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Abstract. In this paper, we consider the multivariate normality test based on
the sample measures of multivariate skewness and kurtosis defined by Srivas-
tava [11]. Koizumi et al. [4] proposed test statistics My and M; using Srivas-
tava’s sample skewness and kurtosis, which are asymptotically distributed as
x2-distribution. We propose a new test statistic M3z by taking account of the
variance of M> under the normality. In order to evaluate the accuracy of the
proposed test statistic, the numerical results by a Monte Carlo simulation for
some selected values of parameters are presented.
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81. Introduction

In statistical analysis, the test for normality is an important problem. This
problem has been considered by many authors. For the univariate case, the
test statistic using order statistic derived by Shapiro and Wilk [10] is one
of the most famous and essential tests for normality. Another approach for
testing normality uses sample skewness and kurtosis separately. D’Agostino
[2] derived the test statistic using sample skewness. For the test statistic
using sample kurtosis, Anscombe and Glynn [1] proposed the test statistic
distributed as standard normal distribution. Jarque and Bera [3] proposed the
bivariate test using univariate sample skewness and kurtosis. The improved
Jarque-Bera (JB) test statistics have been considered by many authors (see,
e.g. Urzta [12] and Nakagawa et al. [5]).

Mardia [6] and Srivastava [11] gave different definitions of multivariate sam-
ple skewness and kurtosis, and discussed some test statistics using these mea-
sures for assessing multivariate normality. Mardia and Foster [7] proposed
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the test statistics using Mardia’s sample skewness and kurtosis. Okamoto and
Seo [8] derived the improved approximate x? test statistic using multivariate
sample skewness of Srivastava [11], which is more accurate than Srivastava’s
x? test statistic. The test statistics using the multivariate sample kurtosis of
Srivastava [11] were discussed by Seo and Ariga [9]. The test statistics M; and
M> using Srivastava’s sample skewness and kurtosis that are asymptotically
distributed as y?-distribution were proposed by Koizumi et al. [4]. However,
for a small N, there is difference between the upper percentiles of distributions
of their statistics and the y2-distribution. Thus, it seems that the multivariate
normality test based on M; or My, though applicable, is not appropriate. Our
purpose is to propose a new test statistic M3 by taking account of the variance
of M, under the normality. We investigate the accuracies of variances, upper
percentiles, type I errors and powers for the multivariate JB test statistics M7,
My and M3 via a Monte Carlo simulation for selected values of parameters.

82. Srivastava’s measures of multivariate skewness and kurtosis

Let « be a p-dimensional random vector with mean vector p and covariance
matrix ¥ = T'DyI", where I' = (vy,79,...,7,) is an orthogonal matrix and
Dy = diag(A1, A2,...,Ap). Note that Aj, Aa,..., A\, are the eigenvalues of X.
Then, Srivastava [11] defined the population measures of multivariate skewness

and kurtosis as
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respectively, where y; = vix and 6; = v,p (i = 1,2,...,p). We note that
B%’p =0, f2, = 3 under a multivariate normal population.

Let @1, xo,...,xy be samples of size N from a multivariate population.
Let T and S = HD_ H' be the sample mean vector and sample covariance
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respectively, where H = (hq, ho,...,hp) is an orthogonal matrix and D,, =
diag (wy,ws,...,wp). We note that

N
1 _ .
Wy = h;Shl == N Z(ylj - yi)27 1= ]-7 27 ey Dy
7=1
where y;; = h;ar;j (t=12,...,p, 7=1,2,...,N), 5, = N1 ij:ﬂ/ij (i =
1,2,...,p). Then, Srivastava [11] defined the sample measures of multivariate
skewness and kurtosis as
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respectively, where m,; = N~! Z;Vﬂ(yw —7;)".
Koizumi et al. [4] proposed two test statistics for multivariate normality:
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Mo =

for large IV, where the expectation of bip, and the expectation and variance
of by, are given by
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respectively under the normality.

§3. New multivariate JB test statistic using the variance of M,

The test statistic Ma was introduced in Koizumi et al. [4] so that the accuracy
of the upper percentile for the approximate test statistic is better than that of
the test statistic M; for small N. However, for a small IV, it seems that there
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is difference between the the upper percentiles of the distributions of Ms and
the y2-distribution. Hence, we propose a new test statistic to be closer to the
upper percentile of the y?-distribution by using the variance of M. The idea
of our proposal of Mj is that E[M3] = p + 1 and Var[M3] = 2(p+ 1).

Theorem 1. For a large N, the test statistic Mg
Mz =cMz+(1—c)(p+1)

18 asymptotically distributed as a X;Q, 1-distribution, where

1
. 2p+1) | *
] Var[Ms] [
In Appendix, Var[Ms] will be derived under the normality, as follows:

2
PN(N —2)(N — 3)(N +5)(N + 7)(N + 9)(N + 11)(N + 13)
x{p(p + 1)N® + 2(29p* + 110p + 135)N”
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+3(44759p% 4 130587p + 134898) N2 + 90(767p — 6222) N
(3.1) +81000} (N # 2,3).

Var[MQ] =

84. Simulation studies

The accuracies of variances, upper percentiles, type I errors and powers of
the multivariate JB test statistics M7, Ms and Mj are evaluated via a Monte
Carlo simulation study. Simulation parameters are as follows: p = 3, 10, 20,
30; N =20, 50, 100, 200, 400, 800 (p < N); and significance level o = 0.05.
As a numerical experiment, we carry out 1,000,000 replications.

First, we compare variance (3.1) with simulated variances derived by Monte
Carlo simulation. In Table 1, “M5y” denotes values calculated using (3.1). Ma
and simulated values are almost the same for all parameters. Next, we check
Var[M3] = 2(p+1). In Table 2, “M3” represents variance Var[M3] = 2(p+ 1)
and “Simulation” is simulated variance of the test statistic M3 derived by
Monte Carlo simulation. It can be seen from Table 2 that Mz has almost
the same variance as the XI% ,1-distribution for all parameters. Table 3 gives
the values of the upper 5 percentiles of M7, My and M3. When N is small,
they show that difference between M3 and Xzz) 1-distribution is smaller than
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that between X;2o . 1-distribution and Ms. Table 4 gives the values of type I
errors of My, Ms and Ms. They show that Ms is closer to 0.05 than others
when N is small. We note that if type I error is smaller than 0.05, the test is
conservative. M is always conservative and My is not conservative. Ms is not
conservative and the approximate accuracy of Mj is outstanding except when
p is small. Table 5 gives the values of the powers of My, Ms and Ms, where
each element of the sample is generated using x2-distribution. The power of
Ms> is the highest. Although Laplace distribution, lognormal distribution and
beta distribution are also used as samples, the same tendency was seen.

In conclusion, the simulation results indicate that Mg has almost the same
variance and the upper 5 percentile as the X,2, 1-distribution even for a small
sample size. Although the test statistic My may have the best power, type
I error of M5 has far exceeded 0.05 for a small sample size. In addition, the
upper 5 percentile of Ms is the closest to that of Xz% 1-distribution for a small
sample size. Therefore, the multivariate JB test statistic M3 proposed in this
paper is useful for the multivariate normality test.

§A. Derivation of (3.1)
In this appendix, we calculate variance Var[Ms] as follows:

Var[Ms] = Var[T1] + Var[Ts] 4+ 2Cov[T1, T3],

where
— pbip _ (b2,p — E[b2,p])2
Tl — 5 17 T2 -
E[bl,p] Var(ba p]
Now, we derive the moments under the hypothesis that a1, ..., xy arei.i.d.

from N,(u,X). For large N, we get
d
yij = hiz; = N(vip, \i)
because h; — 7, with probability one (see Srivastava [11]). Thus, yi1, yi2, - - -,
y;N are asymptotically independently normally distributed. Further, the fol-
lowing expression was described by Srivastava [11] for large N.

—vk/2 vk/27 .
E[m’;zmm / ]E[mzi/ = E[m’ﬁz}

We checked the above equation numerically. In order to simplify calculation

(@)

of a moment, dependence of y;; and y; is avoided as follows. Let 7,"" be a

mean defined on the subset of v;1,vi2, ..., ¥in, that is,

(a) 1 .
gia — N1 | Z yij-
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Then, y;, is asymptotically independent of yga). Without a loss of generality,
we calculate the moments with 4 = 0 and \; = 1, that is, X = I, because b%p
and by ), are hardly influenced by X for a large V. In addition, we put

_ 1
) = N1 1Zi-

Since Z; is distributed as a standard normal distribution for large N, the odd
order moments approximately equal zero for calculating moments and

E[ka]‘;(2k—1)"'5'3’1v k=1,2,....

We note that

2
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where

COV[b%,pv bap] = E[b%,pblp] - E[b%,p]E[pr]a
COV[bip, b%,p] - E[b%,pb%,p] - E[b%,p]E[b%,p]

Since Okamoto and Seo [8] derived Var[b%p], we have only to derive the mo-
ments E[bg’p], E[b‘é,p], E[bipbgvp] and E[b%pbg’p] under the normality.

Now, we consider the expectation E[b3 ]. We have
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{NECE]+ N(V - DE[CLCH]

~1)(N - 2E[CLCHCE]},
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(N - 2)E[C;1,C;5C3)
(N = 2)(N = 3)E[C;,Ci5CE,CH)
+15N(N —1)(N —2)(N — 3)(N — 4)E [C4 CCE CHCE]
+N(N = 1)(N —2)(N = 3)(N — 4)(N —5)

xB[C2, C 02 C C’QC }} (a, B,7,9, €, are all distinct)

and Cijq = Yin — @Ea). It is easy to calculate them because y;, and @ga)

,  are
asymptotically independent.
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After extensive calculations, we obtain

132

51, 3(N —1)(3N3+23N2% — 63N + 45)
E[m4z] = N4 )

31, 27(N —1)(N® +27N* + 226 N3 — 1098 N? + 1725N — 945)
Elmy] = NG )
Blm3) = TV,

41, (N=1)(N+1)(N+3)(N+5)

E[mQZ] — N4 ;
Bjmt] = (N —1)(N + 1)(N +3)(N +5)(N +7)(N +9)

N6

and we can obtain the expectation for b;’yp as

E[b3,)] = 27{p*N" + p(21p + 8)N® + (137p* + 80p + 64)N°
+(197p? — 176p — 640)N* — (693p® + 1664p — 2112) N3
—(809p* — 4776p + 2560) N2 + 3(697p* — 1008p + 256) N
1

—945p°} x p2(N +1)3(N + 3)(N +5)(N +7)(N +9)°

Similarly, we get the expectations E[b%’p], E[b%pbg’p] and E[b%pb%’p] as follows:

21
Elby,] = p—3{3p3N12 +12p*(13p + 4)N

+2p(1659p? + 984p + 416)N1°

+12(3069p> + 2424p? + 1504p + 960) N?

+(221565p> + 165312p* + 46016p — 85248)N®
+8(78663p> — 3996p? — 105568p — 34368) N7
+12(6687p> — 276552p% — 155312p + 249984) N
—8(435261p> + 584736p> — 1781584p + 278496) N
—3(1164721p% — 7721536p? — 2766528p + 7525120) N4
+12(770105p> + 1570500p% — 7438208p + 4324608) N3
+18(330851p> — 4060968p* + 5142144p — 1830912) N

—540(28283p® — 72072p* + 36608p — 7680) N + 6081075p° }
1
N+ DN +3)2(N +5)2(N + 7)(N +9)(N + 11)(N + 13)’

T
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18(N — 2){pN®+ (11p + 12)N* + (23p — 36)N — 35p}
p(N+1)2(N+3)(N+5)(N+7) ’
e e
P2(N +1)3(N +3)2(N +5)(N + 7)(N + 9)(N + 11)

x {3p? N + p(99p + 80)N© + (1203p? + 1544p + 1440)N°

+(6315p + 5920p — 6048) N4

+(10737p? — 22160p — 12768) N>

—3(4853p? + 22480p — 20704)N?

—9(3887p* — 10824p + 2752) N + 31185p> }.

E[bf b2 =

Thus, we can obtain

6N (N3 +37TN% + 11N — 313) (see [8])
(N=2)(N+5)(N+T7)(N+9) ’
2(N + 1)2(N® + 123N* — 67N3 — 2667N? + 4842N + 5400)
N(N —=2)(N=3)(N+T7)(N+9)(N+11)(N+13)
216N (N — 2)(N — 3)
(N +1)2(N +3)(N +5)(N+7)

Var[T1] =

Var [Tg] =

2 -f
(‘/‘OV[pr7 bQ’p] — p

Covli? 12| = 432N (N — 2)(N — 3)
LP7 P2 2 (N 1)3(N + 3)2(N +5)(N + 7)(N 4 9)(N + 11)
x{3pN* + 6(11p + 10) N> + 24(17p — 3)N?
+2(207p — 374)N — 891p + 344},

12(15N3 — 18N?2 — 187N + 86)
(N —2)(N +T7)(N+9)(N +11)’

COV[Tl, Tz] =

which yield (3.1).
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Table 1: Variance of M.

R. ENOMOTO, N. OKAMOTO AND T. SEO

p | N | My Simulation p | N | My Simulation

3| 20 | 17.6 18.3 20 | 50 | 55.8 56.4
50 | 15.6 15.8 100 | 50.7 50.7
100 | 12.9 13.1 200 | 46.9 46.8
200 | 10.8 10.8 400 | 44.6 44.7
400 | 9.5 9.4 800 | 43.3 43.4
800 | 8.8 8.8 30 | 50 | 80.2 81.6

10| 20 | 34.3 36.8 100 | 73.5 73.6
50 | 31.5 31.8 200 | 68.5 68.5
100 | 28.0 28.0 400 | 65.4 65.5
200 | 254 25.4 800 | 63.8 63.7
400 | 23.8 23.8
800 | 22.9 23.0

Table 2: Variance of Ms.

p | N | Ms Simulation p | N | My Simulation

3120 | 80 8.3 20 | 50 | 42.0 42.5
50 | 8.0 8.1 100 | 42.0 42.1
100 | 8.0 8.1 200 | 42.0 41.9
200 | 8.0 8.0 400 | 42.0 42.0
400 | 8.0 7.9 800 | 42.0 42.0
800 | 8.0 8.0 30 | 50 | 62.0 63.1

10 | 20 | 22.0 23.6 100 | 62.0 62.1
50 | 22.0 22.2 200 | 62.0 62.1
100 | 22.0 22.0 400 | 62.0 62.0
200 | 22.0 22.0 800 | 62.0 61.9
400 | 22.0 22.0
800 | 22.0 22.0
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Table 3: The upper 5 percentiles of M, Ms and Ms.

p | N | M M M x5 p| N | M M M x.,

3120 | 68 11.2 89 9.5 20| 50 | 29.8 349 33.1 32.7
50 | 84 106 8.7 9.5 100 | 31.3 34.0 329 327
100 | 9.0 10.2 8.9 9.5 200 | 32.0 334 328 32.7
2001 93 99 9.0 9.5 400 | 32.4 33.1 32.7 32.7
400 | 94 9.7 9.2 9.5 800 | 32.5 329 32.7 32.7
800 | 95 96 94 9.5 30| 50 | 41.1 47.6 45.6 45.0

10 | 20 | 15.0 22,5 20.2 19.7 100 | 43.1 46.6 45.3 45.0
50 | 179 214 19.7 19.7 200 | 44.1 459 452 45.0
100 | 18.9 20.8 19.7 19.7 400 | 44.6 455 451 45.0
200 | 19.3 20.3 19.7 19.7 800 | 44.8 45.2 45.0 45.0
400 | 19.5 20.0 19.7 19.7
800 | 19.6 19.9 19.7 19.7

Table 4: Type I errors of My, My and Ms.

p | N | M Mo Ms3 p | N | M M, M;3

3 20 | 0.021 0.070 0.042 20 | 50 | 0.027 0.072 0.054
50 | 0.037 0.064 0.040 100 | 0.037 0.064 0.052
100 | 0.043 0.060 0.041 200 | 0.043 0.058 0.051
200 | 0.046 0.056 0.043 400 | 0.047 0.055 0.051
400 | 0.048 0.054 0.045 800 | 0.048 0.053 0.051
800 | 0.050 0.053 0.048 30| 50 | 0.023 0.072 0.055

10 | 20 | 0.013 0.079 0.055 100 | 0.035 0.064 0.053
50 | 0.032 0.070 0.050 200 | 0.042 0.059 0.052
100 | 0.041 0.064 0.050 400 | 0.046 0.055 0.051
200 | 0.046 0.058 0.050 800 | 0.048 0.052 0.050
400 | 0.048 0.055 0.050
800 | 0.049 0.053 0.050
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Table 5: Powers of My, My and Ms.

p | N | M Mo M3 p | N | M Mo M3

3 1 20 | 0264 0.414 0.331 20 | 50 | 0.386 0.532 0.487
50 | 0.756 0.805 0.742 100 | 0.729 0.800 0.778
100 | 0.960 0.967 0.954 200 | 0.964 0.975 0.972
200 | 0.998 0.998 0.998 400 | 1.000 1.000 1.000
400 | 1.000 1.000 1.000 800 | 1.000 1.000 1.000
800 | 1.000 1.000 1.000 30 | 50 | 0.278 0.441 0.399

10| 20 | 0.154 0.349 0.294 100 | 0.563 0.667 0.640
50 | 0.586 0.690 0.645 200 | 0.879 0.913 0.906
100 | 0.903 0.929 0.916 400 | 0.995 0.997 0.997
200 | 0.995 0.997 0.996 800 | 1.000 1.000 1.000
400 | 1.000 1.000 1.000
800 | 1.000 1.000 1.000
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