‖ =

∥∥∥∥[ A1X1 −X1A1 − λ ∗
∗ ∗

]∥∥∥∥
≥ ‖A1X1 −X1A1 − λ‖

≥ |λ|
∥∥∥∥A1(

X1

λ
)− (

X1

λ
)A1 − I

∥∥∥∥
≥ |λ| .
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In the sequel, we need the Berberian technique, and it allows us to construct
a Hilbert space which contains a given Hilbert space H on which we could
speak about ”approached eigenvectors” and those as regarded as eigenvectors.

Proposition 1 (Berberian technique). Let H be a complex Hilbert space,
then there exist a Hilbert space Ĥ ⊃ H and an *-isometric homomorphism
ϕ : L (H) −→ L(Ĥ) (A 7−→ Â) preserving the order, i.e. for all A,B ∈ L (H)
and for all α, β ∈ C we have:

(1) Â∗ = Â∗,

(2) Î = I,

(3) ̂αA+ βB = αÂ+ ϕB̂,

(4) ÂB = ÂB̂,

(5)
∥∥∥Â∥∥∥ = ‖A‖ ,

(6) σ(Â) = σ(A), σp(Â) = σa(Â) = σa (A) ,

(7) If A is positive, then Â is positive and Âα = Âα for all α > 0.

Theorem 4. Let A ∈ Y. Then for every normal operator T such that AT =
TA, we have

‖AX −XA− T‖ ≥ ‖T‖ , for all X ∈ L (H) .

Proof. Let λ ∈ σ (T ) = σa (T ) [5]. Then it follows from Proposition 1 that T̂
is normal, Â ∈ Y , ÂT̂ = T̂ Â and λ ∈ σp(T̂ ). By applying Lemma 5, we get

‖AX −XA− T‖ =
∥∥∥ÂX̂ − X̂Â− T̂

∥∥∥ ≥ |λ| ,

for all X ∈ L (H) . Hence

‖AX −XA− T‖ ≥ sup
λ∈σ(bT )

|λ| = r(T̂ ) =
∥∥∥T̂∥∥∥ = ‖T‖ ,

for all X ∈ L (H) .

Theorem 5. Let A,B ∈ L (H). If A,B∗ ∈ Y, then

‖AX −XB − T‖ ≥ ‖T‖ ,

for all X ∈ L (H) and for all T ∈ ker δA,B.
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Proof. Let T ∈ ker δA,B. Then T ∈ ker δA∗,B∗ [11, Theorem 2]. Therefore,
ATT ∗ = TBT ∗ = TT ∗A. Since A ∈ Y , TT ∗ is normal and A (TT ∗) =
(TT ∗)A, the previous theorem implies that

‖T‖2 = ‖TT ∗‖ ≤ ‖TT ∗ − (AXT ∗ −XT ∗A)‖
= ‖TT ∗ − (AXT ∗ −XBT ∗)‖
≤ ‖T ∗‖ ‖T − (AX −XB)‖ .

Thus

‖AX −XB − T‖ ≥ ‖T‖ .

Theorem 6. Let A,B ∈ L (H) be A =
n
⊕
i=1

Ai, B =
n
⊕
i=1

Bi. If there exists j ≤ n

such that (Aj , Bj) ∈ GF (Hj), then (A,B) ∈ GF (H) .

Proof. Let j ≤ n such that (Aj , Bj) ∈ GF (Hj). Then for all X ∈ L (H)

‖AX −XB − I‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ AjXjj −XjjBj − Ij ∗ ∗ ∗
∗ ∗ ∗ ∗ . ∗ ∗
∗ ∗ ∗ ∗ ∗ . ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≥ ‖AjXjj −XjjBj − Ij‖
≥ 1.

Proposition 2. For (A,B) ∈ GF (H), the following assertions hold:

(1) (αA+ β, αB + β) ∈ GF (H), for each α, β ∈ C.

(2)
(
A−1, B−1

)
∈ GF (H), if A and B are invertible.

(3) (R, T ) ∈ GF (H), if R and T are simultaneously unitarily equivalent to
A and B respectively.

(4) (B∗, A∗) ∈ GF (H).

(5)
(
A2m , B2m

)
∈ GF (H), for all m ∈ N.

(6) σ (A) ∩ σ (B) 6= φ.
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Proof. (1) If (A,B) ∈ GF (H) then [7, Theorem 18] there exists a state f on
L (H) such that f (AX) = f (XB) for all X ∈ L (H). As a consequence of the
linearity of f ,

∀α, β ∈ C : f ((αA+ β)X) = f (X (αB + β))

for all X ∈ L (H).
(2) Let f be a state on L (H) such that f (AX) = f (XB) for allX ∈ L (H) .

Then we have

f
(
A−1X

)
= f

((
A−1XB−1

)
B
)
= f

(
A
(
A−1XB−1

))
= f

(
XB−1

)
,

for all X ∈ L (H) .
(3) Let U be a unitary operator. Then by [7, Theorem 18] we have

(A,B) ∈ GF (H) ⇐⇒ 0 ∈ W (AX −XB), ∀X ∈ L (H)

⇐⇒ 0 ∈ W (U∗ (AX −XB)U), ∀X ∈ L (H)

⇐⇒ 0 ∈ W (U∗ (AUU∗X −XUU∗B)U), ∀X ∈ L (H)

⇐⇒ 0 ∈ W ((U∗AU)Y − Y (U∗BU)), ∀Y ∈ L (H)
⇐⇒ (U∗AU,U∗BU ) ∈ GF (H) .

(4) Let f be a state on L (H) such that f (AX) = f (XB) for allX ∈ L (H) .
Then we have

f∗ (B∗X) = f (B∗X)∗ = f (X∗B)

= f (AX∗) = f (XA∗)∗

= f∗ (XA∗) ,

for all X ∈ L (H) . Since the adjoint of a state is a state, we have (B∗, A∗) ∈
GF (H).

(5) Let f be a state on L (H) such that f (AX −XB) = 0 for all X ∈
L (H) . By recurrence we have:

For m = 0,
(
A20 , B20

)
= (A,B) ∈ GF (H) . Suppose that, for all m ∈ N,

there exists a state f on L (H) such that

f
(
A2mX −XB2m

)
= 0, for all X ∈ L (H) .

Then

f
(
A2m

(
A2mX

)
−

(
A2mX

)
B2m

)
= 0 and f

(
A2m

(
XB2m

)
−

(
XB2m

)
B2m

)
= 0,

hence
f
(
A2m+1

X −XB2m+1
)
= 0.

(6) Suppose that σ (A) ∩ σ (B) = φ. In [10] M. Rosenblum proved that
σ (δA,B) ⊂ σ (A) − σ (B), and then δA,B is invertible, hence there exists X ∈
L (H) for which ‖δA,B (X)− I‖ < 1.
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Theorem 7. Let A,B ∈ L (H). If there exist a normed sequence (fn)n≥1 in
H and a scalar λ such that

‖(A− λI)∗ fn‖ −→ 0 and ‖(B − λI) fn‖ −→ 0,

then (A,B) ∈ GF (H) .

Proof. If X ∈ L (H). Then

‖AX −XB − I‖ = ‖(A− λI)X −X (B − λI)− I‖
≥ |([(A− λI)X −X (B − λI)− I] fn, fn)|
= |(Xfn, (A− λI)∗ fn)− ((B − λI) fn, X

∗fn)− 1| .

By passage to the limit, we get ‖AX −XB − I‖ ≥ 1, for allX ∈ L (H) .

Corollary 3. Let A ∈ L (H). Then, for all λ ∈ σa (A) and for all C ∈ L (H),

((A− λI)∗ , C (A− λI)) ∈ GF (H) .

Proof. Let λ ∈ σa (A) , then there exists a normed sequence (fn)n≥1 in H such
that ‖(A− λI) fn‖ −→ 0. If T = A− λI and R = CT with C ∈ L (H), then∥∥[(T − 0)∗]

∗
fn

∥∥ = ‖(A− λI) fn‖ −→ 0

and

‖(R− 0) fn‖ = ‖C (A− λI) fn‖ −→ 0,

hence

((A− λI)∗ , C (A− λI)) = (T ∗, R) ∈ GF (H) .

Corollary 4. For all A ∈ L (H) , there exists B ∈ L (H) for which (A,B) is
a generalized finite operator.

Proof. We say that the approximate spectrum is never empty. Let λ ∈ σa (A
∗),

hence it follows from the previous corollary that

((A∗ − λI)∗ , C (A∗ − λI)) =
((
A− λI

)
, C (A∗ − λI)

)
∈ GF (H) ,

for all C ∈ L (H), and by applying (1) of Proposition 2 we get

(A,B) ∈ GF (H) ,

where B = C (A∗ − λI) + λI.



GENERALIZED FINITE OPERATORS AND ORTHOGONALITY 23

Corollary 5. F (H) contains the following class:

S (H) =
{
A ∈ L (H) : A− λI = C (A∗ − λI) with λ ∈ σa (A

∗) and C ∈ L (H)
}
.

Proof. It follows from the previous corollary that, if A ∈ S (H), then (A,A) ∈
GF (H) i.e. A ∈ F (H) .
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