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Abstract. In this paper we provide an explicit minimal projective bimodule
resolution for some weakly symmetric algebras with radical cube zero. Then by
using this resolution we compute the dimension of its Hochschild cohomology
groups.
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§1. Introduction

Throughout this paper, let k be a field and Γ the quiver with m vertices and
2m arrows as follows:

a1−→ a2−→ am−1−→
a0⟳

0 1 · · · m− 1

am

⟲←−
a1

←−
a2

←−
am−1

for an integer m ≥ 1. Let ei be the trivial path corresponding to the vertex i.
All paths are written from left to right.

Now, to define the algebra A. we treat the following three cases separately.

(1) In the casem ≥ 3, Γ is the quiver above and then we define the algebra A
by kΓ/I where I is the ideal generated by the following uniform elements:

a1a1 − a20, a2m − am−1am−1, a1a0, amam−1,

aiai − ai−1ai−1, ajaj+1, al+1al,

for 2 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1 and 1 ≤ l ≤ m − 2. In this case, the
following elements form a k-basis of A:

ei, aj , al, arar, a
2
m for 0 ≤ i ≤ m− 1; 0 ≤ j ≤ m; 1 ≤ l, r ≤ m− 1.
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(2) In the case m = 2, Γ is the quiver

a1−→
a0⟳

0 1

a2

⟲←−
a1

Then we define the algebra A by kΓ/I where I is the ideal generated by
the following uniform elements:

a1a1 − a20, a22 − a1a1, a1a0, a0a1, a1a2 and a2a1.

In this case, the following elements form a k-basis of A:

ei, aj , a1, a1a1, a
2
2 for 0 ≤ i ≤ 1, 0 ≤ j ≤ 2.

(3) In the case m = 1, Γ is the quiver
a0⟳

0

a1

⟲

Then we define the algebra A by kΓ/I where I is the ideal generated by
the following uniform elements:

a21 − a20, a0a1 and a1a0.

In this case, the following elements form a k-basis of A:

e0, a0, a1, a
2
1

So we have dimk A = 4m for m ≥ 1. It is known that A is a Koszul weakly
symmetric algebra with radical cube zero and it belongs to the class of weakly
symmetric tame algebras of type Z̃m−1 introduced in [1]. Moreover we see
that A is a special biserial algebra of [9].

In [7], Snashall and Solberg defined the support varieties for finitely gen-
erated modules over a finite dimensional algebra by using the Hochschild co-
homology ring modulo nilpotence. Furthermore, in [2], Erdmann, Holloway,
Snashall, Solberg and Taillefer introduced some reasonable “finiteness condi-
tions,” denoted by (Fg), for any finite dimensional algebra, and they showed
that if a finite dimensional algebra satisfies (Fg), then the support varieties
have a lot of analogous properties of support varieties for finite group algebras.

Recently, in [8], Snashall and Taillefer described the Hochschild cohomol-
ogy rings for algebras in a class of certain special biserial weakly symmetric
algebras (which does not contain A). They gave explicit generators and re-
lations of the Hochschild cohomology rings modulo nilpotence for algebras in
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this class, and then used the Hochschild cohomology ring to show that some
of these algebras satisfy (Fg).

In [3], Erdman and Solberg gave necessary and sufficient conditions for any
Koszul algebra to satisfy (Fg). Consequently, they showed that A satisfies
(Fg). So the Hochschild cohomology ring of A is finitely generated as an
algebra. On the other hand, in the case where m = 2 and char k ̸= 2, A is
precisely the principal block of the tame Hecke algebra Hq(S5) for q = −1. In
this case, a k-basis of the Hochschild cohomology groups of A was described
by Schroll and Snashall in [6]. They proved independently that A satisfies
(Fg), and gave some properties of the support varieties for modules over A.

In this paper, we provide an explicit minimal projective bimodule resolution
of A for m ≥ 3 and m = 1; see [3] for the case m = 2, and then compute the
dimension of the Hochschild cohomology groups of A and give a k-basis of the
Hochschild cohomology groups in a way similar to that in [8]; see also [3] and
[6].

The contents of this paper are organized as follows. In Section 2, with
the same notation as that in [8], we determine sets Gn (n ≥ 0), introduced
in [5], for the right A-module A/r, where r denotes the radical of A. Then,
using Gn, we construct a minimal projective resolution (P•, ∂•) of A as an
A-A-bimodule (Theorem 2.3). In Section 3, we first determine the dimension
of the Hochschild cohomology groups for m ≥ 3 (Theorem 3.5), and then we
give an explicit k-basis of the Hochschild cohomology groups (Propositions
3.7, 3.8 and 3.9). In Section 4, using the same arguments as in Sections 2 and
3, we determine the dimension of the Hochschild cohomology groups in the
case m = 1 (Theorem 4.4).

Throughout this paper, for any arrow a in Γ , we denote the origin of a by
o(a) and the terminus by t(a). We write ⊗k as ⊗ for simplicity, and we denote
the enveloping algebra Aop ⊗A by Ae.

§2. A projective bimodule resolution for A

In this section, we give an explicit minimal projective bimodule resolution

(P•, ∂•) : · · · ∂4−→ P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ A→ 0

of A = kΓ/I for m ≥ 3 by using the argument in [4].
Let B = kQ/I ′ be any finite-dimensional algebra with a finite quiver Q

and an admissible ideal I ′ in kQ. Denote the radical of B by J . In [5], Green,
Solberg and Zacharia introduced subsets Gn (n ≥ 0) of kQ, and used the
subsets to give a minimal projective resolution of the right B-module B/J .
First we briefly recall the construction of Gn. Let G0 the set of all vertices of
Q, G1 the set of all arrows of Q and G2 a minimal set of generators of I. In [5],
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the authors proved that for each n ≥ 3 there is a subset Gn of kQ satisfying
the following two conditions:

(a) Each of the elements x of Gn is a uniform element satisfying

x =
∑

y∈Gn−1

yry =
∑

z∈Gn−2

zsz for unique ry, sz ∈ kQ.

(b) There is a minimal projective B-resolution of B/J

(R•, δ•) : · · · δ4−→ R3
δ3−→ R2

δ2−→ R1
δ1−→ R0

δ0−→ B/J → 0,

satisfying the following conditions:

(i) For each j ≥ 0, Rj =
⊕

x∈Gj t(x)B.

(ii) For each j ≥ 1, the differential δj : Rj → Rj−1 is defined by

t(x)λ 7−→
∑

y∈Gj−1

ryt(x)λ for x ∈ Gj and λ ∈ B,

where ry are elements in the expression (a).

In [4], Green, Hartman, Marcos and Solberg used the set Gn to give a min-
imal projective bimodule resolution for any finite dimensional Koszul algebra.
This set also appears in the papers [3], [6] and [8] in constructing minimal
projective bimodule resolutions. In this section, following this approach, we
construct the set Gn, and then find a minimal projective bimodule resolution
of A for m ≥ 3.

2.1. A construction of the sets Gn

Now we fix an integer m ≥ 3. In order to give sets Gn (n ≥ 0) for A/r
where r denotes the radical of A, we first define morphisms of quivers ϕi =
(ϕi0, ϕ

i
1) : ∆ → Γ for i = 0, 1, . . . ,m − 1. Let ∆ be the following locally

finite quiver with vertices (x, y) and arrows b(x,y) : (x, y) → (x + 1, y) and
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c(x,y) : (x, y)→ (x, y + 1) for integers x, y ≥ 0.

...
...

...
...

c(0,4)

x c(1,4)

x c(2,4)

x c(3,4)

x
(0, 4)

b(0,4)−−−−→ (1, 4)
b(1,4)−−−−→ (2, 4)

b(2,4)−−−−→ (3, 4)
b(3,4)−−−−→ · · ·

c(0,3)

x c(1,3)

x c(2,3)

x c(3,3)

x
(0, 3)

b(0,3)−−−−→ (1, 3)
b(1,3)−−−−→ (2, 3)

b(2,3)−−−−→ (3, 3)
b(3,3)−−−−→ · · ·

c(0,2)

x c(1,2)

x c(2,2)

x c(3,2)

x
(0, 2)

b(0,2)−−−−→ (1, 2)
b(1,2)−−−−→ (2, 2)

b(2,2)−−−−→ (3, 2)
b(3,2)−−−−→ · · ·

c(0,1)

x c(1,1)

x c(2,1)

x c(3,1)

x
(0, 1)

b(0,1)−−−−→ (1, 1)
b(1,1)−−−−→ (2, 1)

b(2,1)−−−−→ (3, 1)
b(3,1)−−−−→ · · ·

c(0,0)

x c(1,0)

x c(2,0)

x c(3,0)

x
(0, 0)

b(0,0)−−−−→ (1, 0)
b(1,0)−−−−→ (2, 0)

b(2,0)−−−−→ (3, 0)
b(3,0)−−−−→ · · ·

For any integer z, let Q(z) be the quotient and z the remainder when we divide
z by m. Then we have 0 ≤ z ≤ m−1. We denote the sets of vertices of ∆ and
Γ by ∆0 and Γ0, respectively. Also, we denote the sets of arrows of ∆ and Γ
by ∆1 and Γ1, respectively. For each i = 0, 1, . . . ,m − 1, we define the maps
ϕi0 : ∆0 → Γ0 and ϕi1 : ∆1 → Γ1 by

(1) For (x, y) ∈ ∆0

ϕi0(x, y) :=

{
ex−y+i if Q(x− y + i) ∈ 2Z,
em−1−x−y+i if Q(x− y + i) /∈ 2Z.

(2) For b(x,y), c(x,y) ∈ ∆1

ϕi1(b
(x,y)) :=

{
ax−y+i+1 if Q(x− y + i) ∈ 2Z,
am−1−x−y+i if Q(x− y + i) /∈ 2Z,

ϕi1(c
(x,y)) :=

{
ax−y+i if Q(x− y + i) ∈ 2Z,
am−x−y+i if Q(x− y + i) /∈ 2Z.

where we put a0 := a0 for our convenience.
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Then, for all i = 0, 1, . . . ,m− 1 and arrows b(x,y) and c(x,y) in ∆, we have

o(ϕi1(b
(x,y))) = o(ϕi1(c

(x,y))) = ϕi0(x, y),

t(ϕi1(b
(x,y))) = ϕi0(x+ 1, y),

t(ϕi1(c
(x,y))) = ϕi0(x, y + 1).

Thus ϕi1 is a morphism of quivers. Note that ϕi1 naturally induces the map
between the set of paths of ∆ and that of Γ as follows:

ϕi1(p1 · · · pr) = ϕi1(p1) · · ·ϕi1(pr),

for a path p1 · · · pr(r ≥ 1) of ∆ where pj is an arrow for 1 ≤ j ≤ r.
Now, we can define the sets Gn (n ≥ 0) for A/r in the way similar to that

in [8]. Let g00,0,i = ei for i = 0, 1, . . . ,m− 1. For integers n ≥ 1, x, y ≥ 0 with
x+ y = n and i = 0, 1, . . . ,m− 1, we define the element gnx,y,i in kΓ by

gnx,y,i :=
∑
p

(−1)spϕi1(p),

where

• p ranges over all paths in ∆ starting at (0, 0) and ending with (x, y); and

• sp is an integer determined as follows: If we write p = p1p2 . . . pn with
pj arrows in ∆ for 1 ≤ j ≤ n, then sp =

∑
pj=c(x

′,y′) j where x′ and y′

are positive integers with x′ + y′ = j − 1.

For each n ≥ 0, we put

Gn := {gnx,n−x,i| 0 ≤ x ≤ n and 0 ≤ i ≤ m− 1}.

Then, for n = 0, 1, 2, Gn can be described as follows:

G0 = {e0, e1, . . . , em−1},
G1 = {a1, . . . , , am,−a0 − a1,−a2, . . . ,−am−1},
G2 =
{−ϕi1(c(0,0)c(0,1)), ϕi1(b(0,0)c(1,0))− ϕi1(c(0,0)b(0,1)), ϕi1(b(0,0)b(1,0)) | 0 ≤ i ≤ m− 1}
= {−a0a1,−a1a0,−aiai−1, a1a1 − a20, aj+1aj+1 − ajaj , a2m − am−1am−1,

al+1al+2, amam−1 | 2 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 2 and 0 ≤ l ≤ m− 2}.

And it is easily seen that Gn satisfies the conditions (a) and (b) for m ≥ 3 in
the beginning of this section.

As in the beginning of this section, Gn gives the minimal projective resolu-
tion (R•, δ•) of A/r defined by (b).
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Remark 2.1. The following sequence is a minimal projective resolution of
A/r.

(R•, δ•) : · · · δ4−→ R3
δ3−→ R2

δ2−→ R1
δ1−→ R0

δ0−→ A/r→ 0,

where Rn =
⨿

0≤x≤n t(g
n
x,n−x,i)A for n ≥ 0, δ0 is the natural epimorphism and

for n ≥ 1, 0 ≤ i ≤ m− 1 and 0 ≤ x ≤ n,

δn(t(g
n
x,n−x,i)) =

(−1)nt(gn−1
0,n−1,i)ϕ

i
1(c

(0,n−1)) if x = 0,

t(gn−1
x−1,n−x,i)ϕ

i
1(b

(x−1,n−x)) + (−1)nt(gn−1
x,n−1−x,i)ϕ

i
1(c

(x,n−1−x))

if 1 ≤ x ≤ n− 1,

t(gn−1
n−1,0,i)ϕ

i
1(b

(n−1,0)) if x = n.

2.2. A minimal projective bimodule resolution of A

To construct a minimal projective bimodule resolution of A, we use the fol-
lowing lemma. The proof of this lemma is straightforward.

Lemma 2.2. For any positive integers n, and any integers i and x with 0 ≤
i ≤ m− 1 and 0 ≤ x ≤ n, we have the following:

(1) In the case i = 0,

gnx,n−x,0 =


(−1)ngn−1

0,n−1,0ϕ
0
1(c

(0,n−1))

=

{
(−1)nϕ01(c(0,0))g

n−1
n−1,0,0 if n ≡ 0, 1(mod 4),

−(−1)nϕ01(c(0,0))g
n−1
n−1,0,0 if n ≡ 2, 3(mod 4),

if x = 0,
gn−1
x−1,n−x,0ϕ

0
1(b

(x−1,n−x)) + (−1)ngn−1
x,n−1−x,0ϕ

0
1(c

(x,n−1−x))

= (−1)n−xϕ01(b
(0,0))gn−1

x−1,n−x,1

+

{
(−1)n−xϕ01(c

(0,0))gn−1
n−1−x,x,0 if n ≡ 0, 1(mod 4),

−(−1)n−xϕ01(c
(0,0))gn−1

n−1−x,x,0 if n ≡ 2, 3(mod 4),

if 1 ≤ x ≤ n− 1,

gn−1
n−1,0,0ϕ

0
1(b

(n−1,0)) = ϕ01(b
(0,0))gn−1

n−1,0,1 if x = n.
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(2) In the case 1 ≤ i ≤ m− 2,

gnx,n−1−x,i =

(−1)ngn−1
0,n−1,iϕ

i
1(c

(0,n−1)) = (−1)nϕi1(c(0,0))g
n−1
0,n−1,i−1 if x = 0,

gn−1
x−1,n−x,iϕ

i
1(b

(x−1,n−x)) + (−1)ngn−1
x,n−1−x,iϕ

i
1(c

(x,n−1−x))

= (−1)n−xϕi1(b
(0,0))gn−1

x−1,n−x,i+1 + (−1)n−xϕi1(c
(0,0))gn−1

x,n−1−x,i−1

if 1 ≤ x ≤ n− 1,

gn−1
n−1,0,iϕ

i
1(b

(n−1,0)) = ϕi1(b
(0,0))gn−1

n−1,0,i+1 if x = n.

(3) In the case i = m− 1,

gnx,n−x,m−1 =

(−1)ngn−1
0,n−1,m−1ϕ

m−1
1 (c(0,n−1)) = (−1)nϕm−1

1 (c(0,0))gn−1
0,n−1,m−2

if x = 0,

gn−1
x−1,n−x,m−1ϕ

m−1
1 (b(x−1,n−x))

+(−1)ngn−1
x,n−1−x,m−1ϕ

m−1
1 (c(x,n−1−x))

=

{
(−1)n−xϕm−1

1 (b(0,0))gn−1
n−x,x−1,m−1 if n ≡ 0, 1(mod 4),

−(−1)n−xϕm−1
1 (b(0,0))gn−1

n−x,x−1,m−1 if n ≡ 2, 3(mod 4),

+(−1)n−xϕm−1
1 (c(0,0))gn−1

x,n−1−x,m−2,

if 1 ≤ x ≤ n− 1,
gn−1
n−1,0,m−1ϕ

m−1
1 (b(n−1,0))

=

{
ϕm−1
1 (b(0,0))gn−1

0,n−1,m−1 if n ≡ 0, 1(mod 4),

− ϕm−1
1 (b(0,0))gn−1

0,n−1,m−1 if n ≡ 2, 3(mod 4),

if x = n.

Now, for any integer n ≥ 0, we define a left Ae-module

Pn :=
⨿
g∈Gn

Ao(g)⊗ t(g)A.

Using the argument of [4], by Lemma 2.2, for n ≥ 1, we define the Ae-
homomorphism ∂n: Pn → Pn−1 as follows:
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(1) In the case where i = 0,

∂n(o(g
n
x,n−x,0)⊗ t(gnx,n−x,0)) =

(−1)no(gn−1
0,n−1,0)⊗ ϕ01(c(0,n−1))

+

{
ϕ01(c

(0,0))⊗ t(gn−1
n−1,0,0) if n ≡ 0, 1(mod 4),

−ϕ01(c(0,0))⊗ t(g
n−1
n−1,0,0) if n ≡ 2, 3(mod 4),

if x = 0,

o(gn−1
x−1,n−x,0)⊗ ϕ01(b(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,0)⊗ ϕ01(c(x,n−1−x))

+(−1)xϕ01(b(0,0))⊗ t(g
n−1
x−1,n−x,1)

+

{
(−1)xϕ01(c(0,0))⊗ t(g

n−1
n−1−x,x,0) if n ≡ 0, 1(mod 4),

−(−1)xϕ01(c(0,0))⊗ t(g
n−1
n−1−x,x,0) if n ≡ 2, 3(mod 4),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,0)⊗ ϕ01(b(n−1,0)) + (−1)nϕ01(b(0,0))⊗ t(g

n−1
n−1,0,1) if x = n.

(2) In the case where 1 ≤ i ≤ m− 2,

∂n(o(g
n
x,n−x,i)⊗ t(gnx,n−x,i)) =

(−1)no(gn−1
0,n−1,i)⊗ ϕi1(c(0,n−1)) + ϕi1(c

(0,0))⊗ t(gn−1
0,n−1,i−1) if x = 0,

o(gn−1
x−1,n−x,i)⊗ ϕi1(b(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,i)⊗ ϕi1(c(x,n−1−x))

+(−1)xϕi1(b(0,0))⊗ t(g
n−1
x−1,n−x,i+1)

+(−1)xϕi1(c(0,0))⊗ t(g
n−1
x,n−1−x,i−1) if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,i)⊗ ϕi1(b(n−1,0)) + (−1)nϕi1(b(0,0))⊗ t(g

n−1
n−1,0,i+1) if x = n.

(3) In the case where i = m− 1,

∂n(o(g
n
x,n−x,m−1)⊗ t(gnx,n−x,m−1)) =

(−1)no(gn−1
0,n−1,m−1)⊗ ϕ

m−1
1 (c(0,n−1)) + ϕm−1

1 (c(0,0))⊗ t(gn−1
0,n−1,m−2)

if x = 0,

o(gn−1
x−1,n−x,m−1)⊗ ϕ

m−1
1 (b(x−1,n−x))

+(−1)no(gn−1
x,n−1−x,m−1)⊗ ϕ

m−1
1 (c(x,n−1−x))

+

{
(−1)xϕm−1

1 (b(0,0))⊗ t(gn−1
n−x,x−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)xϕm−1
1 (b(0,0))⊗ t(gn−1

n−x,x−1,m−1) if n ≡ 2, 3(mod 4),

+(−1)xϕm−1
1 (c(0,0))⊗ t(gn−1

x,n−1−x,m−2),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,m−1)⊗ ϕ

m−1
1 (b(n−1,0))

+

{
(−1)nϕm−1

1 (b(0,0))⊗ t(gn−1
0,n−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)nϕm−1
1 (b(0,0))⊗ t(gn−1

0,n−1,m−1) if n ≡ 2, 3(mod 4),

if x = n.
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Then we have a sequence

(P•, ∂•) : · · · → Pn
∂n−→ Pn−1 → · · · → P1

∂1−→ P0
π−→ A→ 0,

where π is the multiplication map. The following result is now immediate
from [4].

Theorem 2.3. The sequence (P•, ∂•) is a projective bimodule resolution of
the left Ae-module A.

§3. The dimension of the Hochschild cohomology groups for
m ≥ 3

In this section, we determine the dimension of the Hochschild cohomology
groups of A by using the minimal projective Ae-resolution given in Theorem
2.3. Throughout this section, we keep the notation from sections 1 and 2.

By setting P ∗
n := HomAe(Pn, A) and ∂

∗
n = HomAe(∂n, A) for n ≥ 0, we get

the following complex.

(P ∗
• , ∂

∗
•) : 0→ P ∗

0

∂∗
1−→ P ∗

1

∂∗
2−→ · · ·

∂∗
n−1−→ P ∗

n−1
∂∗
n−→ P ∗

n

∂∗
n+1−→ · · · .

Then, for n ≥ 0, the n-th Hochschild cohomology group HHn(A) of A is given
by HHn(A):= ExtnAe(A,A) = Ker ∂∗n+1/Im ∂∗n.

In the rest of the paper, for an integer n ≥ 0, we set p := Q(n) and t := n,
that is, p and t are unique integers such that n = pm + t with p ≥ 0 and
0 ≤ t ≤ m− 1.

3.1. The dimension of the Hochschild cohomology groups of A

For an element f in P ∗
n , f(o(g

n
x,n−x,i)⊗ t(gnx,n−x,i)) is in o(g

n
x,n−x,i)At(g

n
x,n−x,i).

By definition of Gn and ϕi0, we have

o(gnx,n−x,i)At(g
n
x,n−x,i) =

{
eiAe2x−n+i if Q(2x− n+ i) ∈ 2Z,
eiAem−1−2x−n+i if Q(2x− n+ i) /∈ 2Z.

Moreover, it follows from the definition of A that, for vertices i, j, eiAej has
the following basis elements.

e0, a0, a1a1 if i = j = 0,

em−1, am, a
2
m if i = j = m− 1,

ei, ai+1ai+1 if i = j ̸= 0,m− 1,

ai+1 if j − i = 1,

ai if j − i = −1,
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and, in the other cases, eiAej is zero. So we have

dimk eiAej =


3 if i = j = 0,m− 1,

2 if i = j ̸= 0,m− 1,

1 if i− j = ±1,
0 otherwise.

Then, f(o(gnx,n−x,i) ⊗ t(gnx,n−x,i)) can be written as a linear combination of
these basis elements in o(gnx,n−x,i)At(g

n
x,n−x,i). We need to find the conditions

on the coefficients in this linear combination when f is in Ker ∂∗pm+t+1. To do
this, we consider the four cases (i) p and t are even, (ii) p is even, t is odd,
(iii) p is odd, t is even, (iv) p and t are odd.

Lemma 3.1. We have the image of o(gnx,n−x,i) ⊗ t(gnx,n−x,i) by f ∈ P ∗
n as

follows:

(1) In the case where p and t are even, we have

f(o(gnx,n−x,i)⊗ t(gnx,n−x,i)) =


σ0,αe0 + τ0,αa0 + λ0,αa1a1 if i = 0,

σi,αei + λi,αai+1ai+1 if 1 ≤ i ≤ m− 2,

σm−1,αem−1 + τm−1,αam + λm−1,αa
2
m if i = m− 1,

if x = (p− α)m+ t/2 for 0 ≤ α ≤ p,
µi,0ai+1 if m− 1− t/2 ≤ i ≤ m− 2, β = 0,

µi,βai+1 if 0 ≤ i ≤ m− 2, 1 ≤ β ≤ p,
µi,p+1ai+1 if 0 ≤ i ≤ t/2− 1, β = p+ 1,

if x = (p− β + 1)m+ t/2− i− 1,
ιi,0ai if m− t/2 ≤ i ≤ m− 1, γ = 0,

ιi,γai if 1 ≤ i ≤ m− 1, 1 ≤ γ ≤ p,
ιi,p+1ai if 1 ≤ i ≤ t/2, γ = p+ 1,

if x = (p− γ + 1)m+ t/2− i,

where all the coefficients σi,α, τi,α, λi,α, µi,β, and ιi,γ are in k.
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(2) In the case where p is even and t is odd, we have

f(o(gnx,n−x,i)⊗ t(gnx,n−x,i)) =


σ0,αe0 + τ0,αa0 + λ0,αa1a1 if i = 0,

σi,αei + λi,αai+1ai+1 if 1 ≤ i ≤ m− 2,

σm−1,αem−1 + τm−1,αam + λm−1,αa
2
m if i = m− 1,

if x = (p− α+ 1)m+ (t− 1)/2− i for 1 ≤ α ≤ p,{
σi,0ei + λi,0ai+1ai+1 if m− (t+ 1)/2 ≤ i ≤ m− 2,

σm−1,0em−1 + τm−1,0am + λm−1,0a
2
m if i = m− 1,

if x = (p+ 1)m+ (t− 1)/2− i,{
σ0,p+1e0 + τ0,p+1a0 + λ0,p+1a1a1 if i = 0,

σi,p+1ei + λi,p+1ai+1ai+1 if 1 ≤ i ≤ (t− 1)/2,

if x = (t− 1)/2− i,
µi,βai+1 if 0 ≤ i ≤ m− 2, 0 ≤ β ≤ p, x = (p− β)m+ (t+ 1)/2,

ιi,γai if 1 ≤ i ≤ m− 1, 0 ≤ γ ≤ p, x = (p− γ)m+ (t− 1)/2,

where all the coefficients σi,α, τi,α, λi,α, µi,β, and ιi,γ are in k.

(3) In the case where p is odd and m and t are even, and m, p and t are
odd, we have

f(o(gnx,n−x,i)⊗ t(gnx,n−x,i)) =


σ0,αe0 + τ0,αa0 + λ0,αa1a1 if i = 0,

σi,αei + λi,αai+1ai+1 if 1 ≤ i ≤ m− 2,

σm−1,αem−1 + τm−1,αam + λm−1,αa
2
m if i = m− 1,

if x = (p− α)m+ (m+ t)/2 for 1 ≤ α ≤ p,
µi,0ai+1 if (m− t)/2− 1 ≤ i ≤ m− 2, β = 0,

µi,βai+1 if 0 ≤ i ≤ m− 2, 1 ≤ β ≤ p− 1,

µi,pai+1 if 0 ≤ i ≤ (m+ t)/2− 1, β = p,

if x = (p− β)m+ (m+ t)/2− i− 1,
ιi,0ai if (m− t)/2 ≤ i ≤ m− 1, γ = 0,

ιi,γai if 1 ≤ i ≤ m− 1, 1 ≤ γ ≤ p− 1,

ιi,pai if 1 ≤ i ≤ (m+ t)/2, γ = p,

if x = (p− γ)m+ (m+ t)/2− i,

where all the coefficients σi,α, τi,α, λi,α, µi,β, and ιi,γ are in k.

(4) In the case where m is even and p and t are odd, and m and p are odd
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and t is even, we have

f(o(gnx,n−x,i)⊗ t(gnx,n−x,i)) =


σ0,αe0 + τ0,αa0 + λ0,αa1a1 if i = 0,

σi,αei + λi,αai+1ai+1 if 1 ≤ i ≤ m− 2,

σm−1,αem−1 + τm−1,αam + λm−1,αa
2
m if i = m− 1,

if x = (p− α)m+ (m+ t− 1)/2− i for 1 ≤ α ≤ p− 1,
σ0,0e0 + τ0,0a0 + λ0,0a1a1 if i = 0, t = m− 1,

σi,0ei + λi,0ai+1ai+1 if (m− 1− t)/2 ≤ i ≤ m− 2,

σm−1,0em−1 + τm−1,0am + λm−1,0a
2
m if i = m− 1,

if x = pm+ (m+ t− 1)/2− i,
σ0,pe0 + τ0,pa0 + λ0,pa1a1 if i = 0,

σi,pei + λi,pai+1ai+1 if 1 ≤ i ≤ (m− 1 + t)/2,

σm−1,pem−1 + τm−1,pam + λm−1,pa
2
m if i = m− 1, t = m− 1,

if x = (m+ t− 1)/2− i,{
µi,βai+1 if 0 ≤ i ≤ m− 2, 1 ≤ β ≤ p,
µi,p+1ai+1 if 0 ≤ i ≤ m− 2, β = p+ 1, t = m− 1,

if x = (p− β + 1)m− (m− t− 1)/2,{
ιi,0ai if 1 ≤ i ≤ m− 1, γ = 0, t = m− 1,

ιi,γai if 1 ≤ i ≤ m− 1, 1 ≤ γ ≤ p,
if x = (p− γ + 1)m− (m− t+ 1)/2,

where all the coefficients σi,α, τi,α, λi,α, µi,β, and ιi,γ are in k.

By Lemma 3.1, we obtain immediately the following corollary.

Corollary 3.2. We have the dimension of P ∗
n = HomAe(Pn, A) for m ≥ 3 as

follows:

dimk P
∗
n =


4mp+ 2m+ 2t+ 2 if p is even,

4mp+ 2t+ 2 if p is odd and t ̸= m− 1,

4m(p+ 1) if p is odd and t = m− 1.

Next, using Theorem 2.3 and Lemma 3.1, we determine the Im ∂∗n+1. We
suppose that m is even. In the case where m is odd, we have the similar
results.

Lemma 3.3. With the notation of Lemma 3.1, if m is even, then we have
∂∗n+1(f)(o(g

n+1
x,n+1−x,i)⊗ t(g

n+1
x,n+1−x,i)) in the following cases.
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(1) In the case where p and t are even, we have ∂∗n+1(f)(o(g
n+1
x,n+1−x,i) ⊗

t(gn+1
x,n+1−x,i)) as follows:

(a) If x = (p− α)m+ t/2 for 0 ≤ α ≤ p− 1,
(−σ0,α + σ0,p−α)a0 + (µ0,α+1

−τ0,α + (−1)t/2ι1,α+1 + τ0,p−α)a1a1 if i = 0,

(−σi,α + (−1)t/2σi−1,α)ai if 1 ≤ i ≤ m− 1.

(b) If x = t/2,
(−σ0,p + σ0,0)a0 + (−τ0,p + τ0,0)a1a1 if i = 0, t = 0,

(−σ0,p + σ0,0)a0 + (µ0,p+1

−τ0,p + (−1)t/2ι1,p+1 + τ0,0)a1a1 if i = 0, t ≥ 2,

(−σi,p + (−1)t/2σi−1,p)ai if 1 ≤ i ≤ m− 1.

(c) If x = (p− α)m+ t/2 + 1 for 1 ≤ α ≤ p,
(σi,α − (−1)t/2σi+1,α)ai+1 for 0 ≤ i ≤ m− 2,

(σm−1,α − σm−1,p−α)am + (τm−1,α

−ιm−1,α − τm−1,p−α − (−1)t/2µm−2,α)a
2
m if i = m− 1.

(d) If x = pm+ t/2 + 1,
(σi,0 − (−1)t/2σi+1,0)ai+1 if 0 ≤ i ≤ m− 2,

(σm−1,0 − σm−1,p)am + (τm−1,0 − τm−1,p)a
2
m if i = m− 1, t = 0,

(σm−1,0 − σm−1,p)am + (τm−1,0

−ιm−1,0 − τm−1,p − (−1)t/2µm−2,0)a
2
m if i = m− 1, t ≥ 2.

(e) If x = (p− β + 1)m+ t/2− i for 0 ≤ β ≤ p+ 1,

(µi,0 − ιi,0 + (−1)t/2+iιi+1,0 + (−1)t/2+iµi−1,0)ai+1ai+1

if m− t/2 ≤ i ≤ m− 2, β = 0,

(µi,β − ιi,β + (−1)t/2+iιi+1,β + (−1)t/2+iµi−1,β)ai+1ai+1

if 1 ≤ i ≤ m− 2, 1 ≤ β ≤ p,
(µi,p+1 − ιi,p+1 + (−1)t/2+iιi+1,p+1 + (−1)t/2+iµi−1,p+1)ai+1ai+1

if 1 ≤ i ≤ t/2− 1, β = p+ 1.

(f) If x = n+ 1 and i = m− 1− t/2, (µi,0 − ιi+1,0)ai+1ai+1.

(g) If x = 0 and i = t/2, (−ιi,p+1 + µi−1,p+1)ai+1ai+1.
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(2) In the case where p is even and t is odd, we have ∂∗n+1(f)(o(g
n+1
x,n+1−x,i)⊗

t(gn+1
x,n+1−x,i)) as follows:

(a) If x = (p− α+ 1)m+ (t+ 1)/2− i for 1 ≤ α ≤ p,
(σ0,α + σ0,p−α+2)a0 + (µ0,α−1

+τ0,α + (−1)(t+1)/2ι1,α−1 + τ0,p−α+2)a1a1 if i = 0,

(σi,α + (−1)(t+1)/2+iσi−1,α)ai if 1 ≤ i ≤ m− 1.

(b) If x = (t+ 1)/2− i,
(σ0,p+1 + σ0,1)a0 + (µ0,p + τ0,p+1

+(−1)(t+1)/2ι1,p + τ0,1)a1a1 if i = 0,

(σi,p+1 + (−1)(t+1)/2+iσi−1,p+1)ai if 1 ≤ i ≤ (t− 1)/2,

σi−1,p+1ai if i = (t+ 1)/2.

(c) If x = (p+ 1)m+ (t+ 1)/2− i,
σi,0ai if i = m− (t+ 1)/2,

(σi,0 + (−1)(t+1)/2−iσi−1,0)ai if m− (t− 1)/2 ≤ i ≤ m− 2,

σm−1,0am−1 if i = m− 1 and t = 1,

(σm−1,0 − (−1)(t+1)/2σm−2,0)am−1 if i = m− 1 and t ≥ 3.

(d) If x = (p− α+ 1)m+ (t− 1)/2− i for 1 ≤ α ≤ p,
(σi,α + (−1)(t−1)/2+iσi+1,α)ai+1 if 0 ≤ i ≤ m− 2,

(σm−1,α + σm−1,p−α)am + (τm−1,α

+ιm−1,α + τm−1,p−α + (−1)(t+1)/2µm−2,α)a
2
m if i = m− 1.

(e) If x = (p+ 1)m+ (t− 1)/2− i,

σi+1,0ai+1 if i = m− (t+ 3)/2,

(σi,0 + (−1)(t−1)/2+iσi+1,0)ai+1 if m− (t+ 1)/2 ≤ i ≤ m− 2,

(σm−1,0 + σm−1,p)am

+(τm−1,0 + ιm−1,0 + τm−1,p

+(−1)(t+1)/2µm−2,0)a
2
m if i = m− 1.

(f) If x = (t− 1)/2− i,
σ0,p+1a1 if i = 0 and t = 1,

(σ0,p+1 + (−1)(t−1)/2σ1,p+1a1 if i = 0 and t ≥ 3,

(σi,p+1 + (−1)(t−1)/2+iσi+1,p+1)ai+1 if 1 ≤ i ≤ (t− 3)/2,

σi,p+1ai+1 if i = (t− 1)/2.
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(g) If x = (p− β)m+ (t+ 1)/2 for 0 ≤ β ≤ p,

(µi,β + ιi,β + (−1)(t+1)/2ιi+1,β + (−1)(t+1)/2µi−1,β)ai+1ai+1.

for 1 ≤ i ≤ m− 2,

In the case where p is odd, we have the similar results to (1) and (2).

In this way, we have the dimension of the Kernel of ∂∗n+1.

Proposition 3.4. (1) In the case where m is even and char k ̸= 2, we have

dimk Ker ∂∗pm+t+1 =

(2p+ 1)m+ p/2 + t+ 3 if p and t are even,

(2p+ 1)m+ p/2 + t+ 1 if p is even and t is odd,

2pm+ (p− 1)/2 + t+ 3 if p is odd and t is even,

2pm+ (p− 1)/2 + t+ 1 if p is odd and t is odd(̸= m− 1),

(2p+ 1)m+ (p+ 1)/2 if p is odd and t = m− 1.

(2) In the case where m is even and char k = 2, we have

dimk Ker ∂∗pm+t+1 =

(2p+ 1)m+ p/2 + t+ 3 if p and t are even,

(2p+ 1)m+ p/2 + t+ 2 if p is even and t is odd,

2pm+ (p− 1)/2 + t+ 3 if p is odd and t is even,

2pm+ (p− 1)/2 + t+ 2 if p is odd and t is odd(̸= m− 1),

(2p+ 1)m+ (p+ 1)/2 + 1 if p is odd and t = m− 1.

(3) In the cases where m is odd and char k ̸= 2, we have

dimk Ker ∂∗pm+t+1 =

(2p+ 1)m+ p/2 + t+ 3 if p and t are even,

(2p+ 1)m+ p/2 + t+ 1 if p is even and t is odd,

2pm+ (p− 1)/2 + t+ 3 if p and t are odd,

2pm+ (p− 1)/2 + t+ 1 if p is odd and t is even(̸= m− 1),

(2p+ 1)m+ (p− 1)/2 + 1 if p is odd and t = m− 1.
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(4) In the case where m is odd and char k = 2, we have

dimk Ker ∂∗pm+t+1 =

(2p+ 1)m+ p/2 + t+ 3 if p and t are even,

(2p+ 1)m+ p/2 + t+ 2 if p is even and t is odd,

2pm+ (p− 1)/2 + t+ 3 if p and t are odd,

2pm+ (p− 1)/2 + t+ 2 if p is odd and t is even(̸= m− 1),

(2p+ 1)m+ (p− 1)/2 + 2 if p is odd and t = m− 1.

Proof. We consider the case where m, p and t are even and char k ̸= 2. In
the other cases, we prove this theorem by the same method. If m, p and t are
even, char k ̸= 2 and f ∈ Ker ∂∗pm+t+1, then we have the following conditions.

σ0,α = σ0,p−α for 0 ≤ α ≤ p/2,
σ0,α = σ2l,α = (−1)t/2σ2l+1,α for 0 ≤ α ≤ p, 0 ≤ l ≤ m/2− 1,

ι1,β = (−1)t/2τ0,β−1 − (−1)t/2τ0,p−β+1 − (−1)t/2µ0,β for 1 ≤ β ≤ p,
ιi+1,β = (−1)t/2+iιi,β − (−1)t/2+iµi,β − µi−1,β for 1 ≤ i ≤ m− 2, 1 ≤ β ≤ p,
ιm−1,β = τm−1,β − τm−1,p−β − (−1)t/2µm−2,β for 1 ≤ β ≤ p,

If t = 0,

{
τ0,0 = τ0,p,

τm−1,0 = τm−1,p,

If t ≥ 2,


ι1,p+1 = (−1)t/2τ0,p − (−1)t/2τ0,0 − (−1)t/2µ0,p+1,

ιt/2,p+1 = µt/2−1,p+1,

ιm−t/2,0 = µm−1−t/2,0,

ιm−1,0 = τm−1,0 − τ0,p − (−1)t/2µm−2,0,

If t ≥ 4,{
ιi+1,p+1 = (−1)t/2+iι0,p+1 − (−1)t/2+iµi,p+1 − µi−1,p+1 for 1 ≤ i ≤ t/2− 1,

ιi+1,0 = (−1)t/2+iιi,0 − (−1)t/2+iµi,0 − µi−1,0 for m− t/2 ≤ i ≤ m− 2.

Therefore, σi,α, σ0,p−α′ , τ0,p−α′ , τm−1,p−α′ , ιi,β , ιi′,0 and ιi′′,p+1 are determined
by σ0,α′ , σ0,t/2, τ0,α′ , τ0,t/2, τm−1,α′ , τm−1,t/2, µi,β , µi′′−1,p+1, µi′−1,0, for 1 ≤ i ≤
m−1, m−t/2 ≤ i′ ≤ m−1, 1 ≤ i′′ ≤ t/2, 0 ≤ α ≤ p, 0 ≤ α′ ≤ p/2−1 and 1 ≤
β ≤ p. Finally λi,α are arbitrary for 0 ≤ i ≤ m− 1 and 0 ≤ α ≤ p. Therefore,
in this case the dimension of Ker ∂∗pm+t+1 is (2p+ 1)m+ p/2 + t+ 3.

Finally, we give the dimension of the n-th Hochschild cohomology group
HHn(A) = Ker ∂∗n+1/Im ∂∗n of A for n ≥ 0. Using Theorem 3.4 and the
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equation

dimk HH
n(A) = dimk Ker ∂∗n+1 − dimk Im ∂∗n

= dimk Ker ∂∗n+1 − dimk P
∗
n−1 + dimk Ker ∂∗n,

we obtain the dimension of HHn(A) of A for n ≥ 0 as follows.

Theorem 3.5. In the case m ≥ 3, we have dimk HH0(A) = m + 3 and, for
pm+ t ≥ 1,

dimk HH
pm+t(A) = p+



3 if p is even and char k ̸= 2,

2 if p is odd, t ̸= m− 1 and char k ̸= 2,

3 if p is odd, t = m− 1 and char k ̸= 2,

4 if p is even and char k = 2,

3 if p is odd, t ̸= m− 1 and char k = 2,

4 if p is odd, t = m− 1 and char k = 2.

Remark 3.6. In the case m = 2, by Theorem 3.5, we have the dimension of
the Hochschild cohomology groups of A given in [6].

3.2. A basis of the Hochschild cohomology groups of A

Using Lemmas 3.3 and Theorem 3.5, we obtain a k-basis of HHn(A) for n ≥ 0.

Proposition 3.7. Suppose that m ≥ 3. Then the following elements form a
k-basis of the center Z(A) = HH0(A) = Ker ∂∗1 of A.

m−1∑
i=0

ei, a0, am, ajaj for 1 ≤ j ≤ m.

Proposition 3.8. Suppose m ≥ 3 and m is even. For each n = pm+ t ≥ 1,
the following elements form a k-basis of HHpm+t(A).

(1) In the case where p and t are even, we have a k-basis of HHpm+t(A) as
follows:

(a) If x1 = (p− α)m+ t/2, x2 = αm+ t/2,

χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2.
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(b) If x = pm/2 + t/2, πn,1 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(c) If x = pm/2 + t/2, πn,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ am.

(d) If x = (p− α)m+ t/2,
Fn,α : e0 ⊗ ϕ00(x, n− x) 7→ a1a1 for 0 ≤ α ≤ p/2− 1.

(e) If x = pm/2 + t/2, char k = 2, Fn,p/2 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(2) In the case where p is even and t is odd, we have a k-basis of HHpm+t(A)
as follows:

(a) If x1 = (p− α)m+ (t− 1)/2 and x2 = αm+ (t− 1)/2,

µn,α :



ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2− 1.

(b) If x = pm/2 + (t− 1)/2 and char k ̸= 2,

µn,p/2 :


ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→

{
−ai+1 if i is even,

(−1)(t+1)/2ai+1 if i is odd,
for 0 ≤ i ≤ m− 1.

(c) If x = pm/2+(t−1)/2 and char k = 2, µn,p/2 : e0⊗ϕ00(x, n−x) 7→ a0.

(d) If x = pm/2 + (t+ 1)/2 and char k = 2,
µ′n,p/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x = (p− α)m+ (t− 1)/2,

νn,α :

{
e0 ⊗ ϕ00(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ10(x, n− x) 7→ (−1)(t−1)/2a1,

for 0 ≤ α ≤ p/2− 1.

(f) If x = pm/2 + (t− 1)/2, En,1 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(g) If x = pm/2 + (t+ 1)/2, En,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ a2m.

(3) In the case where p is odd and t is even, we have a k-basis of HHpm+t(A)
as follows:

(a) If x1 = (p− α− 1)m+ (m+ t)/2 and x2 = αm+ (m+ t)/2,
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χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2.

(b) If x = (p− 1)m/2 + (m+ t)/2, πn,1 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(c) If x = (p− 1)m/2 + (m+ t)/2, πn,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ am.

(d) If x = (p− α− 1)m+ (m+ t)/2,
Fn,α : e0 ⊗ ϕ00(x, n− x) 7→ a1a1 for 0 ≤ α ≤ (p− 1)/2− 1.

(e) If x = (p− 1)m/2 + (m+ t)/2 and char k = 2,
Fn,(p−1)/2 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(4) In the case where p and t are odd, we have a k-basis of HHpm+t(A) as
follows:

(a) If x1 = (p− α− 1)m+ (m+ t− 1)/2 and x2 = αm+ (m+ t− 1)/2,

µn,α :



ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(m+t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(m+t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2− 1.

(b) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k ̸= 2,

µn,(p−1)/2 :



ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→{
−ai+1 if i is even,

(−1)(m+t+1)/2ai+1 if i is odd,
for 0 ≤ i ≤ m− 1.

(c) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k = 2,
µn,(p−1)/2 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(d) If x = (p− 1)m/2 + (m+ t+ 1)/2 and char k = 2,
µ′n,(p−1)/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x1 = pm+m− 1, x2 = 0, t = m− 1,

ψn :

{
ei ⊗ ϕi0(pm+m− 1, 0) 7→ (−1)iai,
ei ⊗ ϕi0(0, pm+m− 1) 7→ (−1)i+1ai+1,

for 0 ≤ i ≤ m− 1.
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(f) If x = (p− α− 1)m+ (m+ t− 1)/2,

νn,α :

{
e0 ⊗ ϕ00(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ10(x, n− x) 7→ (−1)(m+t−1)/2a1,

for 0 ≤ α ≤ (p− 1)/2− 1.

(g) If x = (p− 1)m/2 + (m+ t− 1)/2, En,1 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(h) If x = (p−1)m/2+(m+t+1)/2, En,2 : em−1⊗ϕm−1
0 (x, n−x) 7→ a2m.

Proposition 3.9. Suppose that m ≥ 3 and m is odd. For each n = pm+t ≥ 1,
the following elements form a k-basis of HHpm+t(A).

(1) In the case where p and t are even, we have a k-basis of HHpm+t(A) as
follows:

(a) If x1 = (p− α)m+ t/2 and x2 = αm+ t/2,

χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)α+t/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
(−1)α+p/2ei if i is even,

(−1)(p+t)/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2.

(b) If x = pm/2 + t/2, πn,1 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(c) If x = pm/2 + t/2, πn,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ am.

(d) If x = (p− α)m+ t/2,
Fn,α : e0 ⊗ ϕ00(x, n− x) 7→ a1a1 for 0 ≤ α ≤ p/2− 1.

(e) If x = pm/2 + t/2, char k = 2, Fn,p/2 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(2) In the case where p is even and t is odd, we have a k-basis of HHpm+t(A)
as follows:

(a) If x1 = (p− α)m+ (t− 1)/2 and x2 = αm+ (t− 1)/2,

µn,α :



ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)α+(t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→{
(−1)α+p/2ai if i is even(̸= 0),

(−1)(p+t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)α+p/2+1am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2− 1.

(b) If x = pm/2 + (t− 1)/2 and char k ̸= 2,
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µn,p/2 :



ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(p+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→{
−ai+1 if i is even,

(−1)(p+t+1)/2ai+1 if i is odd,
for 0 ≤ i ≤ m− 1.

(c) If x = pm/2+(t−1)/2 and char k = 2, µn,p/2 : e0⊗ϕ00(x, n−x) 7→ a0.

(d) If x = pm/2 + (t+ 1)/2 and char k = 2,
µ′n,p/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x = (p− α)m+ (t− 1)/2,

νn,α :

{
e0 ⊗ ϕ00(x+ 1, n− x+ 1) 7→ a1,

e1 ⊗ ϕ10(x, n− x) 7→ (−1)α+(t−1)/2a1,

for 0 ≤ α ≤ p/2− 1.

(f) If x = pm/2 + (t− 1)/2, En,1 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(g) If x = pm/2 + (t+ 1)/2, En,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ a2m.

(3) In the case where p and t are odd, we have a k-basis of HHpm+t(A) as
follows:

(a) If x1 = (p− α− 1)m+ (m+ t)/2 and x2 = αm+ (m+ t)/2,

χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)α+(m+t)/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
(−1)α+(p−1)/2ei if i is even,

(−1)(m+p+t−1)/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2.

(b) If x = (p− 1)m/2 + (m+ t)/2, πn,1 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(c) If x = (p− 1)m/2 + (m+ t)/2, πn,2 : em−1 ⊗ ϕm−1
0 (x, n− x) 7→ am.

(d) If x = (p− α− 1)m+ (m+ t)/2,
Fn,α : e0 ⊗ ϕ00(x, n− x) 7→ a1a1 for 0 ≤ α ≤ (p− 1)/2− 1.

(e) If x = (p− 1)m/2 + (m+ t)/2 and char k = 2,
Fn,(p−1)/2 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(4) In the case where p is odd and t is even, we have a k-basis of HHpm+t(A)
as follows:

(a) If x1 = (p− α− 1)m+ (m+ t− 1)/2 and x2 = αm+ (m+ t− 1)/2,
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µn,α :



ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)α+(m+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
(−1)α+(p−1)/2ai if i is even(̸= 0),

(−1)(m+p+t)/2+1ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)α+(p+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2− 1.

(b) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k ̸= 2,

µn,(p−1)/2:



ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(m+p+t)/2+1ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→{
−ai+1 if i is even,

(−1)(m+p+t)/2ai+1 if i is odd,
for 0 ≤ i ≤ m− 1.

(c) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k = 2,
µn,(p−1)/2 : e0 ⊗ ϕ00(x, n− x) 7→ a0.

(d) If x = (p− 1)m/2 + (m+ t+ 1)/2 and char k = 2,
µ′n,(p−1)/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x1 = pm+m− 1 and x2 = 0, t = m− 1,

ψn :

{
ei ⊗ ϕi0(pm+m− 1, 0) 7→ (−1)iai,
ei ⊗ ϕi0(0, pm+m− 1) 7→ (−1)(p+1)/2+iai+1,

for 0 ≤ i ≤ m− 1.

(f) If x = (p− α− 1)m+ (m+ t− 1)/2,

νn,α :

{
e0 ⊗ ϕ00(x+ 1, n− 1− x) 7→ a1

e1 ⊗ ϕ10(x, n− x) 7→ (−1)α+(m+t+1)/2a1,

for 0 ≤ α ≤ (p− 1)/2− 1.

(g) If x = (p− 1)m/2 + (m+ t− 1)/2, En,1 : e0 ⊗ ϕ00(x, n− x) 7→ a1a1.

(h) If x = (p−1)m/2+(m+t+1)/2, En,2 : em−1⊗ϕm−1
0 (x, n−x) 7→ a2m.

§4. The Hochschild cohomology groups of A for m = 1

Using the same argument as Sections 2 and 3, we have a k-basis of the
Hochschild cohomology groups of A for m = 1. As in Section 2, we define
a left Ae-module

Pn :=
⨿
g∈Gn

Ao(g)⊗ t(g)A.

Then we have the following resolution.
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Theorem 4.1. If m = 1, we have a projective bimodule resolution of A:

(P•, ∂•) : · · · → Pn
∂n−→ Pn−1 → · · · → P2

∂2−→ P1
∂1−→ P0

π−→ A→ 0,

where π is the multiplication map, and for n ≥ 1, ∂n: Pn → Pn−1 are defined
as follows:

(1) If x = 0, then

∂n(o(g
n
0,n,0)⊗ t(gn0,n,0))

=(−1)ne0 ⊗ ϕ01(c(0,n−1)) +

{
a0 ⊗ t(gn−1

n−1,0,0) if n ≡ 0, 1(mod 4),

−a0 ⊗ t(gn−1
n−1,0,0) if n ≡ 2, 3(mod 4).

(2) If 1 ≤ x ≤ n− 1, then

∂n(o(g
n
x,n−x,0)⊗ t(gnx,n−x,0))

=e0 ⊗ ϕ01(b(x−1,n−x)) + (−1)ne0 ⊗ ϕ01(c(x,n−1−x))

+


(−1)xa1 ⊗ t(gn−1

n−x,x−1,0) + (−1)xa0 ⊗ t(gn−1
n−1−x,x,0)

if n ≡ 0, 1(mod 4),

−(−1)xa1 ⊗ t(gn−1
n−x,x−1,0)− (−1)xa0 ⊗ t(gn−1

n−1−x,x,0)

if n ≡ 2, 3(mod 4).

(3) If x = n, then

∂n(o(g
n
n,0,0)⊗ t(gnn,0,0))

=e0 ⊗ ϕ01(b(n−1,0)) +

{
(−1)na1 ⊗ t(gn−1

0,n−1,0) if n ≡ 0, 1(mod 4),

−(−1)na1 ⊗ t(gn−1
0,n−1,0) if n ≡ 2, 3(mod 4).

We set P ∗
n := HomAe(Pn, A) and ∂∗n:= HomAe(∂n, A). Then we have the

complex

(P ∗
• , ∂

∗
•) : 0→ P ∗

0

∂∗
1−→ P ∗

1 → · · · → P ∗
n−1

∂∗
n−→ P ∗

n → · · · .

Lemma 4.2. For an element f in P ∗
n , we have

f(o(gnx,n−x,0)⊗ t(gnx,n−x,0)) = σ0,xe0 + τ0,xa0 + µ0,xa1 + λ0,xa
2
1 for 0 ≤ x ≤ n.

So we have dimk P
∗
n = 4(n+ 1).

By Theorem 4.1 and Lemma 4.2, we can determine the image of ∂∗n+1.
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Lemma 4.3. With the notation of Lemma 4.2, we have ∂∗n+1(f)(o(g
n
x,n+1−x,0)⊗

t(gnx,n+1−x,0)) in the following cases.

(1) In the case of x = 0, we have ∂∗n+1(f)(o(g
n
x,n+1−x,0) ⊗ t(gnx,n+1−x,0)) as

follows:{
(−σ0,0 + (−1)n/2σ0,n)a0 + (−τ0,0 + (−1)n/2τ0,n)a21 if n ∈ 2Z,
(−1)n/2σ0,na0 + σ0,0a1 + (µ0,0 + (−1)(n+1)/2τ0,n)a

2
1 if n /∈ 2Z.

(2) In the case of 1 ≤ x ≤ n, we have ∂∗n+1(f)(o(g
n
x,n+1−x,0)⊗ t(gnx,n+1−x,0))

as follows:

(−σ0,x + (−1)x+n/2σ0,n−x)a0

+(σ0,x−1 + (−1)x+n/2σ0,n+1−x)a1

+(µ0,x−1 − τ0,x + (−1)x+n/2µ0,n+1−x

+(−1)x+n/2τ0,n−x)a
2
1 if n ∈ 2Z,

(σ0,x−1 + (−1)x+(n+1)/2σ0,n−x)a0

+(σ0,x + (−1)x+(n+1)/2σ0,n+1−x)a1

+(τ0,x−1 + µ0,x + (−1)x+(n+1)/2µ0,n+1−x

+(−1)x+(n+1)/2τ0,n−x)a
2
1 if n /∈ 2Z.

(3) In the case of x = n+ 1, we have ∂∗n+1(f)(o(g
n
x,n+1−x,0)⊗ t(gnx,n+1−x,0))

as follows:{
(σ0,n + (−1)n/2σ0,0)a1 + (µ0,n − (−1)n/2µ0,0)a21 if n ∈ 2Z,
σ0,na0 + (−1)(n+1)/2σ0,0a1 + (τ0,n + (−1)(n+1)/2µ0,0)a

2
1 if n /∈ 2Z.

By Lemma 4.3, we obtain the following results.

Theorem 4.4. By Lemma 4.3,, we have

dimk HH
n(A) =


4 if n = 0,

n+ 3 if n ≥ 1 and char k ̸= 2,

n+ 4 if n ≥ 1 and char k = 2.

For m = 1, the algebra A is commutative. So the 0-th Hochschild coho-
mology group HH0(A) of A coincides with A. And we give a k-basis of the
n-th Hochschild cohomology groupc HHn(A) of A for n ≥ 1.

Proposition 4.5. For each n ≥ 1, the following elements form a k-basis of
HHn(A).



142 T. FURUYA AND D. OBARA

(1) If n is even,

(a) For 0 ≤ x ≤ n/2− 1,

χn,x :

{
e0 ⊗ ϕ00(x, n− x) 7→ e0,

e0 ⊗ ϕ00(n− x, x) 7→ (−1)x+n/2+1e0,

(b) χn,n/2 : e0 ⊗ ϕ00(n/2, n/2) 7→ e0.

(c) πn,1 : e0 ⊗ ϕ00(n/2, n/2) 7→ a0.

(d) πn,2 : e0 ⊗ ϕ00(n/2, n/2) 7→ a1.

(e) For 0 ≤ x ≤ n/2− 1, Fn,x : e0 ⊗ ϕ00(x, n− x) 7→ a21.

(f) If char k = 2, Fn,n/2 : e0 ⊗ ϕ00(n/2, n/2) 7→ a21.

(2) If n is odd,

(a) For 0 ≤ x ≤ (n− 3)/2,

µn,x :

{
e0 ⊗ ϕ00(x, n− x) 7→ a0,

e0 ⊗ ϕ00(n− 1− x, x+ 1) 7→ (−1)x+(n−1)/2+1a0,

(b) If char k ̸= 2, µn,(n−1)/2 :

{
e0 ⊗ ϕ00((n− 1)/2, (n+ 1)/2) 7→ a0,

e0 ⊗ ϕ00((n+ 1)/2, (n− 1)/2) 7→ −a1.

(c) If char k = 2, µn,(n−1)/2 : e0 ⊗ ϕ00((n− 1)/2, (n+ 1)/2) 7→ a0.

(d) For 0 ≤ x ≤ (n− 1)/2,

νn,x :

{
e0 ⊗ ϕ00(x, n− x) 7→ a1,

e0 ⊗ ϕ00(n− x, x) 7→ (−1)x+(n−1)/2a0,

(e) If char k = 2, νn,(n+1)/2 : e0 ⊗ ϕ00((n+ 1)/2, (n− 1)/2) 7→ a1.

(f) En,0 : e0 ⊗ ϕ00(0, n) 7→ a21.

(g) En,1 : e0 ⊗ ϕ00(1, n− 1) 7→ a21.
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