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Abstract. The object of the present paper is to obtain a necessary and suffi-
cient condition for a 3-dimensional quasi-Sasakian manifold to be an n—FEinstein
manifold. An example is given to verify the theorem. Finally Ricci solitons and
gradient Ricci solitons have been studied.

AMS 2010 Mathematics Subject Classification. 53c15, 53c40.

Key words and phrases. quasi-Sasakians manifold, structure function, Ricci
soliton, gradient Ricci soliton.

§1. Introduction

The notion of quasi-Sasakian structure was introduced by D. E. Blair [4] to
unify Sasakian and cosymplectic structures. S. Tanno [24] also added some
remarks on quasi-Sasakian structures. The properties of quasi-Sasakian mani-
folds have been studied by several authors, viz., J. C. Gonzalez and D. Chinea
[13], S. Kanemaki [16], [17] and J. A. Oubina [22], De and Sarkar [9], De and
Mondal [8]. B. H. Kim [18] studied quasi-Sasakian manifolds and proved that
every fibred Riemannian spaces with invariant fibres normal to the structure
vector field do not admit nearly Sasakian or contact structure but a quasi-
Sasakian or cosymplectic structure. Recently, quasi-Sasakian manifolds have
been the subject of growing interest in view of finding the significant appli-
cations to physics, in particular to super gravity and magnetic theory [1], [2].
Quasi-Sasakian structures have wide applications in the mathematical analy-
sis of string theory [3], [12]. Motivated by the roles of curvature tensor and
Ricci tensor of quasi-Sasakian manifolds in string theory [3] we would like to
study some curvature properties and Ricci soliton in a 3-dimensional quasi-
Sasakian manifold. On a 3-dimensional quasi-Sasakian manifold, the structure
function 8 was defined by Z. Olszak [20] and with the help of this function
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he has obtained necessary and sufficient conditions for the manifold to be
conformally flat [21]. Next he has proved that if the manifold is additionally
conformally flat with § = constant, then (a) the manifold is locally a prod-
uct of R and a two-dimensional Kaehlerian space of constant Gauss curvature
(the cosymplectic case), or, (b) the manifold is of constant positive curvature
(the non-cosymplectic case, here the quasi-Sasakian structure is homothetic to
a Sasakian structure). It is also known that D—homothetic and homothetic
deformations of (quasi-) Sasakian structures lead to quasi-Sasakian structures
[19]. In dimension 3, certain D—conformal deformations of Sasakian structures
yield quasi-Sasakian and non-Sasakian structures of rank 3 [24].

A Ricci soliton is a generalization of an Einstein metric. We recall the
notion of Ricci soliton according to [6]. On the manifold M, a Ricci soliton
is a triple (g, V, ) with g, a Riemannian metric, V' a vector field and \ a real
scalar such that

(1.1) £vg+25+2\g =0

where £ is the Lie derivative. The Ricci soliton is said to be shrinking, steady
and expanding according as A is negative, zero and positive. If the vector field
V' is the gradient of a potential function — f, then g is called a gradient Ricci
soliton and equation (1.1) takes the form

(1.2) VV/ =S5+ Mg,

where V denotes the Riemannian connection.

A Ricci soliton on a compact manifold has constant curvature in dimension
2 (Hamilton [14]), and also in dimension 3 (Ivey [15]). For details we refer
to Chow and Knoff [7] and Derdzinski [11]. Recently in [6] C. Calin and M.
Crasmareanu have studied Ricci solitons in f—Kenmotsu manifolds. We also
recall the following significant result of Perelman [23]: A Ricci soliton on a
compact manifold is a gradient Ricci soliton.

On the other hand, the roots of contact geometry lie in differential equa-
tions as in 1872 Sophus Lie introduced the notion of contact transformation
as a geometric tool to study systems of differential equations. This subject
has manifold connections with the other fields of pure mathematics , and sub-
stantial applications in applied areas such as mechanics, optic, phase space of
dynamical system, thermodynamics and control theory.

The paper is organized as follows: After preliminaries in section 3 we ob-
tain a necessary and sufficient condition for a 3-dimensional quasi-Sasakian
manifold to be an n—FEinstein manifold and also verify the result by a concrete
example. In the last section we study Ricci solitons and gradient Ricci solitons
in 3-dimensional quasi-Sasakian manifold and prove that in a 3-dimensional
non-cosymplectic quasi-Sasakian manifold, the Ricci soliton (g, &, A) is expand-
ing provided § is constant and the manifold is of constant curvature. Finally



3-DIMENSIONAL QUASI-SASAKIAN MANIFOLDS AND RICCI SOLITONS 73

we prove that if the metric g of a 3-dimensional quasi-Sasakian manifold with
constant structure function (3 is a gradient Ricci soliton, then the manifold is
an Einstein manifold.

§2. Preliminaries

Let M be a (2n+1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (¢, &,n,g), where ¢, £, n are tensor
fields on M of types (1,1), (1,0), (0,1) respectively, such that [5]

(2.1) B =—T+n0€ 1) =1
Then also
(2.2) P =0, nop=0, nX)=yg(X,8).

Let ® be fundamental 2-form of M defined by
B(X,Y) = g(X,6Y) X, YeT(M).

M is said to be quasi-Sasakian if the almost contact structure (¢, £, n) is normal
and the fundamental 2-form & is closed (d® = 0), which was first introduced
by Blair [4]. The normality condition gives that the induced almost complex
structure of M x R is integrable or equivalently, the torsion tensor field N =
[p,#] + 26 ® dn vanishes identically on M. The rank of a quasi-Sasakian
structure is always an odd integer [4] which is equal to 1 if the structure is
cosymplectic and it is equal to (2n + 1) if the structure is Sasakian.

A Riemannian manifold M is said to be an n—Einstein manifold if it satisfies
the condition

(2.3) S(X,Y) = Xg(X,Y) + dn(X)n(Y),

where )\ and ¢ are smooth functions on the manifold.
In [10] De and Sengupta prove the following:

Lemma 1. A parallel symmetric (0,2) tensor field in a 3-dimensional non-
cosymplectic quasi-Sasakian manifold is a constant multiple of the associated
metric tensor.

83. 3-dimensional quasi-Sasakian manifold

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian man-
ifold if and only if [20]

(3.1) Vx&=—poX, XeT(M),
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for a certain function § on M, such that £6 = 0, V being the operator of
the covariant differentiation with respect to the Levi-Civita connection of M.
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if § = 0.
If B = constant, then the manifold reduces to a f—Sasakian manifold and if
in particular 8 = 1, the manifold becomes a Sasakian manifold. Here we have
shown that the assumption &5 = 0 is not necessary.

As a consequence of (3.1), we have [20]

(3.2) (Vxo)(Y) = B(g(X,Y)§ —n(Y)X), X,YeT(M).
Because of (3.1) and (3.2), we find
Vx(Vy€) = =(XB)oY — B {g(X, V)¢ = n(Y)X} = Bo(VxY)
which implies that
(3.3) R(X,Y)é = —(XB)oY + (Y B)oX + 2 {n(Y)X — n(X)Y}.
Thus we get from (3.3)

R(X,Y,Z,§) = (XP)g(9Y,2) — (YB)g(¢X, Z)
(3.4) — Bn(Y)g(X, 2) — n(X)g(Y, Z)},

where R(X,Y, Z,W) = g(R(X,Y, Z),W).
Putting X = ¢, in (3.4) we obtain

(3.5) R(E,Y, Z,£) = B{g(Y, Z) —n(Y)n(Z)} + g(Y, Z)&B.

Interchanging Y and Z of (3.5) yields

(3.6) R(& 2,Y,€) = BHg(Y. Z) = n(Y)n(Z)} + g(¢Z,Y )¢B.

Since R(,,Y,Z,¢) = R(Z,£,£,Y) = R(&,Z,Y,§), from (3.5) and (3.6) we

have
{9(0Y,2) — g(¢2,Y)}B = 0.
Therefore, we can easily verify that £8 = 0. So we have the following;:

Proposition 1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold
the structure function B satisfies the condition £6 = 0.
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Let M be a three-dimensional quasi-Sasakian manifold. The Ricci tensor
S of M is given by [21]

SY.2) = (5-B8)9(Y.Z)+ (38 = Dn(Y)n(2)
(3.7) — (Y)dB(6Z) - n(2)dB(eY),

where 7 is the scalar curvature of M.
From (3.7), the Ricci operator ) can be written as

(38) QX = (5 - B)X + (38 — 5)n(X)¢ — n(X)(dgrad §) - dB(#X)¢,

where the gradient of a function f is related to the exterior derivative df by
the formula df (X) = g(grad f, X).

From (3.7) it is clear that if 5 = constant then M is an n—Einstein mani-
fold. Conversely if we consider that M is an n—FEinstein manifold, then from
(3.7) and (2.3), we have

N(X)dB(GY)+n(Y)ABOX) = (~At5—B2)g(X.Y)+(=5—5+38”)n(X)n(Y).
Taking Y = £ in the last equation we get

dB(¢X) = (=X =8 +26%)n(X).

Now taking ¢X instead of X in the above equation and using Proposition 1
we obtain that § is a constant. Hence the Ricci tensor S of an n—Einstein
quasi-Sasakian manifold is of the form

r

S(Y,2) = (5 = B)g(Y, 2) + (36> = (Y )n(2).

Hence we can state the following:

Theorem 1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold is
an n— Einstein manifold if and only if B is constant.

We verify the above theorem by an example.

Example: We consider the three-dimensional manifold M = {(z,y, z)eR3,
(z,y,2) # 0}, where (z,y, z) are standard co-ordinate of R3.
The vector fields

9 a8 oD
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gle1,e3) = gle1,e2) = glez,e3) =0
9(61,61) = 9(62762) = 9(63,63) =1.
(

Let n be the 1-form defined by n(Z) = g(Z, e3) for any ZeT(M).
Let ¢ be the (1,1) tensor field defined by

¢(el) = —€3, ¢(62) = €1, ¢(63) =0.
Then using the linearity of ¢ and g, we have
n(es) =1, ¢°Z =—Z+n(Z)es,

9(dZ,oW) = g(Z, W) — n(Z)n(W),

for any Z, WeT(M).
Thus for es = £ , the structure (¢, &, n,g) defines an almost contact metric
structure on M.
Let V be the Levi-Civita connection with respect to metric g. Then we
have
le1,e2] = e3, [e1,e3] =0 and [ez,e3] =0.

The Riemannian connection V of the metric g is given by

29(VxY,Z) = Xg(Y,2)+Yg(Z, X))~ Zg(X,Y)
(3.9) - 9(X, [V, Z]) +9(Y, [Z,X]) + 9(Z,[X,Y])

which is known as Koszul’s formula.
Using (3.9) we obtain 2g(Ve, e3, X) = 2g(—3e2, X) for all XeT'(M).
Thus, Ve, e3 = —%62.
(3.9) further yields

1 1
—€2, v6162 = zé€3, V6161 - Oa V3263 = zé€1, V62€2 - 07

Veies = —5 2 2

1
—e1, Vel = —562.

1
(3.10) Ve,€1 = —563 Veses =0, Veeo = 5

We see that the structure (¢, &, n, g) satisfies the formula Vx§ = —¢X for
8= —%. Hence the manifold is a three-dimensional quasi-Sasakian manifold
with the constant structure function .

It is known that

(3.11) R(X,Y)Z =VxVyZ - VyVxZ —VxyZ.
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With the help of the above results and using (3.11) it can be easily verified

that
1 1

R(e1,e2)es =0, Rleg, ez)e3 = 162 R(ey,e3)es = 760
3 1
R(e1,ez)es = —7 R(ez,e3)ex = — R(ey,e3)ex =0,

3 1
R(e1,e2)er = 162’ R(ez,e3)e1 =0, R(e1,e3)e; = _163‘

From the above expression of the curvature tensor we obtain

1 1 1
S(ey,e1) = —g3 S(ea, e2) = ~5 and S(es,e3) = 7

Therefore,

r = S(ei,e1)+ S(ea,e2) + S(es,e3)
1
-5
Here we note that the scalar curvature r is a constant.
With the help of the above expressions of the Ricci tensor it can be easily
verified that the manifold satisfies (2.3) for A = —% and 6 = 1. Hence the

manifold is an 7n-Einstein manifold. Therefore Theorem 1 is verified.

84. Ricci solitons and Gradient Ricci solitons

Suppose a 3-dimensional quasi-Sasakian manifold admits a Ricci soliton de-
fined by (1.1). It is well known that Vg = 0. Since A in the Ricci soliton
equation (1.1) is a constant, so VAg = 0. Thus £y g + 25 is parallel. Hence
using Lemma 1 we can say that £y g 4+ 2S5 is a constant multiple of metric
tensors g, that is, £y g+ 25 = ag, where a is constant. Hence £1,g+ 25 +2\g
reduces to (a+ 2M)g. Using (1.1) we get A = —a/2. So we have the following;:

Proposition 2. In a 3-dimensional non-cosymplectic quasi-Sasakian man-
ifold, the Ricci soliton (g,V,\) is shrinking or erpanding according as a is
positive or negative.

Now in particular we investigate the case V' = £. Then (1.1) reduces to
(4.1) Leg+25+20g =0.

It is known that [4] in a 3-dimensional quasi-Sasakian manifold ¢ is Killing,
that is, £¢g = 0. Then from (4.1) A = —S(¢,£) = —2532, provided (3 is constant.
Also from (4.1) it follows that the manifold is an Einstein manifold. But it is
known [25] that a 3-dimensional Einstein manifold is a manifold of constant
curvature.

Thus we have
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Corollary 1. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold,
the Ricci soliton (g,&, \) is shrinking provided (3 is constant and the manifold
s of constant curvature.

Let M be a 3-dimensional non-cosymplectic quasi-Sasakian manifold with
constant structure function 8 and g a gradient Ricci soliton. Then the equation
(1.2) can be written as

(4.2) VyDf = QY + \Y

for all vector fields Y in M, where D denotes the gradient operator of g. From
(4.2) it follows that

(4.3) R(X,Y)Df = (VxQ)Y — (VyQ)X, X,YeTM.

Using (3.3) we have

(4.4) 9(R(&,Y)Df.€) = g(B*(Df — (££)8),Y).
Also in a 3-dimensional quasi-Sasakian manifold, it follows that
(4.5) 9(VEQ)Y — (VyQ)E. ) = 0.

From (4.3), (4.4) and (4.5) we get

BHDf — (£)€) =0

that is,

(4.6) Df = (&f)¢,

since M is non-cosymplectic. Using (4.6) in (4.2) we obtain

(4.7) S(X,Y) 4+ Ag(X,Y) = —B(£f)g(¢Y, X) + Y (£f)n(X).
Putting X = ¢ in (4.7) we get

(4.8) Y(Ef) = (287 + Nn(Y).

From (4.7) and (4.8) we get
(49)  S(X,Y) +M(X,Y) = =B(E)g(0Y, X) + (267 + N)n(X)n(Y).
Using (4.9) in (4.2), we have

(4.10) VyDf = (28% + An(Y)E — B(ES)aY.
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Using (4.10) we compute R(X,Y)Df and obtain

(4.11) 9(R(X,Y)(ES)E,€) = (267 + Ndn(X,Y).
Thus we get
(4.12) 262 + X =0.

Therefore from equation (4.8) we have Y (£f) = 0 that is £f = ¢, where ¢
is a constant. Thus the equation (4.6) gives df = cn. Its exterior derivative
implies that cdn = 0, which implies ¢ = 0. Hence f is a constant. Consequently
(4.2) reduces to S(X,Y) = 25%g(X,Y). Hence M is Einstein. So we have the
following:

Theorem 2. If the metric g of a 3-dimensional non-cosymplectic quasi-Sasakian
manifold with constant structure function (3 is a gradient Ricci soliton, then
the manifold is an Einstein manifold.

Since a 3-dimensional Einstein manifold is a manifold of constant curvature,
hence we get the following:

Corollary 2. If the metric g of a 3-dimensional non-cosymplectic quasi-
Sasakian manifold with constant structure function B is a gradient Ricci soli-
ton, then the manifold is a manifold of constant curvature.

Also using the result of Perelman [23], we can state the following:

Corollary 3. If the metric g of a 3-dimensional non-cosymplectic compact
quasi-Sasakian manifold with constant structure function p is a Ricci soliton,
then the manifold is an FEinstein manifold.
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