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On a braid monoid analogue of a theorem of Tits
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Abstract. We extend a theorem of Tits about the fundamental groups of
graphs of Coxeter groups to those of braid monoids. More precisely, we show
that every self-homotopy of a word decomposes into self-homotopies each of
which is inessential, a cube, a prism or a permutohedron.
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§1. Introduction

This paper grew out of my attempt [2] to prove a coherence theorem for braided
monoidal 2-categories. This theorem is categorical in nature but the essen-
tial part is combinatorial and can be viewed as a theorem about homotopies
of words defined by braid relations. In the context of Coxeter groups, Tits
[5] showed that every self-homotopy decomposes into self-homotopies each of
which is inessential or lies in a rank 3 residue. This means that nontrivial
self-homotopies of galleries in Coxeter complexes only occur in finite stars of
simplices of codimension 3. To obtain a similar result for braid monoids, we
first prove a variant of a result in [1] which asserts that every positive braid
has a unique factorization with respect to a given set of generators. Using this
factorization we then show that every self-homotopy decomposes into self-
homotopies each of which is inessential, a cube, a prism or a permutohedron.
This result is an important step toward the coherence theorem, and it seems
to be of independent interest as well.
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§2. Positive braids

In this section, we consider positive braids and show that every positive braid
has a unique factorization with respect to a given subset of {1, 2, ..., n − 1}.
This is a variant of a result in [1].

For n ≥ 1, denote by B+
n the monoid generated by n − 1 generators

σ1, σ2, ..., σn−1 and the relations

σiσj = σjσi if |i− j| ≥ 2,
σiσjσi = σjσiσj if |i− j| = 1,

where i, j = 1, 2, ..., n − 1. The elements of B+
n are called positive braids on

n strings. Throughout this paper, e denotes the unit in B+
n and l denotes the

length function on B+
n .

Definition 1. For a positive braid P , an element i ∈ {1, 2, ..., n− 1} is called
a starting element of P if there exists Q ∈ B+

n such that P = σiQ. Similarly,
an element i ∈ {1, 2, ..., n− 1} is called a finishing element of P if there exists
Q ∈ B+

n such that P = Qσi. For a positive braid P , we denote by S(P ) the
set of starting elements of P . Similarly, we denote by F (P ) the set of finishing
elements of P .

Definition 2. A positive braid is called a positive permutation braid if it can
be drawn as a geometric braid in which every pair of strings crosses at most
once.

In other words, positive permutation braids are the image of the map ρ :
Sn → B+

n defined by ρ(w) = σi1σi2 ...σir for some reduced expression w =
si1si2 ...sir in the symmetric group Sn.

For a subset J of {1, 2, ..., n − 1}, let S+
J be the set consisting of the unit

and all permutation braids generated by the set {σi : i ∈ J} in B+
n .

Definition 3. Set

σi ∗ σj =


σi if i = j,

σiσjσi if |i− j| = 1,
σiσj if |i− j| ≥ 2.

We frequently use the following lemmas:

Lemma 1. For elements i, j in J and for A ∈ S+
J we have

i 6∈ S(A) ⇔ σiA ∈ S+
J ,

i, j 6∈ S(A) ⇔ (σi ∗ σj)A ∈ S+
J .
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Proof. These follow from the Exchange Property of Coxeter groups and the
characterization of the permutation braids by the map ρ : Sn → B+

n above.

Lemma 2. If P = AB with P ∈ S+
J then we have A,B ∈ S+

J .

Proof. Straightforward.

We also use the following lemma of Garside [3].

Lemma 3. (Garside) Let P = P1σi = P2σj in B+
n . Then P = P3(σi ∗ σj) for

some P3 in B+
n .

Definition 4. Given a subset J of {1, 2, ..., n − 1}, a factorization P = AB
with A,B ∈ B+

n is called J-weighted if B ∈ S+
J and F (A) ∩ J ⊂ S(B). For

X,Y in S+
J , X is called a subfactor of Y if Y = QX for some Q.

Proposition 1. With J above, every positive braid P has a unique J-weighted
factorization P = A1B1. If P = AB is another factorization with B ∈ S+

J , B
becomes a subfactor of B1.

Proof. We first show the existence of a J-weighted factorization P = A1B1.
Consider all factorizations P = AB with B ∈ S+

J , and select one in which l(B)
is maximal. If F (A)∩J 6⊂ S(B) then we can find i ∈ F (A)∩J with i 6∈ S(B).
Then we can write A = A′σi for some A′, and by Lemma 1 σiB becomes an
element of S+

J . Set B′ = σiB. Then P = A′B′ with l(B′) ≥ l(B), which is a
contradiction.

We now show that every other factorization P = AB with B ∈ S+
J satisfies

B1 = QB for some Q. Otherwise there exist factorizations

P = A′σiC

with σiC ∈ S+
J such that C is a subfactor of B1 but σiC is not. Choose such

a factorization with largest possible length C, and write B1 = QC. If Q = e
then P = A′σiB1 with σiB1 ∈ S+

J , which contradicts the maximality of l(B1).
Thus Q 6= e, and we can choose j ∈ F (Q) ∩ J to write Q = Q′σj for some Q′.
Then P = A1B1 = A1Q

′σjC, and by setting A′′ = A1Q
′, we have

P = A′′σjC.

From the identity P = A′σiC = A′′σjC, it follows that A′σi = A′′σj , and by
Lemma 3, we have A′σi = A′′′(σi ∗ σj) for some A′′′ in B+

n . As a result we
have

P = A′′′(σi ∗ σj)C.

Since σiC ∈ S+
J we have i 6∈ S(C). Also, since B1 = QC = Q′σjC and

B1 ∈ S+
j we have σjC ∈ S+

J by Lemma 2, and hence j 6∈ S(C). Applying
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Lemma 1 to these facts that i 6∈ S(C) and j 6∈ S(C), we have (σi ∗σj)C ∈ S+
J .

Since B1 = QC = Q′σjC, σjC is a subfactor of B1. On the other hand, σiC
is not a subfactor of B1, so that i 6= j. Now suppose |i− j| ≥ 2. In this case,
we have

P = A′′′(σi ∗ σj)C = A′′′σiσjC.

Since σiC is not a subfactor of B1, σjσiC = σiσjC is not a subfactor of B1.
So the factor σjC satisfies the condition of C in the factorization P = A′σiC
but l(σjC) ≥ l(C)+1, which contradicts the maximality of the length of l(C).
We next consider the case |i− j| = 1. In this case, we have

P = A′′′(σi ∗ σj)C = A′′′σjσiσjC.

Since σiC is not a subfactor of B1, σjσiσjC = σiσjσiC is not a subfactor of
B1. Further, if σiσjC is a subfactor of B1, this factor satisfies the condition
above but l(σiσjC) ≥ l(C)+2, which contradicts the maximality of the length
of l(C). If σiσjC is not a subfactor of B1, the factor σjC satisfies the condition
above but l(σjC) ≥ l(C) + 1, which contradicts the maximality of the length
of l(C). In each of these cases we have a contradiction, so the claim is proved.

We next show the uniqueness of the factorization. Suppose that P = AB
is another J-weighted factorization. Then we can write B1 = QB with Q in
B+

n . If Q = e then B1 = B, so we can assume Q 6= e. In this case we can find
i ∈ F (Q)∩J so that Q = Q′σi for some Q′. Since B1 ∈ S+

J , we have σiB ∈ S+
J

and hence i 6∈ S(B). On the other hand, since i is an element of F (Q) and the
identity A = A1Q holds, i is an element of F (A)∩ J . Thus F (A)∩ J 6⊂ S(B),
which is a contradiction.

§3. Words and homotopies

In this section we consider homotopies between two words and prove the main
theorem in this paper. Given a word f = i1...ik in the free monoid on {1, ..., n−
1}, we set r(f) = σi1 ...σik in B+

n . Let π : B+
n → Sn be the natural map from

B+
n to the symmetric group Sn. A word f = i1...ik is called reduced if k is

minimal among all such expressions for π ◦ r(f) in Sn. Two words f and g are
called equivalent if r(f) = r(g). For distinct i and j in {1, ..., n− 1}, write

p(i, j) =

{
jij if |i− j| = 1,
ij if |i− j| ≥ 2.

An elementary homotopy is an alteration from a word of the form f1p(i, j)f2
to the word f1p(j, i)f2 where i, j ∈ {1, ..., n − 1} and f1, f2 are some words.
We denote by f ' g an elementary homotopy between f and g.
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Two words are called homotopic if there exists a sequence of elementary
homotopies between them. Obviously, two words are equivalent if and only if
they are homotopic or identical. A self-homotopy is a sequence of elementary
homotopies beginning and ending with the same word. In particular, a cube
is a self-homotopy of the following form:

f1ijkf2 f1ikjf2 f1kijf2

f1jikf2 f1jkif2 f1kjif2

' '

'

' '

'

.

A prism is a self-homotopy of the following form:

f1jijkf2 f1jikjf2 f1jkijf2 f1kjijf2

f1ijikf2 f1ijkif2 f1ikjif2 f1kijif2

' ' '

'

' ' '

'

.

A permutohedron is a self-homotopy of the following form:

f1ikjkijf2f1ijkjijf2f1ijkijif2f1ijikjif2

f1jijkjif2

f1jikjkif2

f1jkijkif2 f1jkijikf2 f1jkjijkf2 f1kjkijkf2 f1kjikjkf2

f1kjijkjf2

f1kijikjf2

f1ikjikjf2' ' ' '

'

'

'

'

'

'

' ' ' ' .

A self-homotopy is inessential if it is of the form

f = f0 ' f1 ' ... ' fk−1 ' fk ' fk−1 ' .... ' f1 ' f0 = f ;

or if it is of the form
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f1p(i, j)f2p(k, l)f3 f1p(j, i)f2p(k, l)f3

f1p(i, j)f2p(l, k)f3 f1p(j, i)f2p(l, k)f3 .

'

'

' '

Given a word f , let H(f) denote the graph whose vertices are words homo-
topic to f and whose edges are elementary homotopies. A self-homotopy is a
circuit in this graph. We shall say that a circuit τ in a graph decomposed in
two circuits τ1τ2 and τ−1

2 τ3 if τ = τ1τ3. In the context of Coxeter groups, Tits
[5] proved that every self-homotopy decomposes into self-homotopies each of
which is inessential or lies in a rank 3 residue.

The main result of this paper is the following

Theorem 1. Every self-homotopy decomposes into self-homotopies each of
which is inessential, a cube, a prism or a permutohedron.

Proof. We consider everything modulo inessential self-homotopies of the first
type, and use induction on the length of the words appearing in a self-homotopy.
If all the vertices in a self-homotopy end in i for some i, then we can use the
induction hypothesis to conclude that the self-homotopy decomposes as re-
quired. Otherwise, we can find a sequence of elementary homotopies of the
form

fi ' f ′j ' ...j ' ......... ' ...j ' g′j ' gk,

where i, j, k ∈ {1, 2, ..., n−1} with i 6= j, j 6= k, and f, f ′, g, g′ are some words.
Let w = r(fi) = r(gk) in B+

n . By applying Proposition 1 to w and J = {i, j, k}
we obtain a unique factorization w = w1w2 such that w2 has maximal length
in S+

J . Choose words h and h′ so that r(h) = w1 and r(h′) = w2. The word
h′ can be chosen to be reduced and to end in i, j or k. Since S+

J can be
identified with the symmetric group generated by {π(σi); i ∈ J}, we can apply
a technique used in [4] to see that there are suitable words hk, hi, hj such that
h′ becomes hkp(j, i), hip(j, k), and hjp(k, i). This means, in particular, that
fi is homotopic to hhkp(j, i). The word fi can be written as fi = ϕp(j, i) with
a word ϕ, and we can take as a sequence of elementary homotopies from fi to
hhkp(j, i) a sequence which increases the length of reduced words containing
p(j, i). Thus, we have a sequence of elementary homotopies from ϕ to hhk so
that the original sequence from fi to hhkp(j, i) is obtained from the sequence
by putting p(j, i) to all the vertices in the sequence. The word gk is homotopic
to hhip(j, k) with the word h used in common with fi. As a result, we obtain
a circuit of the following form:
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.........

.........

......

.........

.........

......

fi all end in j

A B C

D

hhkp(j, i) hhkp(i, j) all end in j

all end in i hhjp(k, i) hhjp(i, k)

f ′j g′j gk. . .

. . .

. . . . . .

. . .

. . . hhip(k, j) hhip(j, k)

' '

' '

'

all
end
in i

all
end
in j

all
end
in j

all
end
in k

all end in k

In the circuit A, fi = ϕp(j, i) and f ′j = ϕp(i, j), and we can use the sequence
from ϕ to hhk to obtain a sequence from f ′j to hhkp(i, j). Hence the circuit
A decomposes into inessential ones. The same is true for the circuit C. In
the circuit B, all the vertices end in j, so we can use the induction hypoth-
esis to conclude that B decomposes as required. If i = k then D reduces to
a point modulo inessential self-homotopies of the first type. If |i − j| ≥ 2,
|j − k| ≥ 2, and |k − i| ≥ 2, then D becomes a cube. If {i, j, k} = {a, a+ 1, b}
for some a, b with b ≤ a − 2 or b ≥ a + 3, then D becomes a prism. Finally
if {i, j, k} = {a, a + 1, a + 2} for some a, then D becomes a permutohedron.
Besides, all the vertices in the altered sequence end in i or k, so we can repeat
this procedure until we obtain a circuit whose all vertices end in i for some i.
This completes the proof.

Of course, this result should be generalized to braid monoids correspond-
ing to more general Coxeter groups. But our intention was to construct a
step toward the coherence theorem [2], so we content ourselves with the case
discussed above.

§4. Examples

In this section we illustrate by examples how the theorem holds. The fol-
lowing example shows a case where i = 5, j = 4, k = 3, h = 44 and
h′ = 543545, 543454, 345343, etc.
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fi = 54553545

54553454

54535454

54355454

54354544

54345444

53435444

35453444

34543444

34534344

34533434

34533343gk =

45453545

4343534334335343

= hh4p(3, 5)

= hh4p(5, 3)

= hh3p(4, 5)44543545

44545345

44454345

44453435

44435435

44435453

44434543

44343543

44345343 = hh5p(4, 3)

A

B

C

D

45453454

44543454

44534354

44354534

44345434

43435434

34335434

PPPP

PPPP
´
´
´

´
´
´
´

´́

@
@
@

@
@
@
@

@
@
@

¡
¡

¡
¡

¡
¡

In this case, we obtain a permutohedron in D. The next is a case where i = 5,
j = 3, k = 2, h = 5 and h′ = 3235, 3253, 3523, etc.



ON A BRAID MONOID ANALOGUE OF A THEOREM OF TITS 53

53235 = hh2p(3, 5)fi = 32535

32553

35253

53253

53523

55323

55232gk =

35235

52532

52325 = hh3p(2, 5)

52352 = hh3p(5, 2)

A

D

©©©©©©©©©©©©©©©©©©

In this case, we obtain a prism in D.
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