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Abstract. In this paper, we propose a new definition for multivariate kurtosis
based on the two measures of multivariate kurtosis defined by Mardia (1970)
and Srivastava (1984), respectively. Under normality, the expectation and the
variance for the new multivariate sample measure of kurtosis are given exactly.
We also give the third moment for the sample measure of new multivariate
kurtosis. After that standardized statistics and normalizing transformation
statistic for the sample measure of a new multivariate kurtosis are derived by
using these results. Finally, in order to evaluate accuracy of these statistics,
we present the numerical results by Monte Carlo simulation for some selected
values of parameters.
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§1. Introduction

In multivariate statistical analysis, the test for multivariate normality is an im-
portant problem. This problem has been considered by many authors. Shapiro
and Wilk [14] derived test statistic, which is well known as the univariate nor-
mality test. This Shapiro-Wilk test was extended for the multivariate case by
Malkovich and Afifi [5], Royston [12], Srivastava and Hui [19] and so on. Small
[16] gave multivariate extensions of univariate skewness and kurtosis. A com-
parison of these methods was discussed by Looney [4]. To assess multivariate
normality, the sample measures of multivariate skewness and kurtosis have
been defined and their null distributions have been given in Mardia [6], [7].
Srivastava [18] also has proposed another definition for the sample measures of
multivariate skewness and kurtosis and derived their asymptotic distributions.
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Recently, Song [17] has given a definition which is different from Mardia’s and
Srivastava’s measures of multivariate kurtosis. Srivastava’s sample measures
of multivariate skewness and kurtosis have been discussed by many authors.
Seo and Ariga [13] derived the normalizing transformation statistic for Sri-
vastava’s sample measure of multivariate kurtosis and its asymptotic distribu-
tion. Okamoto and Seo [11] derived the exact values of the expectation and
the variance for a sample measure of Srivastava’s skewness and improved the
approximate χ2 test statistic for assessing multivariate normality.

On the other hand, Jarque and Bera [2] proposed the bivariate test using
skewness and kurtosis for univariate case. The improved Jarque-Bera test
statistics have been considered by many authors. For the multivariate case,
Mardia and Foster [8] proposed an omnibus test statistic using Mardia’s sample
measures of skewness and kurtosis. Koizumi, Okamoto and Seo [3] proposed
Jarque-Bera type test statistic (MJB) for assessing multivariate normality
using Mardia’s and Srivastava’s skewness and kurtosis. Recently, Enomoto,
Okamoto and Seo [1] gave an improved MJB test statistic using Srivastava’s
skewness and kurtosis.

There are many studies in which the problem for multivariate normality
test has been discussed by using skewness and kurtosis. We focus on multi-
variate kurtosis in this paper. Our purposes are to propose a new definition
of multivariate kurtosis from the definition in Mardia [6] and Srivastava [18]
and to give the asymptotic distribution. In order to achieve our purposes,
we derive the first, second and third moments for a new sample measure of
multivariate kurtosis under multivariate normality where the population co-
variance matrix Σ is known. Further we give the standardized statistics and
the normalizing transformation statistic. Finally, we investigate the accuracy
of the expectations, the variances, the skewnesses, the kurtosises and the up-
per percentile for these statistics by Monte Carlo simulation for some selected
parameters.

§2. Some definitions of multivariate kurtosis

2.1. Mardia’s measure of multivariate kurtosis

First, we discuss a measure of multivariate kurtosis defined by Mardia [6]. Let
x be a random p-vector with the mean vector µ and the covariance matrix Σ.
Then Mardia [6] has defined the population measure of multivariate kurtosis
as

βM = E
[{

(x− µ)′Σ−1(x− µ)
}2

]
.(2.1)

We note that βM = p(p+ 2) holds under multivariate normality.



A NEW MULTIVARIATE KURTOSIS AND ITS ASYMPTOTIC DISTRIBUTION 57

Let x1,x2, . . . ,xN be sample observation vectors of size N from a multivari-
ate population. Let x = N−1

∑N
α=1 xα and S = N−1

∑N
α=1(xα − x)(xα − x)′

be the sample mean vector and the sample covariance matrix based on sam-
ple size N , respectively. Then the sample measure of multivariate kurtosis in
Mardia [6] is defined as

bM =
1

N

N∑
α=1

{
(xα − x)′S−1(xα − x)

}2
.(2.2)

Further Mardia [6] has obtained asymptotic distributions of bM under the mul-
tivariate normality. For the moments and approximation to the null distribu-
tion of Mardia’s measure of multivariate kurtosis, see, Mardia and Kanazawa
[9], Siotani, Hayakawa and Fujikoshi [15].

Theorem 1 (Mardia [6]). Let bM in (2.2) be the sample measure of multi-
variate kurtosis on the basis of random samples of size N drawn from Np(µ,
Σ) where Σ is unknown. Then, for large N ,

zM =
(bM − p(p+ 2))√

8p(p+ 2)/N

is asymptotically distributed as N(0, 1).

2.2. Srivastava’s measure of multivariate kurtosis

Next, we consider Srivastava’s measure of multivariate kurtosis which is dif-
ferent from the definition by Mardia [6]. Srivastava [18] gave a definition for
a measure of kurtosis for multivariate populations using the principle compo-
nent method. Let x be a random p-vector with the mean vector µ and the
covariance matrix Σ. Let Γ = (γ1,γ2, . . . ,γp) be an orthogonal matrix such
that Σ = ΓDλΓ

′, where Dλ = diag(λ1, λ2, . . . , λp) and λ1, λ2, . . . , λp are the
characteristic roots of Σ.

Then Srivastava [18] defined the population measure of multivariate kurto-
sis as

βS =
1

p

p∑
i=1

E[(yi − θi)
4]

λ2
i

,(2.3)

where yi = γ ′
ix and θi = γ ′

iµ, i = 1, 2, . . . , p. We note that βS = 3 holds
under multivariate normality. For the moments and approximation to the
null distribution of Srivastava’s measure of multivariate kurtosis, see, Seo and
Ariga [13].
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Let x1,x2, . . . ,xN be samples of size N from a multivariate population.
Let x and S = HDωH

′ be the sample mean vector and the sample covariance
matrix based on sample size N , where H = (h1,h2, . . . ,hp) is an orthogonal
matrix and Dω = diag(ω1, ω2, . . . , ωp). We note that ω1, ω2, . . . , ωp are the
characteristic roots of S. Then the sample measure of multivariate kurtosis in
Srivastava [18] is defined as

bS =
1

Np

p∑
i=1

1

ω2
i

N∑
α=1

(yiα − yi)
4,(2.4)

where yiα = h′
ixα and yi = N−1

∑N
α=1 yiα, i = 1, 2, . . . , p, α = 1, 2, . . . , N .

Further Srivastava (1984) has obtained asymptotic distributions of bS under
the multivariate normality.

Theorem 2 (Srivastava [18]). Let bS in (2.4) be the sample measure of
multivariate kurtosis on the basis of random samples of size N drawn from
Np(µ, Σ) where Σ is unknown. Then, for large N ,

zS =

√
pN

24
(bs − 3)

is asymptotically distributed as N(0, 1).

§3. A new measure of multivariate kurtosis

To propose a new multivariate kurtosis, we reform βM in (2.1) and βS in (2.3)
as

βM = E
[{

(x− µ)′Σ−1(x− µ)
}2

]
= E

[{
trZ2

}2
]
,(3.1)

βS =
1

p

p∑
i=1

E[(yi − θi)
4]

λ2
i

=
1

p
E
[
trZ4

]
,(3.2)

where Z = diag(z1, z2, . . . , zp) and zi = λ
− 1

2
i (yi − θi), i = 1, 2, . . . , p.

3.1. A new measure of multivariate kurtosis for multivariate pop-
ulations

Let x be a random p-vector with the mean vector µ and the covariance matrix
Σ. From (3.1) and (3.2), we propose that

βMS =
1

p2
E
[
{trZ}4

]
.
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Therefore βMS can be written as

βMS =
1

p2
E
[
{trZ}4

]
=

1

p2
E

( p∑
i=1

yi − θi√
λi

)4
 ,

where, yi = γ ′
ix and θi = γ ′

iµ, i = 1, 2, . . . , p. We note that βMS = 3 holds
under multivariate normality.

3.2. A sample measure of new multivariate kurtosis

Let x1,x2, . . . ,xN be p-dimensional sample vectors of size N from a multi-
variate population. Then a new sample measure of multivariate kurtosis is
defined as

bMS =
1

Np2

N∑
α=1

(
p∑

i=1

yiα − yi√
ωi

)4

.(3.3)

Without loss of generality, we may assume that Σ = Ip and µ = 0 when
we consider this sample measure of multivariate kurtosis. In this paper, we
consider the moments for the case when Σ is known under normality. Since we
can write λi = 1 (i = 1, 2, . . . , p) in this case, we can reduce bMS to as follows;

bMS =
1

Np2

N∑
α=1

{
p∑

i=1

(yiα − yi)

}4

.

§4. First moment of bMS

We consider the expectation of bMS under multivariate normality. First we
can expand E[bMS] given by

E[bMS] = E

 1

Np2

N∑
α=1

{
p∑

i=1

(yiα − yi)

}4


=
1

p
E[A4

iα](A) +
4

p
(p− 1)E[A3

iαAjα](B)
+

3

p
(p− 1)E[A2

iαA
2
jα](C)

+
6

p
(p− 1)(p− 2)E[A2

iαAjαAkα](D)
(4.1)

+
1

p
(p− 1)(p− 2)(p− 3)E[AiαAjαAkαA`α](E)

,
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where Aiα = yiα − yi. In order to avoid the dependence of yiα and yi, let y
(α)
i

be a mean defined on the subset of yi1, yi2, . . . , yiN by deleting yiα, that is,

y
(α)
i =

1

N − 1

N∑
j=1,j 6=α

yij .

Putting
√
N − 1y

(α)
i = z, we have

Av
iα =

(
1− 1

N

)v (
yiα − y

(α)
i

)v
=

(
1− 1

N

)v (
yiα − z√

N − 1

)v

.

Then we note that the odd order moments of z and yiα equal zero and

E[z2k] = E[y2kiα ] = (2k − 1) · · · 5 · 3 · 1, k = 1, 2, . . . .

For the case v = 1, 3, 5, . . ., we have E [Av
iα] = 0. For the case v = 2k (k =

1, 2, . . . , 6), we have

E
[
A2k

iα

]
=

(
1− 1

N

)k

(2k − 1) · · · 5 · 3 · 1.

Calculating the cases (A) , . . . , (E) in (4.1) with respect to yiα and z;

(A) E[A4
iα] = 3

(
1− 1

N

)2

, (B) E[A3
iαAjα] = 0,

(C) E[A2
iαA

2
jα] =

(
1− 1

N

)2

, (D) E[A2
iαAjαAkα] = 0,

(E) E[A2
iαAjαAkαA`α] = 0,

we obtain

E[bMS] = 3− 6

N
+

3

N2
.(4.2)
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§5. Second and third moments of bMS

In this section, we consider the second and third moments of bMS. We expand
E
[
b2MS

]
as follows.

E
[
b2MS

]
=

1

N2p4
E


N∑

α=1

{
p∑

i=1

(yiα − yi)

}4


2
=

1

N2p4
E

[( N∑
α=1

B(1)
α

)2

+ · · ·+
( N∑

α=1

B(5)
α

)2

+ 2

( N∑
α=1

B(1)
α

)( N∑
α=1

B(2)
α

)
+ 2

( N∑
α=1

B(1)
α

)( N∑
α=1

B(3)
α

)

+ 2

( N∑
α=1

B(1)
α

)( N∑
α=1

B(4)
α

)
+ 2

( N∑
α=1

B(1)
α

)( N∑
α=1

B(5)
α

)

+ 2

( N∑
α=1

B(2)
α

)( N∑
α=1

B(3)
α

)
+ 2

( N∑
α=1

B(2)
α

)( N∑
α=1

B(4)
α

)

+ 2

( N∑
α=1

B(2)
α

)( N∑
α=1

B(5)
α

)
+ 2

( N∑
α=1

B(3)
α

)( N∑
α=1

B(4)
α

)

+ 2

( N∑
α=1

B(3)
α

)( N∑
α=1

B(5)
α

)
+ 2

( N∑
α=1

B(4)
α

)( N∑
α=1

B(5)
α

)]
,

where

B(1)
α =

p∑
i=1

A4
iα, B(2)

α =

p∑
i 6=j

4A3
iαAjα, B(3)

α =

p∑
i<j

6A2
iαA

2
jα,

B(4)
α =

p∑
i,j,k

12A2
iαAjαAkα, B(5)

α =

p∑
i,j,k,`

AiαAjαAkαA`α,

and Aiα = yiα − yi. After a great deal of calculation, we obtain

E
[
b2MS

]
= 9 +

60

N
− 258

N2
+

324

N3
− 135

N4
.

Hence we get

Var [bMS] =
96

N
− 312

N2
+

360

N3
− 144

N4
.(5.1)

For details of these calculations, see Miyagawa and Seo [10]. Next, we consider
E
[
b3MS

]
in order to obtain normalizing transformation statistic. As for the
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normalizing transformation statistic, we discuss in Section 6. Now we can
expand E[b3MS] given by

E
[
b3MS

]
= E

 1

Np2

N∑
α=1

(
p∑

i=1

(yiα − yi)

)4


3
=

1

N2p6
E

( p∑
i=1

Aiα

)12
+

3(N − 1)

N2p6
E

( p∑
i=1

Aiα

)8( p∑
i=1

Aiβ

)4


+
(N − 1)(N − 2)

N2p6
E

( p∑
i=1

Aiα

)4( p∑
i=1

Aiβ

)4( p∑
i=1

Aiγ

)4
 ,

where Aiα = yiα − yi. In order to avoid the dependence of yiα, yiβ , yiγ and

yi, let y
(α,β,γ)
i be a mean defined on the subset of yi1, yi2, . . . , yiN by deleting

yiα, yiβ and yiγ , that is,

y
(α,β,γ)
i =

1

N − 3

N∑
j=1, j 6=α,β,γ

yij .

Putting
√
N − 3y

(α,β,γ)
i = z, we have

E [(yiα − yi)
u(yiβ − yi)

v(yiγ − yi)
w]

=E

[{(
1− 1

N

)
yiα −

√
N − 3

N
z − 1

N
yiβ − 1

N
yγ

}u

×
{(

1− 1

N

)
yiβ −

√
N − 3

N
z − 1

N
yiγ −

1

N
yα

}v

×
{(

1− 1

N

)
yiγ −

√
N − 3

N
z − 1

N
yiα − 1

N
yβ

}w ]
.

If the values of u, v and w are odd, even and even, respectively, or if all of

them are odd, then we have E
[
Au

iαA
v
iβA

w
iγ

]
= 0. Otherwise, for example, after
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a great deal of calculation for the expectations, we obtain

E
[
AiαAiβA

2
iγ

]
= − 1

N
+

3

N2
+O(N−3),

E
[
AiαAiβA

4
iγ

]
= − 3

N
+

18

N2
+O(N−3),

E
[
A2

iαA
2
iβA

2
iγ

]
= 1− 3

N
+

9

N2
+O(N−3),

E
[
A2

iαA
2
iβA

4
iγ

]
= 3− 12

N
+

48

N2
+O(N−3),

E
[
A2

iαA
3
iβA

3
iγ

]
= − 9

N
+

45

N2
+O(N−3),

E
[
A2

iαA
4
iβA

4
iγ

]
= 9− 45

N
+

234

N2
+O(N−3),

E
[
A3

iαA
4
iβA

4
iγ

]
= 1− 27

N
+

216

N2
+O(N−3),

E
[
A4

iαA
4
iβA

4
iγ

]
= 27− 162

N
+

1053

N2
+O(N−3).

Therefore the expectation for each term of E[b3MS] is given by

1

N2p6
E

( p∑
i=1

Aiα

)12
 =

10395

N2
+O(N−3),

3(N − 1)

N2p6
E

( p∑
i=1

Aiα

)8( p∑
i=1

Aiβ

)4
 =

945

N
+

6615

N2
+O(N−3),

(N − 1)(N − 2)

N2p6
E

( p∑
i=1

Aiα

)4( p∑
i=1

Aiβ

)4( p∑
i=1

Aiγ

)4


= 27− 243

N
+

27(12p4 − 72p3 + 251p2 − 240p+ 108)

N2p2
+O(N−3).

Summarizing these results, we get

E
[
b3MS

]
=27 +

702

N
(5.2)

+
27(12p4 − 72p3 + 391p2 − 240p+ 108)

N2p2
+O(N−3).

§6. Standardized statistics and normalizing transformation
statistic for E[bMS]

By using the results of the expectation and the variance for the sample mea-
sures of multivariate kurtosis, we obtain the following theorem.
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Theorem 3. Let x1,x2, . . . ,xN be random samples of size N drawn from
Np(µ, Σ), where Σ is known. Then, for large N ,

zMS =

√
N

96
(bMS − 3),

z∗MS =

√
24N4

4N3 − 13N2 + 15N − 6

{
bMS −

(
3− 6

N
+

3

N2

)}
are asymptotically distributed as N(0, 1).

Next an asymptotic expansion of the distribution function for a new sample
measure of multivariate kurtosis bMS is given under the multivariate normal
population. Further, as an improved approximation to a standard normal
distribution, we derive the normalizing transformation for the distribution of√
N(bMS − βMS).

Let YMS =
√
N(bMS − βMS). Then we have the following distribution func-

tion for bMS.

Pr

[
YMS

σ
≤ y

]
= Φ(y)− 1√

N

{a1
σ
Φ(1)(y) +

a3
σ3

Φ(3)(y)
}
+O

(
N−1

)
,

where Φ(y) is the cumulative distribution function of N(0, 1) and Φ(j)(y) is
the jth derivation of Φ(y). The first three cumulants of YMS are given by

κ1 (YMS) =
a1√
N

+O
(
N− 3

2

)
,

κ2 (YMS) = σ2 +O
(
N−1

)
,

κ3 (YMS) =
6a3√
N

+O
(
N− 3

2

)
,

where

a1 = 6, σ2 = 96, a3 = 1584.

Further we put the function g(bMS) satisfying the following differential equa-
tion

a3
σ3

+
σg′′(bMS)

2g′(bMS)
= 0,

where g′(βS) 6= 0. Solving this equation, we have

g(bMS) = −32

11
exp

[
−11

32
bMS

]
.
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Therefore the above distribution function is transformed as

Pr

[√
N {g(bMS)− g(βMS − c/N)}

σ
≤ y

]
= Φ(y) +O

(
N−1

)
,

where c = −(45/2)exp [−(11/32)bMS].

Hence we have following theorem.

Theorem 4. Let x1,x2, . . . ,xN be random samples of size N drawn from
Np(µ, Σ), where Σ is known. Then, for large N ,

zNT =

√
N

{
−11

32exp
[
−11

32bMS

]
+ 32

11exp
[
−33

32

]
− c/N

}
√
96exp

[
−33

32

]
is a normalizing transformation for bMS, where c = −(45/2) exp[−(33/32)
bMS].

§7. Simulation studies

We investigate the accuracy of standardized statistics zMS, z
∗
MS and normaliz-

ing transformation statistic zNT by Monte Carlo simulation. Parameters of the
dimension and the sample size in simulation are as follows: p = 3, 5, 7, 10, N =
20, 50, 100, 200, 400, 800. As a numerical experiment, we carry out 1, 000, 000
replications for the case where Σ(= Ip) is known.

Table 1 gives the values of the expectation and the variance for zMS, z
∗
MS

and zNT . LT’s in Table 1 denote the limiting term for the expectation and
the variance of a new multivariate kurtosis. Table 2 gives the values of the
skewness and the kurtosis for zMS, z

∗
MS and zNT . LT’s in Table 2 denote the

limiting term for the skewness and the kurtosis of a new multivariate kurtosis.
From Tables 1 and 2, it may be noted that the values for each statistic give
good normal approximations when N is large.

It may be seen from Table 1 that the expectation and the variance of all
statistics converge to zero and one when N is large. The results show that
Theorems 3 and 4 hold. Particularly, the expectations and the variances of
the statistic z∗MS are almost same for any N . That is, z∗MS is almost close to
the limiting term even for small N , respectively, since z∗MS is a standardized
statistic using the exact values of the expectation and the variance derived in
this paper. As for the expectation, the accuracy of approximation for zNT is
better than that for zMS for any N . Hence, it may be noticed that both z∗MS

and zNT are improvement statistics of zMS. It may be seen from Table 1 that
there is not any effect of dimension at all.
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We note that the value of skewness is zero and the value of kurtosis is three
under standard normal distribution. The values of skewness and kurtosis
for zMS and z∗MS are same since the expectation and the variance are only
improved. On the other hand, from Theorem 4, we note that zNT is improved
for the distribution function. Therefore it may be noted from Table 2 that the
values of skewness and kurtosis for zNT rapidly converge to zero and three.
Further it may be seen that the normalizing transformation statistic zNT is
pretty good normal approximation even for small N .

Tables 3, 4 and 5 give the upper 10, 5 and 1% points of zMS, z
∗
MS and zNT ,

respectively. Note that the notation of z(0.90), z(0.95) and z(0.99) mean the
upper percent points of normal distribution. In Table 3, z∗MS and zNT are
closer to the upper 10% point of normal distribution even when N is small.
In Table 4, the accuracy of approximation for zMS is good when N is small.
However the upper approximate percent points of zNT are better when N is
large. Finally it may be seen from Table 5 that the values for zNT is closer to
the upper 1% point of normal distribution for any N .

Some histograms of the sample distributions for zMS, z∗MS and zNT by
simulation are given in Figure 1 (p = 10). Also, we compute the cases p =
3, 5, 7, and obtain results similar to these for the case p = 10.

In conclusion, it is noted from various points of view that the normalizing
transformation statistic improved for the distribution function zNT proposed
in this paper is an extremely good normal approximation and is useful for the
multivariate normal test.

§8. Conclusion

In this paper, we have proposed a new definition for multivariate kurtosis. It
is noticed that the new definition for multivariate kurtosis is based on fourth
moment from definitions proposed by Mardia [6] and Srivastava [18]. Under
normality, we have derived the expectation, the variance and the third moment
for a sample measure of new multivariate kurtosis. Further, standardized
statistics and normalizing transformation statistic have been given by using
these results. Finally, we have evaluated the accuracy of statistics derived in
this paper by Monte Carlo simulation, and we recommend to use zNT for the
multivariate normality test. It is left as a future problem for the case when Σ
is unknown.
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Table 1: Expectation and variance for zMS, z
∗
MS and zNT

Expectation (LT:0) Variance (LT:1)
N zMS z∗MS zNT zMS z∗MS zNT

p=3 20 −0.135 −0.001 0.109 0.840 0.991 0.631
50 −0.086 −0.001 0.036 0.936 1.000 0.794
100 −0.061 −0.000 0.014 0.970 1.002 0.878
200 −0.043 −0.001 0.006 0.987 1.003 0.931
400 −0.029 0.001 0.003 0.992 1.000 0.962
800 −0.022 0.000 0.000 0.998 1.002 0.983

p=5 20 −0.133 0.000 0.109 0.848 1.002 0.632
50 −0.085 0.000 0.036 0.938 1.002 0.792
100 −0.062 −0.001 0.013 0.967 0.999 0.878
200 −0.044 −0.001 0.005 0.984 1.000 0.931
400 −0.031 −0.001 0.001 0.990 0.998 0.962
800 −0.022 0.000 0.000 0.995 0.999 0.979

p=7 20 −0.132 0.002 0.111 0.851 1.005 0.632
50 −0.085 0.001 0.036 0.939 1.002 0.795
100 −0.062 −0.001 0.013 0.965 0.997 0.876
200 −0.044 −0.001 0.004 0.981 0.997 0.929
400 −0.029 0.001 0.003 0.994 1.002 0.964
800 −0.022 −0.001 0.000 0.995 0.999 0.980

p=10 20 −1.133 0.000 0.109 0.849 1.003 0.632
50 −1.085 0.001 0.036 0.940 1.003 0.795
100 −0.060 0.001 0.014 0.970 1.002 0.877
200 −0.044 −0.001 0.005 0.983 0.999 0.930
400 −0.032 0.000 0.001 0.988 0.996 0.960
800 −0.021 0.000 0.001 0.996 1.000 0.980

Table 2: Skewness and kurtosis for zMS, z
∗
MS and zNT

Skewness (LT:0) Kurtosis (LT:3)
N zMS z∗MS zNT zMS z∗MS zNT

p=3 20 2.233 2.233 0.068 12.531 12.531 2.193
50 1.431 1.431 −0.036 7.075 7.075 2.514
100 1.022 1.022 −0.036 5.113 5.113 2.713
200 0.724 0.724 −0.014 4.016 4.016 2.845
400 0.508 0.508 −0.010 3.522 3.522 2.931
800 0.360 0.360 −0.002 3.254 3.254 2.962

p=5 20 2.276 2.276 0.070 13.262 13.262 2.191
50 1.456 1.456 −0.030 7.414 7.414 2.518
100 1.002 1.002 −0.037 4.952 4.952 2.708
200 0.716 0.716 −0.023 4.025 4.025 2.853
400 0.502 0.502 −0.014 3.500 3.500 2.927
800 0.359 0.359 −0.003 3.253 3.253 2.965

p=7 20 2.299 2.299 0.067 13.651 13.651 2.191
50 1.433 1.433 −0.033 7.024 7.024 2.511
100 1.006 1.006 −0.037 4.971 4.971 2.713
200 0.714 0.714 −0.025 4.035 4.035 2.850
400 0.509 0.509 −0.009 3.514 3.514 2.925
800 0.353 0.353 −0.010 3.255 3.255 2.970

p=10 20 −1.133 0.000 0.070 13.246 13.246 2.190
50 −1.085 0.001 −0.032 7.148 7.148 2.512
100 −0.060 0.001 −0.035 5.043 5.043 2.714
200 −0.044 −0.001 −0.025 3.999 3.999 2.850
400 −0.032 0.000 −0.016 3.500 3.500 2.932
800 −0.021 0.000 −0.007 3.258 3.258 2.968
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Table 3: The upper 10% point of zMS, z
∗
MS and zNT

0.90
N zMS z∗MS zNT z(0.90)

p=3 20 0.992 1.223 1.212 1.282
50 1.160 1.287 1.216 1.282
100 1.225 1.307 1.233 1.282
200 1.264 1.318 1.254 1.282
400 1.277 1.313 1.264 1.282
800 1.286 1.310 1.273 1.282

p=5 20 0.993 1.225 1.213 1.282
50 1.163 1.290 1.217 1.282
100 1.228 1.310 1.235 1.282
200 1.261 1.315 1.252 1.282
400 1.275 1.311 1.262 1.282
800 1.283 1.307 1.271 1.282

p=7 20 0.996 1.228 1.214 1.282
50 1.161 1.289 1.217 1.282
100 1.221 1.303 1.231 1.282
200 1.257 1.310 1.248 1.282
400 1.282 1.318 1.268 1.282
800 1.280 1.305 1.269 1.282

p=10 20 0.993 1.224 1.213 1.282
50 1.162 1.290 1.217 1.282
100 1.226 1.308 1.234 1.282
200 1.257 1.311 1.249 1.282
400 1.269 1.305 1.257 1.282
800 1.284 1.309 1.272 1.282

Table 4: The upper 5% point of zMS, z
∗
MS and zNT

0.95
N zMS z∗MS zNT z(0.95)

p=3 20 1.605 1.890 1.445 1.645
50 1.729 1.875 1.503 1.645
100 1.746 1.837 1.550 1.645
200 1.751 1.809 1.594 1.645
400 1.728 1.766 1.614 1.645
800 1.712 1.737 1.630 1.645

p=5 20 1.608 1.893 1.446 1.645
50 1.727 1.873 1.502 1.645
100 1.747 1.838 1.550 1.645
200 1.744 1.802 1.590 1.645
400 1.726 1.704 1.613 1.645
800 1.712 1.737 1.630 1.645

p=7 20 1.614 1.899 1.448 1.645
50 1.727 1.874 1.502 1.645
100 1.745 1.835 1.549 1.645
200 1.738 1.796 1.586 1.645
400 1.730 1.768 1.616 1.645
800 1.705 1.730 1.625 1.645

p=10 20 1.612 1.897 1.447 1.645
50 1.731 1.878 1.504 1.645
100 1.750 1.841 1.552 1.645
200 1.741 1.799 1.588 1.645
400 1.723 1.760 1.610 1.645
800 1.708 1.733 1.627 1.645
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Table 5: The upper 1% point of zMS, z
∗
MS and zNT

0.99
N zMS z∗MS zNT z(0.99)

p=3 20 3.161 3.581 1.719 2.326
50 3.066 3.257 1.937 2.326
100 2.925 3.035 2.090 2.326
200 2.797 2.864 2.204 2.326
400 2.664 2.706 2.262 2.326
800 2.574 2.601 2.298 2.326

p=5 20 3.202 3.625 1.722 2.326
50 3.074 3.265 1.939 2.326
100 2.917 3.025 2.087 2.326
200 2.773 2.848 2.197 2.326
400 2.665 2.693 2.253 2.326
800 2.567 2.594 2.293 2.326

p=7 20 3.168 3.610 1.721 2.326
50 3.079 3.270 1.940 2.326
100 2.917 3.027 2.087 2.326
200 2.773 2.839 2.192 2.326
400 2.665 2.706 2.262 2.326
800 2.559 2.596 2.287 2.326

p=10 20 3.203 3.626 1.722 2.326
50 3.076 3.267 1.939 2.326
100 2.939 3.049 2.095 2.326
200 2.772 2.838 2.192 2.326
400 2.654 2.695 2.255 2.326
800 2.561 2.588 2.289 2.326


