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Abstract. For a T -variate density function, the present article defines the
quasi-symmetry of order k (< T ) and the marginal symmetry of order k, and
gives the theorem that the density function is T -variate permutation symmetric
if and only if it is quasi-symmetric and marginal symmetric of order k. The
theorem is illustrated for the multivariate normal density function.

AMS 2010 Mathematics Subject Classification. 62H17.

Key words and phrases. Decomposition, marginal symmetry, normal distribu-
tion, odds-ratio, permutation symmetry, quasi-symmetry.

§1. Introduction

For analysis of square contingency tables, it is known that the symmetry
model holds if and only if both the quasi-symmetry and marginal homogeneity
models hold (for example, see Caussinus [3], Tomizawa and Tahata [6]). For
multi-way contingency tables, Bhapkar and Darroch [1] defined the complete
symmetry, quasi-symmetry and marginal symmetry models, and showed that
the complete symmetry model holds if and only if both the quasi-symmetry
and marginal symmetry models hold.

By the way, a similar decomposition for bivariate density function (instead
of cell probabilities) is given by Tomizawa, Seo and Minaguchi [5]. Let X and
Y be two continuous random variables with a density function f(x, y). The
density function f(x, y) is said to be symmetric if we have

f(x, y) = f(y, x) for every (x, y) ∈ R2;

see Tong [7]. Tomizawa, et al. [5] defined quasi-symmetry and marginal ho-
mogeneity for the density function, and gave the theorem that the density
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function f(x, y) is symmetric if and only if it is both quasi-symmetric and
marginal homogeneous.

Let the support of f(x, y) denote K2, where

K2 = {(x, y) : f(x, y) > 0}.

We assume that the support of f(x, y) is an open connected set inR2. Also, let
θ(s1, s2; t1, t2) be the odds-ratio for X-values s1, s2 and Y -values t1, t2; namely,

θ(s1, s2; t1, t2) =
f(s1, t1)f(s2, t2)

f(s2, t1)f(s1, t2)
.

Then the density function f(x, y) is said to be quasi-symmetric if we have

θ(s1, s2; t1, t2) = θ(t1, t2; s1, s2)

for any (si, tj) ∈ K2. Thus this indicates that the density function is symmet-
ric with respect to the odds-ratio. The density function f(x, y) is said to be
marginal homogeneous if we have

fX(t) = fY (t) for every t ∈ R,

where fX(t) and fY (t) are the marginal density functions of X and Y , respec-
tively. Now, we are interested in extending the decomposition of the symmetric
density function in multivariate case.

In this article, we define the quasi-symmetry and marginal symmetry for
multivariate density function, and decompose the symmetry into quasi-symmetry
and marginal symmetry. Section 2 provides the decomposition for trivariate
density function. Section 3 extends the decomposition to multivariate density
function. Section 4 illustrates our decompositions for normal distributions.
Section 5 describes some comments.

§2. Decomposition of trivariate density function

Let X1, X2 and X3 be three continuous random variables with a density func-
tion f(x1, x2, x3). The density function f(x1, x2, x3) is said to be permuta-
tion symmetric (S3) if for each permutation (π1, π2, π3) of (1, 2, 3) and every
(x1, x2, x3) ∈ R3, we have

f(xπ1 , xπ2 , xπ3) = f(x1, x2, x3);

see Tong [7], and Fang, Kotz and Ng [4].
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Let fX1(x1), fX2(x2) and fX3(x3) be the marginal density functions of
X1, X2 and X3, respectively. For the density function f(x1, x2, x3), we shall
define marginal symmetry of order 1 (denoted by M3

1 ) by

M3
1 : fX1(t) = fX2(t) = fX3(t) for every t ∈ R.

Also, we define marginal symmetry of order 2 (denoted by M3
2 ) by

M3
2 : fX1X2(s, t) = fX1X2(t, s) = fX1X3(s, t) = fX2X3(s, t) for every (s, t) ∈ R2.

Thus, M3
2 indicates that each of marginal distributions of (X1, X2), (X1, X3)

and (X2, X3) has a same bivariate density function being symmetric. Note
that M3

2 implies M3
1 .

Let the support of f(x1, x2, x3) denote K3, where

K3 = {(x1, x2, x3) : f(x1, x2, x3) > 0, a < xi < b, i = 1, 2, 3,−∞ ≤ a < b ≤ ∞}.

We assume that the support of f(x1, x2, x3) is an open connected set in R3.
Generally, we can express the density function as

f(x1, x2, x3) = µα1(x1)α2(x2)α3(x3)×(2.1)

β12(x1, x2)β13(x1, x3)β23(x2, x3)γ(x1, x2, x3),

where (x1, x2, x3) ∈ K3, and for an arbitrary fixed value c ∈ (a, b),

α1(c) = 1, β12(c, x2) = β12(x1, c) = 1,

γ(c, x2, x3) = γ(x1, c, x3) = γ(x1, x2, c) = 1,

with similar properties of α2, α3, β13 and β23. The terms αi correspond to
main effects of the variable Xi, βij to interaction effects of Xi and Xj , and γ
to interaction effect of X1, X2 and X3. Namely

µ = f(c, c, c),

α1(x1) =
f(x1, c, c)

f(c, c, c)
, α2(x2) =

f(c, x2, c)

f(c, c, c)
, α3(x3) =

f(c, c, x3)

f(c, c, c)
,

β12(x1, x2) =
f(x1, x2, c)f(c, c, c)

f(x1, c, c)f(c, x2, c)
,

β13(x1, x3) =
f(x1, c, x3)f(c, c, c)

f(x1, c, c)f(c, c, x3)
,

β23(x2, x3) =
f(c, x2, x3)f(c, c, c)

f(c, x2, c)f(c, c, x3)
,

γ(x1, x2, x3) =
f(x1, x2, x3)f(x1, c, c)f(c, x2, c)f(c, c, x3)

f(c, c, c)f(x1, x2, c)f(x1, c, x3)f(c, x2, x3)
.
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The term α1(x1) indicates the odds of density function with respect to X1-
values with (X2, X3) = (c, c). Note that

β12(x1, x2) =

(
f(x1, x2, c)

f(c, x2, c)

)/(f(x1, c, c)

f(c, c, c)

)
=

(
f(x1, x2, c)

f(x1, c, c)

)/(f(c, x2, c)

f(c, c, c)

)
,

and

γ(x1, x2, x3) =

(
f(x1, x2, x3)f(c, c, x3)

f(x1, c, x3)f(c, x2, x3)

)/(f(x1, x2, c)f(c, c, c)

f(x1, c, c)f(c, x2, c)

)
=

(
f(x1, x2, x3)f(c, x2, c)

f(x1, x2, c)f(c, x2, x3)

)/(f(x1, c, x3)f(c, c, c)

f(x1, c, c)f(c, c, x3)

)
=

(
f(x1, x2, x3)f(x1, c, c)

f(x1, x2, c)f(x1, c, x3)

)/(f(c, x2, x3)f(c, c, c)

f(c, x2, c)f(c, c, x3)

)
.

Thus, β12(x1, x2) indicates the odds-ratio of density function with respect to
(X1, X2)-values with X3 = c. Also γ(x1, x2, x3) indicates the ratio of odds-
ratios of density function, i.e., the ratio of odds-ratio with respect to (X1, X2)-
values withX3 = x3 to that withX3 = c (or the ratio of odds-ratio with respect
to (Xi, Xj)-values with Xk = xk to that with Xk = c, where (i, j, k) = (1, 3, 2)
and (2, 3, 1)).

The density function is S3 if and only if it is expressed as the form (2.1)
with

S3 :


α1(x1) = α2(x1) = α3(x1),
β12(x1, x2) = β12(x2, x1) = β13(x1, x2) = β23(x1, x2),
γ(xπ1 , xπ2 , xπ3) = γ(x1, x2, x3).

We shall define quasi-symmetry of order 1 (denoted by Q3
1), and order 2

(denoted by Q3
2). We define Q3

1 by (2.1) with

Q3
1 :

{
β12(x1, x2) = β12(x2, x1) = β13(x1, x2) = β23(x1, x2),
γ(xπ1 , xπ2 , xπ3) = γ(x1, x2, x3).

Thus Q3
1 indicates

θ(s1, s2; t1, t2;u) = θ(t1, t2; s1, s2;u)

= θ(s1, s2;u; t1, t2) = θ(t1, t2;u; s1, s2)

= θ(u; s1, s2; t1, t2) = θ(u; t1, t2; s1, s2),
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where (si, tj , u) ∈ K3 and so on, and

θ(s1, s2; t1, t2;u) =
f(s1, t1, u)f(s2, t2, u)

f(s2, t1, u)f(s1, t2, u)
,

θ(s1, s2;u; t1, t2) =
f(s1, u, t1)f(s2, u, t2)

f(s2, u, t1)f(s1, u, t2)
,

θ(u; s1, s2; t1, t2) =
f(u, s1, t1)f(u, s2, t2)

f(u, s2, t1)f(u, s1, t2)
;

because we can see

θ(s1, s2; t1, t2;u) =
θ(c, s1; c, t1;u)θ(c, s2; c, t2;u)

θ(c, s2; c, t1;u)θ(c, s1; c, t2;u)
,

and so on. Therefore Q3
1 indicates that the density function is symmetric with

respect to the odds-ratio.
Also, we define Q3

2 by (2.1) with

Q3
2 : γ(xπ1 , xπ2 , xπ3) = γ(x1, x2, x3).

Thus Q3
2 indicates

θ(s1, s2; t1, t2;u1)

θ(s1, s2; t1, t2;u2)
=

θ(t1, t2; s1, s2;u1)

θ(t1, t2; s1, s2;u2)

=
θ(s1, s2;u1; t1, t2)

θ(s1, s2;u2; t1, t2)
=

θ(t1, t2;u1; s1, s2)

θ(t1, t2;u2; s1, s2)

=
θ(u1; s1, s2; t1, t2)

θ(u2; s1, s2; t1, t2)
=

θ(u1; t1, t2; s1, s2)

θ(u2; t1, t2; s1, s2)
,

where (si, tj , uk) ∈ K3 and so on; because

θ(s1, s2; t1, t2;uk)

θ(s1, s2; t1, t2; c)
=

γ(s1, t1, uk)γ(s2, t2, uk)

γ(s2, t1, uk)γ(s1, t2, uk)
.

Therefore Q3
2 indicates that the density function is symmetric with respect to

the ratio of odds-ratios. We point out that each of S3, Q3
1 and Q3

2 does not
depend on the value of c fixed. It is obviously that Q3

1 implies Q3
2. Note that

the alternative way of expressing Q3
1 is

Q3
1 : f(x1, x2, x3) = θ1(x1)θ2(x2)θ3(x3)v(x1, x2, x3),

where v is positive and permutation symmetric function, i.e., v(xπ1 , xπ2 , xπ3) =
v(x1, x2, x3). We obtain the following theorem.
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Theorem 1. For k fixed (k = 1, 2), the trivariate density function f(x1, x2, x3)
is S3 if and only if it is both Q3

k and M3
k .

Referring to Bhapkar and Darroch [1] for discrete probabilities in multi-way
contingency tables, we can prove theorem for multivariate density function as
follows.

Proof. Consider the case of k = 1. If a density function is S3, then it satisfies
Q3

1 and M3
1 . Assume that it is both Q3

1 and M3
1 , and then we shall show that

it satisfies S3.
Let f∗(x1, x2, x3) be the density function which satisfies both Q3

1 and M3
1 .

Since f∗(x1, x2, x3) satisfies Q
3
1, we see

log f∗(x1, x2, x3) = log θ1(x1) + log θ2(x2) + log θ3(x3) + log v(x1, x2, x3),

where v is positive and permutation symmetric function. Let the density
g(x1, x2, x3) be c−1v(x1, x2, x3) with c =

∫∫∫
v(x1, x2, x3)dx1dx2dx3. Also,

since f∗(x1, x2, x3) satisfies M
3
1 , we see

f∗
X1

(t) = f∗
X2

(t) = f∗
X3

(t) = µ(t) for t ∈ R,(2.2)

where f∗
X1

(t), f∗
X2

(t) and f∗
X3

(t) are the marginal density functions of X1, X2

and X3, respectively. Consider the arbitrary density function f(x1, x2, x3)
satisfying M3

1 with

fX1(t) = fX2(t) = fX3(t) = µ(t) for t ∈ R,(2.3)

where fX1(t), fX2(t) and fX3(t) are the marginal density functions of X1, X2

and X3, respectively. From (2.2) and (2.3), we see∫∫∫
{f(x1, x2, x3)− f∗(x1, x2, x3)} ×(2.4)

log

(
f∗(x1, x2, x3)

g(x1, x2, x3)

)
dx1dx2dx3 = 0.

Using the equation (2.4), we obtain

I(f, g) = I(f∗, g) + I(f, f∗),

where

I(h1, h2) =

∫∫∫
h1(x1, x2, x3) log

(
h1(x1, x2, x3)

h2(x1, x2, x3)

)
dx1dx2dx3.

For g fixed, we see
min
f

I(f, g) = I(f∗, g),
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and then f∗ uniquely minimizes I(f, g).
Let f∗∗(x1, x2, x3) = f∗(x1, x3, x2). In a similar way, we also see∫∫∫

{f(x1, x2, x3)− f∗∗(x1, x2, x3)} log
(
f∗∗(x1, x2, x3)

g(x1, x2, x3)

)
dx1dx2dx3 = 0,

where f(x1, x2, x3) is M
3
1 with (2.3). Thus, we obtain

I(f, g) = I(f∗∗, g) + I(f, f∗∗).

For g fixed, we see
min
f

I(f, g) = I(f∗∗, g),

and then f∗∗ uniquely minimizes I(f, g). Therefore, we see f∗(x1, x2, x3) =
f∗∗(x1, x2, x3). Thus, f

∗(x1, x2, x3) = f∗(x1, x3, x2).
Also, in a similar way, we obtain

f∗(x1, x2, x3) = f∗(x2, x1, x3) = f∗(x2, x3, x1) = f∗(x3, x1, x2) = f∗(x3, x2, x1).

Therefore, we have f∗(x1, x2, x3) = f∗(xπ1 , xπ2 , xπ3). Namely f∗(x1, x2, x3)
satisfies S3. The case of k = 2 can be proved in a similar way as the case of
k = 1. So the proof is completed.

§3. Decomposition of multivariate density function

Let X1, . . . , XT be T continuous random variables with a density function
f(x1, . . . , xT ). The density function f(x1, . . . , xT ) is said to be permutation
symmetric (ST ) if for each permutation (π1, . . . , πT ) of (1, . . . , T ) and every
(x1, . . . , xT ) ∈ RT , we have

f(xπ1 , . . . , xπT ) = f(x1, . . . , xT );

see Tong [7] and Fang et al. [4].
Let the support of f(x1, . . . , xT ) denote KT , where

KT = {(x1, . . . , xT ) : f(x1, . . . , xT ) > 0,

a < xi < b, i = 1, . . . , T,−∞ ≤ a < b ≤ ∞}.

We assume that the support of f(x1, . . . , xT ) is an open connected set in RT .
Generally, we can express the density function as

f(x1, . . . , xT ) = α
[ T∏
i1=1

αi1(xi1)
][ ∏∏

1≤i1<i2≤T

αi1i2(xi1 , xi2)
]
× · · ·(3.1)

×
[ ∏

· · ·
∏

1≤i1<···<iT−1≤T

αi1...iT−1(xi1 , . . . , xiT−1)
]
· α1...T (x1, . . . , xT ),
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where (x1, . . . , xT ) ∈ KT , and for an arbitrary fixed value c ∈ (a, b),

{αi(c) = αi1i2(c, xi2) = · · · = α1...T (x1, . . . , xT−1, c) = 1}.

Then, the density function f(x1, . . . , xT ) being ST is also expressed as (3.1)
with

ST : αi1...im(xi1 , . . . , xim) = αi1...im(xπi1
, . . . , xπim

) = αj1...jm(xi1 , . . . , xim)

(m = 1, . . . , T ; 1 ≤ i1 < · · · < im ≤ T ; 1 ≤ j1 < · · · < jm ≤ T ),

where (πi1 , . . . , πim) is permutation of (i1, . . . , im).
For k = 1, . . . , T − 1, we shall define quasi-symmetry of order k (denoted

by QT
k ) by (3.1) with

QT
k : αi1...im(xi1 , . . . , xim) = αi1...im(xπi1

, . . . , xπim
) = αj1...jm(xi1 , . . . , xim)

(m = k + 1, . . . , T ; 1 ≤ i1 < · · · < im ≤ T ; 1 ≤ j1 < · · · < jm ≤ T ).

Also, for k = 1, . . . , T − 1, we shall define marginal symmetry of order k
(denoted by MT

k ) by

MT
k : fXi1

...Xik
(xi1 , . . . , xik) = fXi1

...Xik
(xπi1

, . . . , xπik
) = fXj1

...Xjk
(xi1 , . . . , xik)

(1 ≤ i1 < · · · < ik ≤ T ; 1 ≤ j1 < · · · < jk ≤ T ),

where fXi1
...Xik

is the marginal density function of (Xi1 , . . . , Xik). Then we
obtain the following theorem.

Theorem 2. For k fixed (k = 1, . . . , T − 1), the multivariate density function
f(x1, . . . , xT ) is ST if and only if it is both QT

k and MT
k .

The proof of Theorem 2 is omitted because it is obtained in a similar way
to the proof of Theorem 1.

§4. Symmetry of multivariate normal density function

Example 1. Consider a T -dimensional random vector X = (X1, . . . , XT )
′

having a normal distribution with mean vector µ = (µ1, . . . , µT )
′ and covari-

ance matrix Σ. The density function is

f(x1, . . . , xT ) =
1

(2π)
T
2 |Σ|

1
2

exp
{
− 1

2
(x− µ)′Σ−1(x− µ)

}
.(4.1)

Denote Σ−1 by A = (aij) with aij = aji. Then the density function can be
expressed as

f(x1, . . . , xT ) = C exp
{
− 1

2
H
}
,
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where C is positive constant and

H =
T∑

s=1

assx
2
s +

∑
s̸=t

astxsxt − 2
T∑

s=1

T∑
t=1

astµsxt.

By setting c = 0 without loss of generality, we see

αi(xi) = exp
{
− 1

2
(aiix

2
i − 2

T∑
s=1

asiµsxi)
}

(i = 1, . . . , T ),

αij(xi, xj) = exp (−aijxixj) (i < j),(4.2)

and for m = 3, . . . , T ,

αi1...im(xi1 , . . . , xim) = 1 (1 ≤ i1 < · · · < im ≤ T ).

Therefore the density function (4.1) is QT
k for k = 2, . . . , T − 1. Also from

(4.2), the density function (4.1) is QT
1 if and only if {aij (= aji)} are constant

(e.g., equals w) for all i < j; namely, Σ−1 has the form

Σ−1 = D + wee′,(4.3)

where D is the T × T diagonal matrix, e is the T × 1 vector of 1 elements,
and w is scalar. Although the detail is omitted, then Σ has the form

Σ = D−1 + dD−1ee′D−1,

where d is scalar. Therefore, the density function (4.1) is QT
1 if and only if Σ

has the form

Σ =

 b1 · · · 0
...

. . .
...

0 · · · bT

+ d

 b1
...
bT

( b1, . . . , bT
)
.(4.4)

Let V (Xi) = σ2
i (i = 1, . . . , T ) and let ρij be the correlation coefficient of

Xi and Xj (i ̸= j) with |ρij | < 1. Assume that
(i) σ2

1 = · · · = σ2
T (= σ2) and ρij = ρ (i < j).

Then
Σ = σ2(1− ρ)

(
E +

ρ

1− ρ
ee′
)
,

where E is the T × T identity matrix. This satisfies the form (4.4) of Σ.
Therefore the density function (4.1) with condition (i) is QT

1 .
Next, assume that
(ii) σ2

1 = · · · = σ2
T (= σ2).
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From (4.4), then QT
1 holds if and only if{

σ2 = bi + db2i (i = 1, . . . , T ),
σ2ρij = dbibj (i < j),

hold, namely, b1 = · · · = bT since |ρij | < 1. Therefore the density function
(4.1) with condition (ii) is QT

1 if and only if ρij = ρ for all i < j hold.

Also, assume that

(iii) ρij = ρ (̸= 0) for all i < j.

Then we see

Σ =

 σ1 · · · 0
...

. . .
...

0 · · · σT

((1− ρ)E + ρee′
) σ1 · · · 0

...
. . .

...
0 · · · σT

 .

Although the detail is omitted, we can see

Σ−1 =
1

1− ρ

( σ−2
1 · · · 0
...

. . .
...

0 · · · σ−2
T

+
1

m

 σ−1
1
...

σ−1
T

( σ−1
1 , . . . , σ−1

T

))
,

where m = −(1 − ρ)/ρ − T . Therefore from (4.3), the density function (4.1)
with condition (iii) is QT

1 if and only if σ2
1 = · · · = σ2

T holds.

Assume that

(iv) ρij = 0 for all i < j.

Then the density function (4.1) is QT
1 because αij(xi, xj) = 1 in (4.2) with

aij = 0 for i < j.

We shall consider the relationship between the density function (4.1) and
MT

k (k = 1, . . . , T −1). Obviously, the density function (4.1) is MT
1 if and only

if µ1 = · · · = µT and σ2
1 = · · · = σ2

T hold. Also, for each k (k = 2, . . . , T − 1),
it is MT

k if and only if µ1 = · · · = µT , σ
2
1 = · · · = σ2

T , and ρij = ρ for all
i < j. Thus, from Theorem 2 we can see that the density function (4.1) with
µ1 = · · · = µT and σ2

1 = · · · = σ2
T is ST if and only if it is QT

1 . Also, from
Theorem 2, the density function (4.1) is ST if and only if µ1 = · · · = µT ,
σ2
1 = · · · = σ2

T and ρij = ρ for all i < j hold.

Example 2. Consider a T -dimensional random vector U = (U1, . . . , UT )
′

having a multinominal distribution with

P(U1 = u1, . . . , UT = uT |N) =

N !

u1! · · ·uT !(N −
∑T

i=1 ui)!
πu1
1 · · ·πuT

T (1−
T∑
i=1

πi)
N−

∑T
i=1 ui ,
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where ui is nonnegative integer with 0 ≤ ui ≤ N . Let

π = (π1, . . . , πT )
′, π̂ = (π̂1, . . . , π̂T )

′,

where π̂i = ui/N . Also let X =
√
N(π̂ − π). Then it is well-known that X

has asymptotically (as N → ∞) a T -variate normal distribution with mean
T × 1 zero vector 0 = (0, . . . , 0)′ and covariance matrix

Σ = D − ππ′,(4.5)

where

D =

 π1 · · · 0
...

. . .
...

0 · · · πT

 ;

see, e.g., Bishop, Fienberg and Holland [2]. So we shall consider the properties
of normal distribution having covariance matrix (4.5). We see that Σ in (4.5)
satisfies the form (4.4) obtained in Example 1. Therefore the density function
of normal distribution N(0,D − ππ′) is always QT

1 . Also, it is QT
k (k =

2, . . . , T − 1).
The marginal distribution of Xi in X = (X1, . . . , XT )

′ is N(0, πi(1 − πi))
for i = 1, . . . , T . Therefore the density function of N(0,D − ππ′) is MT

1 if
and only if π1 = · · · = πT holds.

Also two dimensional marginal distribution of (Xi, Xj) for i < j has the
mean zero vector and the covariance matrix(

πi(1− πi) −πiπj
−πiπj πj(1− πj)

)
.

Thus, the density function of N(0,D − ππ′) is MT
2 if and only if π1 = · · · =

πT holds. In a similar way, it is MT
k if and only if π1 = · · · = πT holds

(k = 3, . . . , T − 1).
Therefore we can see from Theorem 2 that the density function of N(0,D−

ππ′) is ST if and only if it is MT
k (k = 1, . . . , T −1), because it always satisfies

QT
k .

§5. Comments

When an arbitrary density function f(x1, . . . , xT ) is not permutation symmet-
ric, Theorem 2 may be useful for knowing the reason, i.e., for k fixed, which
structure of quasi-symmetry of order k and marginal symmetry of order k is
lacking.

We point out that for a T -variate normal distribution, if the variances of
X1, . . . , XT are the same and the correlation coefficients of Xi and Xj for all
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i < j are the same, then the density functions is quasi-symmetric of order 1,
i.e., QT

1 (as seen in Example 1); however, the converse always does not hold.
Indeed, the normal density function with covariance matrix Σ = D − ππ′

(in Example 2) is always QT
1 even when the variances of X1, . . . , XT are not

the same and the correlation coefficients of Xi and Xj are not the same for
1 ≤ i < j ≤ T .

Finally we note that it is difficult to illustrate the decomposition of symme-
try for the elliptical distribution instead of the normal distribution in Example
of Section 4 because the {αi(xi)} and {αij(xi, xj)} are expressed as the ratio
of density functions.
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