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Abstract. For multi-way contingency tables of same classifications with or-
dered categories, this paper proposes two generalized marginal cumulative logis-
tic models. Those indicate that the difference between two marginal cumulative
logits, or two conditional marginal cumulative logits on condition that all val-
ues of the variables are not identical, is a polynomial function of the category
value. This paper also gives a theorem that the marginal homogeneity model
holds if and only if both the proposed model and moment equality model hold.
An example is given.
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§1. Introduction

Consider a multi-way rT contingency table of same classifications having or-
dered categories. Let Xt denote the t-th random variable (t = 1, . . . , T ), and
let Pr(X1 = i1, . . . , XT = iT ) = pi1···iT (it = 1, . . . , r). The marginal homo-
geneity (MH) model is defined by

p
(1)
i = · · · = p

(T )
i (i = 1, . . . , r),

where

p
(t)
i = Pr(Xt = i);

see e.g., Stuart (1955), Bishop, Fienberg and Holland (1975, p.303) and Agresti
(2002, p.440). The MH model also may be expressed as

p
c(1)
i = · · · = p

c(T )
i (i = 1, . . . , r),
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where

p
c(t)
i = Pr(Xt = i|(X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , r).

Let L
(t)
i denote the marginal cumulative logit of Xt (i = 1, . . . , r − 1; t =

1, . . . , T ). Thus

L
(t)
i = logit

(
F

(t)
i

)
= log

(
F

(t)
i

1− F
(t)
i

)
,

where

F
(t)
i =

i∑
k=1

p
(t)
k [= Pr(Xt ≤ i)].

Agresti (2002, p.442) considered the marginal cumulative logistic (L) model
which indicates that the difference between two marginal cumulative logits is
constant. Define the conditional marginal cumulative logits by

L
c(t)
i = logit

(
F

c(t)
i

)
(i = 1, . . . , r − 1; t = 1, . . . , T ),

where

F
c(t)
i =

i∑
k=1

p
c(t)
k [= Pr(Xt ≤ i|(X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , r)].

On condition that all values of the variables are not identical, Tahata, Katakura
and Tomizawa (2007) proposed the conditional marginal cumulative logistic

(CL) model by using {Lc(t)
i }.

Kurakami, Tahata and Tomizawa (2010) proposed the extended marginal
cumulative logistic (EL) model defined by

L
(t)
i = L

(1)
i −

(
δ
(t)
0 + iδ

(t)
1

)
(i = 1, . . . , r − 1; t = 2, . . . , T ).

Kurakami et al. (2010) also proposed the extended conditional marginal cu-
mulative logistic (ECL) model defined by

L
c(t)
i = L

c(1)
i −

(
δ
(t)∗
0 + iδ

(t)∗
1

)
(i = 1, . . . , r − 1; t = 2, . . . , T ).

These models indicate that the difference between two marginal cumulative
logits (or two conditional marginal cumulative logits) is a linear function of
the category value. If these models do not hold, we are interested in applying
more extended L or CL models which indicate that the difference between
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such two logits (or such two conditional logits) is a polynomial function of the
category value.

Tahata et al. (2007) gave the decomposition of the MH model using the L
(or CL) model, and Kurakami et al. (2010) gave the decomposition of it using
the EL (or ECL) model. Note that when T = 2, some other decompositions
of the MH model are considered by, e.g., Tomizawa (1993, 1998), Tahata and
Tomizawa (2008). We are also interested in giving decompositions of the MH
model using the proposed models.

For the multi-way tables, the present paper (i) proposes a model which is a
generalization of the L model, (ii) proposes a similar model on condition that
all values of the variables are not identical, and (iii) gives the decompositions
of the MH model using the proposed models.

§2. Models

For a given m (m = 1, . . . , r − 1), consider a new model defined by

(2.1) L
(t)
i = L

(1)
i −∆

(m,t)
i (i = 1, . . . , r − 1; t = 2, . . . , T ),

where

∆
(m,t)
i =

m−1∑
k=0

ikδ
(t)
k ,

and {δ(t)k } are unspecified. A special case of this model obtained by putting

δ
(t)
0 = · · · = δ

(t)
m−1 = 0 for every t is the MH model. Note that when m = 1,

this model indicates the L model, and when m = 2, this model indicates the
EL model. We shall refer to model (2.1) as the m-th generalized marginal
cumulative logistic (L(m)) model. Note that when m = r − 1, the L(r − 1)
model is saturated model, i.e., no restriction is imposed.

This model indicates that the odds that the value ofX1 is i or below, instead

of i+ 1 or above, is exp(∆
(m,t)
i ) times higher than the odds that the value of

Xt is i or below, instead of i+1 or above (i = 1, . . . , r−1; t = 2, . . . , T ). Under

the L(m) model, ∆
(m,t)
i > 0 is equivalent to F

(1)
i > F

(t)
i (i = 1, . . . , r − 1; t =

2, . . . , T ). Therefore, the parameters {∆(m,t)
i } would be useful for making

inference the relationship between the {F (1)
i } and {F (t)

i } (t = 2, . . . , T ).

Let L
(1)
i = θi (i = 1, . . . , r − 1). Using the logistic functions, the L(m)

model may be expressed as

F
(1)
i =

exp(θi)

1 + exp(θi)
,
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and

F
(t)
i =

exp
(
θi −∆

(m,t)
i

)
1 + exp

(
θi −∆

(m,t)
i

) (i = 1, . . . , r − 1; t = 2, . . . , T ).

Next, using conditional marginal cumulative logits, for a given m (m =
1, . . . , r − 1), consider a model defined by

(2.2) L
c(t)
i = L

c(1)
i −∆

(m,t)∗
i (i = 1, . . . , r − 1; t = 2, . . . , T ),

where

∆
(m,t)∗
i =

m−1∑
k=0

ikδ
(t)∗
k ,

and {δ(t)∗k } are unspecified. A special case of this model obtained by putting

δ
(t)∗
0 = · · · = δ

(t)∗
m−1 = 0 for every t is the MH model. Note that when m = 1,

this model indicates the CL model, and when m = 2, this model indicates the
ECL model. We shall refer to model (2.2) as the m-th generalized conditional
marginal cumulative logistic (CL(m)) model. Note that when m = r − 1, the
CL(r−1) model is saturated model. The CL(m) model has similar properties
to the L(m) model in the sense that the parameters in the two models have sim-
ilar interpretation, on condition that (X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , r.

§3. Decompositions of marginal homogeneity model

For given k-th moments (k = 1, . . . , r − 1), consider a model defined by

(3.1) E(Xk
1 ) = · · · = E(Xk

T ),

where

E(Xk
t ) =

r∑
i=1

ikp
(t)
i (t = 1, . . . , T ).

When k = 1, this model indicates the marginal mean equality (ME) model.
We shall refer to (3.1) as the k-th marginal moment equality I (M-I(k)) model.
Note that {M-I(k)}, k = 1, . . . , r−1, models hold if and only if the MH model
holds. Also note that the M-I(k) model does not depend on the main diagonal
probabilities {pii···i}.

We obtain the following theorem:

Theorem 1. For a given m (m = 1, . . . , r − 1), the MH model holds if and
only if the L(m) and {M-I(k)}, k = 1, . . . ,m, models hold.
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Proof. For a given m, if the MH model holds, the L(m) and {M-I(k)}, k =
1, . . . ,m, models hold. Assuming that the L(m) and {M-I(k)}, k = 1, . . . ,m,
models hold, then we shall show that the MH model holds.

We shall consider the relationship between X1 and X2. The L(m) model
may be expressed as

G
(1)
i = Θ

(m)
i G

(2)
i (i = 1, . . . , r − 1),

where

G
(1)
i = F

(1)
i

(
1− F

(2)
i

)
,

G
(2)
i =

(
1− F

(1)
i

)
F

(2)
i ,

Θ
(m)
i =

m−1∏
k=0

αik

k ,

αk = exp
(
δ
(2)
k

)
.

Let

Hs(i) =
G

(s)
i

r−1∑
l=1

(
G

(1)
l +G

(2)
l

) (s = 1, 2; i = 1, . . . , r − 1).

Note that
∑r−1

i=1 (H1(i)+H2(i)) = 1. The L(m) model may be further expressed
as

H1(i) = Θ
(m)
i H2(i) (i = 1, . . . , r − 1);

namely,

H1(i) = Θ
(m)
i γ1(i) and H2(i) = γ2(i) (i = 1, . . . , r − 1),

with γ1(i) = γ2(i). Let {p∗i1···iT } denote the cell probabilities which satisfy the
L(m) and {M-I(k)}, k = 1, . . . ,m, models, and let H∗

s(i) be Hs(i) with {pi1···iT }
replaced by {p∗i1···iT } (s = 1, 2). Since the L(m) model holds, we see

logH∗
s(i) =

(
m−1∑
k=0

ik logαk

)
λs + log γs(i) (s = 1, 2; i = 1, . . . , r − 1),

where λ1 = 1 and λ2 = 0. Let πs(i) = c−1γs(i) (s = 1, 2; i = 1, . . . , r − 1) with

c =

r−1∑
l=1

(γ1(l) + γ2(l)).
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Note that
∑r−1

i=1 (π1(i) + π2(i)) = 1 with 0 < πs(i) < 1 (s = 1, 2). Then the
L(m) model is expressed as

(3.2) log

(
H∗

s(i)

πs(i)

)
=

(
m−1∑
k=0

ik logαk

)
λs + log c (s = 1, 2; i = 1, . . . , r − 1).

For k = 1, . . . ,m,

E
(
Xk

2

)
− E

(
Xk

1

)
=

r−1∑
i=1

{
(i+ 1)k − ik

}(
F

(1)
i − F

(2)
i

)
=

r−1∑
i=1

{
(i+ 1)k − ik

}(
G

(1)
i −G

(2)
i

)
.

Since {p∗i1···iT } satisfy the {M-I(k)} models, we have

(3.3) ν
(u)∗
1 = ν

(u)∗
2 (u = 0, 1, . . . ,m− 1),

where

ν(u)∗s =
r−1∑
i=1

iuH∗
s(i) (s = 1, 2).

We denote ν
(u)∗
1 (= ν

(u)∗
2 ) by ν(u).

Consider arbitrary cell probabilities {pi1···iT } that satisfy

(3.4) ν
(u)
1 = ν

(u)
2 = ν(u) (u = 0, 1, . . . ,m− 1),

where

ν(u)s =

r−1∑
i=1

iuHs(i) (s = 1, 2).

From (3.2), (3.3) and (3.4), we have

(3.5)
2∑

s=1

r−1∑
i=1

(
Hs(i) −H∗

s(i)

)
log

(
H∗

s(i)

πs(i)

)
= 0.

Let

K (H,π) =
2∑

s=1

r−1∑
i=1

Hs(i) log

(
Hs(i)

πs(i)

)
,

and

K (H∗, π) =
2∑

s=1

r−1∑
i=1

H∗
s(i) log

(
H∗

s(i)

πs(i)

)
.
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Note that K(·, ·) is the Kullback-Leibler information. From (3.5), we obtain

K (H,π) = K (H∗, π) +K (H,H∗) ,

where

K (H,H∗) =

2∑
s=1

r−1∑
i=1

Hs(i) log

(
Hs(i)

H∗
s(i)

)
.

Since π is fixed, we see

min
H

K (H,π) = K (H∗, π) ,

and then {H∗
s(i)} uniquely minimize K (H,π) (Darroch and Ratcliff, 1972).

Thus we obtain

(3.6) Hs(i) = H∗
s(i) (s = 1, 2; i = 1, . . . , r − 1).

Let {p∗∗i1i2i3···iT = p∗i2i1i3···iT }, and let H∗∗
1(i) = H∗

2(i) and H∗∗
2(i) = H∗

1(i) (i =

1, . . . , r − 1). Note that {π1(i) = π2(i)}. We see

min
H

K (H,π) = K (H∗∗, π) ,

where

K (H∗∗, π) =

2∑
s=1

r−1∑
i=1

H∗∗
s(i) log

(
H∗∗

s(i)

πs(i)

)
,

and then {H∗∗
s(i)} uniquely minimize K (H,π). Therefore, we obtain

(3.7) H1(i) = H∗∗
1(i) = H∗

2(i) (i = 1, . . . , r − 1),

and
H2(i) = H∗∗

2(i) = H∗
1(i) (i = 1, . . . , r − 1).

Let G
(s)∗
i and F

(s)∗
i be G

(s)
i and F

(s)
i with {pi1···iT } replaced by {p∗i1···iT } (s =

1, 2), respectively. From (3.6) and (3.7), we see

H∗
1(i) = H∗

2(i) (i = 1, . . . , r − 1);

that is
G

(1)∗
i = G

(2)∗
i (i = 1, . . . , r − 1),

and we obtain
F

(1)∗
i = F

(2)∗
i (i = 1, . . . , r − 1).

In a similar way, considering the relationship betweenX1 andXt (t = 3, . . . , T ),

we obtain F
(1)∗
i = F

(t)∗
i (i = 1, . . . , r − 1). Thus the MH model holds.
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Note that a special case of this theorem with m = 1 is given by Tahata et
al. (2007).

We also obtain the following theorem:

Theorem 2. For a given m (m = 1, . . . , r − 1), the MH model holds if and
only if the CL(m) and {M-I(k)}, k = 1, . . . ,m, models hold.

The proof can be obtained in a similar manner to the proof of Theorem 1

by replacing {F (1)
i } and {F (2)

i } with {F c(1)
i } and {F c(2)

i }, respectively. Note
that a special case of this theorem with m = 1 is given by Tahata et al. (2007).

For a given integer k (k = 2, . . . , r − 1), consider a model defined by

(3.8) µ
(1)
k = · · · = µ

(T )
k ,

where µ
(t)
k = E((Xt − E(Xt))

k) (t = 1, . . . , T ). When k = 2, this model
indicates the marginal variance equality model. We shall refer to (3.8) as the
k-th marginal moment equality II (M-II(k)) model.

On condition that all values of the variables are not identical, for a given
k (k = 2, . . . , r − 1), consider the k-th conditional marginal moment equality
II (CM-II(k)) model defined by

µ
c(1)
k = · · · = µ

c(T )
k ,

where

µ
c(t)
k = E[(Xt − µ

c(t)
1 )k|(X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , r],

with
µ
c(t)
1 = E[(Xt|(X1, . . . , XT ) ̸= (s, . . . , s), s = 1, . . . , r].

We obtain the following remarks:

Remark 1. For a given m (m = 2, . . . , r−1), the MH model holds if and only
if the L(m), ME and {M-II(k)}, k = 2, . . . ,m, models hold.

Remark 2. For a given m (m = 2, . . . , r−1), the MH model holds if and only
if the CL(m), ME and {M-II(k)}, k = 2, . . . ,m, models hold.

Remark 3. For a given m (m = 2, . . . , r−1), the MH model holds if and only
if the CL(m), ME and {CM-II(k)}, k = 2, . . . ,m, models hold.

Because if both the ME and {M-II(k)} models hold, the {M-I(k)} models
hold, the proof of Remarks 1 and 2 can be obtained. Also, because if both
the ME and {CM-II(k)} models hold, the {M-I(k)} models hold, the proof of
Remark 3 can be obtained. Note that special cases of Remarks 1, 2 and 3 with
m = 2 are given by Kurakami et al. (2010).
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§4. Goodness-of-fit test

Let ni1···iT denote the observed frequency in the (i1, . . . , iT ) cell of the rT

table. Assume that a multinomial distribution is applied to the rT table. The
maximum likelihood estimates (MLEs) of expected frequencies under each
model could be obtained by using the Newton-Raphson method in the log-
likelihood equation. Each model can be tested for goodness-of-fit by, e.g.,
the likelihood ratio chi-squared statistic (denoted by G2) with corresponding
degrees of freedom (df). The test statistic G2 for model M is given by

G2(M) = 2

r∑
i1=1

· · ·
r∑

iT=1

ni1···iT log

(
ni1···iT
m̂i1···iT

)
,

where m̂i1···iT is the MLE of expected frequency mi1···iT under model M . The
numbers of df for each model are given in Table 1. For Theorems 1 and 2,
we note that the number of df for the MH model is equal to the sum of those
for the L(m) (CL(m)) and {M-I(k)}, k = 1, . . . ,m, models. When we assume
that a Poisson distribution is applied to the rT table, same results can be
obtained.

§5. Example

Consider the data in Table 2, taken directly from Clogg (1982), that is a three-
way cross-classification of the indicators of satisfaction with life from the 1977
General Social Survey. The variables X1, X2 and X3 mean L: satisfaction
with hobbies, R: satisfaction with family, and C: satisfaction with residence,
respectively. Each category means 1:“a fair amount, some, a little, or none”;
2:“quite a bit”; 3:“a great deal”; 4:“a very great deal”, respectively. Table 3
gives the likelihood ratio chi-squared value for each model. From Table 3, each
of the L(2) and CL(2) models fits these data well, and the others fit poorly.

Consider the hypothesis that the CL(1) model holds under the assumption

that the CL(2) model holds; namely, the hypothesis that δ
(2)∗
1 = δ

(3)∗
1 = 0

under the assumption. Since G2(CL(1)) − G2(CL(2)) = 6.90 with two df,

we reject the hypothesis at the 0.05 level. The MLEs of δ
(2)∗
0 , δ

(2)∗
1 , δ

(3)∗
0 and

δ
(3)∗
1 under the CL(2) model are δ̂

(2)∗
0 = 1.23, δ̂

(2)∗
1 = −0.08, δ̂

(3)∗
0 = −0.62

and δ̂
(3)∗
1 = 0.08, respectively. The values of exp(δ̂

(2)∗
0 + iδ̂

(2)∗
1 ) for i = 1, 2, 3

are 3.16, 2.91 and 2.68, respectively. Also, the values of exp(δ̂
(3)∗
0 + iδ̂

(3)∗
1 ) for

i = 1, 2, 3 are 0.59, 0.64 and 0.69, respectively. Thus we state that, for example,
the odds that an observation will fall in“category 1” instead of in “not category
1”, on condition that the satisfaction grades are not equal, is estimated to be
3.16 times higher in satisfaction with hobby than in satisfaction with family.
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Since exp(δ̂
(2)∗
0 + iδ̂

(2)∗
1 ) > 1 and exp(δ̂

(3)∗
0 + iδ̂

(3)∗
1 ) < 1, when the satisfaction

grades are not equal, we can estimate that satisfaction with family tends to
be better than satisfaction with hobbies, and satisfaction with hobbies tends
to be better than satisfaction with residence. In addition, from Remark 3, we
can see that the poor fit of the MH model is caused by the influence of the
poor fit of the ME and CM-II(2) models rather than the CL(2) model.

The MLEs of the δ
(2)
0 , δ

(2)
1 , δ

(3)
0 and δ

(3)
1 under the L(2) model are δ̂

(2)
0 = 0.89,

δ
(2)
1 = −0.03, δ̂

(3)
0 = −0.52 and δ̂

(3)
1 = 0.08, respectively. Under the L(2) model,

we can obtain similar explanations to that under the CL(2) model, although
the detail is omitted.

§6. Concluding Remarks

We have proposed the generalizations of the L and CL models. The proposed
models are useful for seeing, in more details, the structure of the difference
between two marginal cumulative logits (or the difference between two condi-
tional marginal cumulative logits).

When the MH model fits the data poorly, Theorems and Remarks would
be useful for seeing the reason for the poor fit of the MH model.

For Example in Section 5, the readers may be interested in (1) whether
or not the probability distributions for grades of the satisfaction with hobbies
(X1), of the satisfaction with family (X2), and of the satisfaction with res-
idence (X3) are homogeneous, or how those are not homogeneous, and also
(2) whether or not the conditional probability distributions are homogeneous
on condition that all grades of X1, X2 and X3 are not equal, or how those
are not homogeneous. For analyzing (1), the L(m) model (including the main
diagonal probabilities {pii···i}) and Theorem 1 are useful, and for analyzing
(2), the CL(m) model (not including {pii···i}) and Theorem 2 are useful.
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Table 1. Numbers of degrees of freedom for models applied to the rT table.

Models df

MH (T − 1)(r − 1)
L(m) (T − 1)(r − 1−m)
CL(m) (T − 1)(r − 1−m)
M-I(k) T − 1
M-II(k) T − 1
CM-II(k) T − 1

Table 2. Three-way cross-classification of the indicators of satisfaction with
life from the 1977 General Social Survey; taken directly from Clogg (1982).
The upper and lower parenthesized values are the MLEs of the expected fre-
quencies under the L(2) and CL(2) models, respectively.

L R C = 1 C = 2 C = 3 C = 4

1 1 76 14 15 4
(75.50) (14.33) (14.53) (4.05)
(76.00) (14.81) (14.35) (4.19)

1 2 32 17 7 3
(34.51) (18.95) (7.35) (3.30)
(32.54) (18.26) (6.79) (3.19)

1 3 64 23 28 15
(62.63) (23.19) (26.74) (14.94)
(64.14) (24.33) (26.77) (15.70)

1 4 41 11 27 16
(41.64) (11.52) (26.73) (16.55)
(41.31) (11.70) (25.95) (16.83)

2 1 15 2 7 4
(13.78) (1.89) (6.28) (3.74)
(14.05) (1.97) (6.27) (3.90)

2 2 27 20 9 5
(26.75) (20.42) (8.70) (5.04)
(25.62) (20.00) (8.17) (4.94)

2 3 57 31 24 15
(51.63) (28.86) (21.25) (13.81)
(53.37) (30.52) (21.50) (14.62)

2 4 27 9 22 16
(25.31) (8.68) (20.14) (15.26)
(25.40) (8.91) (19.80) (15.67)
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Table 2 (continued).

L R C = 1 C = 2 C = 3 C = 4

3 1 13 6 13 5
(13.54) (6.45) (13.20) (5.31)
(13.55) (6.62) (12.91) (5.45)

3 2 12 13 10 6
(13.63) (15.29) (11.04) (6.96)
(12.70) (14.56) (10.07) (6.64)

3 3 46 32 75 20
(47.18) (33.86) (74.98) (20.90)
(47.94) (35.27) (75.00) (21.80)

3 4 54 26 58 55
(57.58) (28.64) (60.22) (59.80)
(56.59) (28.82) (57.86) (60.29)

4 1 7 6 7 6
(6.70) (5.91) (6.54) (5.84)
(6.74) (6.09) (6.44) (6.02)

4 2 7 2 3 6
(7.25) (2.14) (3.03) (6.33)
(6.83) (2.06) (2.80) (6.11)

4 3 12 11 31 15
(11.31) (10.67) (28.55) (14.39)
(11.55) (11.15) (28.53) (15.05)

4 4 52 36 80 101
(50.80) (36.23) (76.27) (100.46)
(50.32) (36.69) (73.98) (101.00)
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Table 3. Likelihood ratio chi-squared values G2 for each model applied to
the data in Table 2.

Models df G2

MH 6 398.24 ∗

L(1) 4 10.44 ∗

L(2) 2 4.89
CL(1) 4 11.26 ∗

CL(2) 2 4.36
M-I(1) 2 383.04 ∗

M-I(2) 2 384.41 ∗

M-II(2) 2 42.14 ∗

CM-II(2) 2 43.18 ∗

“∗” means significant at the 0.05 level.
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