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81. Introduction

In 1989 Matsumoto [7] introduced the notion of Lorentzian para-Sasakian
manifolds. Then Mihai and Rosca [10] defined the same notion independently
and they obtained several results in this manifold. LP-Sasakian manifolds
have also been studied by Matsumoto and Mihai [8], Matsumoto, Mihai and
Rosca [9], De and Shaikh [3], Ozgur [12] and many others.

The notion of the quasi-conformal curvature tensor was introduced by Yano
and Sawaki [16]. According to them a quasi-conformal curvature tensor is
defined by

(1.1)  C(X,Y)Z = aR(X,Y)Z
FH[S(Y, Z)X — S(X,2)Y
Z)QX - 9(X, Z)QY]

_T<al+%)MK@X—ﬁKZWL
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where a and b are non-zero constants, R is the curvature tensor, S is the Ricci
tensor, @ is the Ricci operator defined by S(X,Y) = g(QX,Y) and r is the
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scalar curvature of the Riemannian manifold (M™,g)(n > 3). If a = 1 and
b= —-1-, then (1.1) takes the form

(1.2) C(X,Y)Z = R(X,Y)Z

—ﬁ[sm 2)X — S(X, Z)Y

+9(Y, 2)QX — g(X, Z)QY]

+m[§(y7 2)X —g9(X,2)Y]
= C(X,Y)Z,

where C'is the conformal curvature tensor [15]. Thus the conformal curvature
tensor C' is a particular case of the tensor C. For this reason C is called the
quasi-conformal curvature tensor. A Riemannian manifold (M",g) (n > 3)
shall be called quasi-conformally flat if the quasi-conformal curvature tensor
C = 0. It is known [1] that the quasi-conformally flat Riemannian manifold is
either conformally flat if @ # 0 or, Einstein if a = 0 and b # 0. Since they give
no restrictions if @ = 0 and b = 0, it is essential for us to consider the case of
a#0orb#0.

In [5], De and Matsuyama studied quasi-conformally flat Riemannian mani-
folds satisfying a certain condition on the Ricci tensor. From Theorem 5 of [5],
it can be proved that a 4-dimensional quasiconformally flat semi-Riemannian
manifold is the Robertson-Walker space time. Robertson-Walker spacetime is
the warped product I x ¢ M*, where M™ is a space of constant curvature and
I is an open interval [11]. From (1.1), we obtain

(1.3) (VwO)(X,Y)Z = a(VwR)(X,Y)Z+b[(VwS)(Y,2)X

-(VwS)(X, Z2)Y
+9(Y, Z)(VwQ)(X) — 9(X, Z)(VwQ)(Y)]
_dr(nW) {n s 26} (Y, 2)X — g(X, Z2)Y],

where V denotes the Levi-Civita connection. If the condition
VR=0

holds on M™, then M™ is called locally symmetric. An L P-Sasakian manifold
(M™, g) is said to be locally ¢-symmetric if

(1.4) P*(VxR)(Y,Z)W) =0

for all vector fields X, Y, Z, W orthogonal to £&. This notion was introduced for
Sasakian manifolds by Takahashi [14]. Later in [2], Blair, Koufogiorgos and
Sharma studied locally ¢-symmetric contact metric manifolds.
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In (1.4), if X, Y, Z and W are not horizontal vectors then we call the man-
ifold globally ¢-symmetric.

In this paper, we study locally ¢-quasiconformally symmetric and glob-
ally ¢-quasiconformally symmetric L P-Sasakian manifolds. An L P-Sasakian
manifold is called locally ¢-quasiconformally symmetric if the condition

(1.5) ¢? ((vxé) (v, Z)W) ~0

holds on M", where X,Y,Z and W are horizontal vectors. If X,Y,Z and W
are arbitrary vectors then the manifold is called globally ¢-quasiconformally
symmetric.

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([13], [6]) if R(X,Y)- R =0, where R is the Riemannian curvature tensor and
R(X,Y) is considered as a derivation of the tensor algebra at each point of
the manifold for tangent vectors X,Y. If a Riemannian manifold satisfies
R(X)Y) - C = 0, then the manifold is said to be quasi-conformally semi-
symmetric manifold.

The paper is organized as follows.

After introduction in Section 2, we give a brief account of L P-Sasakian mani-
folds. In the next two sections, we prove that in a complete simply connected
L P-Sasakian manifold if M is quasi-conformally flat, then M is isometric to
the Lorentz sphere ST (1), and if M is a quasi-conformally semi-symmetric and
a+(n—2)b # 0, then M is isometric to the Lorentz sphere S7(1). In Section 5,
we study globally ¢-quasiconformally symmetric L P-Sasakian manifolds. We
prove that a globally ¢-quasiconformally symmetric L P-Sasakian manifold is
globally ¢-symmetric if a # 0. In the next Section, we study 3-dimensional
locally ¢-quasiconformally symmetric L P-Sasakian manifolds. We prove that
a 3-dimensional L P-Sasakian manifold is locally ¢-quasiconformally symmet-
ric if and only if the scalar curvature r is constant if a + b # 0 and r # 6.
Finally, we construct an example of a 3-dimensional quasi-conformally flat
L P-Sasakian manifold.

§2. Preliminaries

Let M™ be an n-dimensional differentiable manifold endowed with a (1,1)
tensor field ¢, a contravariant vector field &, a covariant vector field n and
a Lorentzian metric g of type (0,2) such that for each point p eM, the ten-
sor gp: Tp,M x T,M — R is a non-degenerate inner product of signature
(—,+,4+,...,+), where T,M denotes the tangent space of M at p and R is
the real number space which satisfies

(2.1) ¢*(X) = X +n(X)E, n(€) = —1,
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(2.2) 9(X, &) = n(X), 9(¢X,0Y) = g(X,Y) + n(X)n(Y)

for all vector fields X,Y. Then such a structure (¢,&,7,g) is termed as
Lorentzian almost paracontact structure and the manifold M"™ with the struc-
ture (¢,€,n,g) is called Lorentzian almost paracontact manifold [7]. In the
Lorentzian almost paracontact manifold M™, the following relations hold [7] :

(2.3) ¢¢ =0, n(¢X) =0,

(2.4) QX,Y) =Q(Y, X),
where Q(X,Y) = g(X, ¢Y).

Let {e;} be an orthonormal basis such that e; = . Then the Ricci tensor S
and the scalar curvature r are defined by

S(X,Y) = ag(R(es, X)Y, ;)
i=1

and
n
r= ZeiS(ei,ei),
i=1
where we put €; = g(e;, ¢;), that is, e = —1, e =--- = ¢, = 1.

A Lorentzian almost paracontact manifold M™ equipped with the structure
(¢,&,1,9) is called Lorentzian paracontact manifold if

QX.Y) = L{(Vxm)Y + (Vym)X),

A Lorentzian almost paracontact manifold M™ equipped with the structure
(¢,€,1m,9) is called an LP-Sasakian manifold [7] if

(Vx®)Y = g(¢X, 9Y)é +n(Y)4°X.

In an LP-Sasakian manifold the 1-form 7 is closed. Also in [7], it is proved
that if an n-dimensional Lorentzian manifold (M", g) admits a timelike unit
vector field £ such that the 1-form 7 associated to & is closed and satisfies

(VxVyn)Z = g(X,Y)n(Z) + g(X, Z)n(Y) + 2n(X)n(Y)n(Z),

then M™ admits an LP-Sasakian structure. Also since the 1-form 7 is closed
in an L P-Sasakian manifold, we have ([7], [8])

(2.5) (Vxn)Y = QX,Y),
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(2.7) Vxé =X

for any vector field X and Y.
Further, on such an LP-Sasakian manifold M™ (¢, &, 1, g), the following rela-
tions hold [7]:

(2.8) n(R(X,Y)Z) = [g(Y, Z)n(X) — g(X, Z)n(Y)],
(2.9) S(X,€) = (n—n(X),

(2.10) R(X,Y)¢ = [n(Y)X —n(X)Y],

(2.11) R(& X)Y = g(X,Y)E —n(Y)X,

(2.12) (Vxo)(Y) = [g(X,Y)E 4 2n(X)n(Y )€ 4+ n(Y) X]

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold.

83. Quasi-conformally flat [ P-Sasakian manifold

When the quasi-conformal curvature tensor vanishes identically on the Lorentz-
ian manifold, then we find from (1.1)

(3.1)  aR(X,Y,Z,W) = b{S(X,Z2)g(Y,W)—=S(Y,Z)g(X,W)
+S(Y,W)g(X,Z) — S(X,W)g(Y, Z)}

+r< ¢ +2b>
n\n—1

{9(Y, 2)g(X, W) — g(X, Z)g(Y, W)},

which implies that
(3.2) {a+ (n—2)b} {S(Y, Z) - %g(Y, Z)} ~0.

Thus we obtain a + (n —2)b=0o0r S(Y,Z) = ~g(Y,Z). If a+ (n — 2)b = 0,
then the conformal curvature tensor vanishes identically. It is known that a
conformally flat L P-Sasakian manifold is of constant curvature [4]. When M
is an Einstein LP-Sasakian manifold, we get r = n(n — 1). It is easy to see
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form (3.1) that M is of constant curvature 1. Conversely, if M is of contant
curvature, then the quasi-conformal curvature tensor vanishes. Hence we have

Theorem 3.1. Let M™ (n > 3) be an LP-Sasakian manifold. Then M is
quasi-conformally flat if and only if it is of constant curvature.

From [11], we have
Theorem 3.2. Let M™ (n > 3) be a complete simply connected LP-Sasakian

manifold. If M is quasi-conformally flat, then M is isometric to the Lorentz
sphere ST (1).

§4. LP-Sasakian manifolds satisfying R({,Y) - C=0

In this section we consider an LP-Sasakian manifold M"™ (n > 3) satisfying
the condition

(4.1) (R(&,Y) - C) (U, V)W =0,
which yields from (2.11) that
g(CUVIW.Y)E = n(CUVI)W)Y = g(Y,U)CE V)W
+n(U)C(Y, V)W — g(Y,V)C(U, )W +n(V)C(U, Y)W
—g(Y,W)C(U, V)¢ +n(W)C(U, V)Y =

Operating 7 to the above equation and using of (1.1), (2.8) ~ (2.11) we
obtain

(4.2) g(CU,VIW,Y) + bg(U, Y){S(V,W) + (n — 1)n(V)n(W)}
—bg(Y, V){S(U,W) + (n — L)n(U)n(W)}
+o{S(V.Y)n(U) — SY,U)n(V)n(W)

o ()

{g(V,W)g(Y,U) — g(U,W)g (
Putting Y = U = ¢; in the above equation and taking summation over 1,
we get
(4.3) (a—b)S(V,W) —{(n—1Da+ (n—1)*—br}g(V,W)
+b{r —n(n = 1)jn(V)n(W) = 0,
moreover, we find {a + (n —2)b}{r —n(n—1)} = 0.

We can consider the two cases. At first, in the case of r = n(n — 1) , we have
form (4.3)

(@ =0{S(V,W) = (n—1)g(V,W)} =
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If @ # b, then S(V,W) = (n — 1)g(V,W). Therefore it is clear form (4.2)
that the quasi-conformal curvature tensor vanishes, namely, M is of constant
curvature 1 from Theorem 3.1. Also, if a = b(3 0), then we get form (1.1)
and (4.2)

g(RU,VIW,Y) + {25V, W) —ng(V, W) + (n — 1)n(V)n(W)}g(U,Y)
—{25(U, W) = ng(U, W) + (n— 1)n(U)n(W)}g(V,Y)
+Hg(V, W) =n(V)n(W)}SU,Y) = {g(U,W) = n(U)n(W)}S(V,Y) = 0.
If we put W= ¢, then we have n(V)S(U,Y) —n(U)S(V,Y) = 0. Furthermore,
putting U= ¢, we get S(V,Y) = —(n—1)n(V)n(Y), that is r = n — 1. This is
the contradiction. Thus a # b holds.
Secondly, in the case of a+ (n—2)b = 0, equation (4.2) is rewritten as follows:

(4.4) (n—2)g(R(U,V)WY)
—{28(V,W) —g(V,IW)+ (n—1
+{25(U,W) —g(U W)+ (n—1
—{g(V,W) —n(V)n(W)}S(U,Y)
Hg(U,W) —=nU)n(W)}S(V,Y) =

) =

n(V)n(W)}g(U,Y)

)
InU)n(W)}g(V,Y)

We put U = W = £. Then we find S(V,Y
yields form (4.2) that

—(n — 1)n(V)n(Y'), which

(45)  ROVIW = e+ 3){g(V. W)U — (U, W)V)

+i(c = D{n(V)n(W)U —n(U)n(W)V

+g(V,W)n(U)¢ — g(U, W)n(V)E},

where ¢ = 37?:22
Theorem 4.1. Let M"(n > 3) be an LP-Sasakian manifold satisfying R(§,Y)-
C=0foranyY.

(1) Ifa+ (n—2)b # 0, then M is of constant curvature 1.

(2) If a4+ (n—2)b =0, then M is a space satisfying (4.5).

Corollary 4.1. Let M™(n > 3) be an LP-Sasakian manifold. If M is a
quasi-conformally semi-symmetric, then

(1) when a+ (n—2)b# 0, then M is of constant curvature 1.

(2) when a+ (n—2)b=0, then M is a space satisfying (4.5).

From [11], we have
Theorem 4.2. Let M™(n > 3) be a complete simply connected LP-Sasakian
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manifold satisfying R(§,Y) - C=0 forany Y. If a+ (n —2)b # 0, then M is
isometric to the Lorentz sphere S}(1).

Corollary 4.2. Let M™(n > 3) be a complete simply connected LP-Sasakian
manifold. If M is a quasi-conformally semi-symmetric and a + (n — 2)b # 0,
then M is isometric to the Lorentz sphere ST (1).

85. Globally ¢-quasiconformally symmetric L P-Sasakian
manifolds

Let us suppose that M is a globally ¢-quasiconformally symmetric L P-Sasakian
manifold. Then by definition

¢ ((vwé) (X, Y)Z) —0.
Using (2.1) we have
(vwé) (X,Y)Z +7 ((vwé) (X, Y)Z) £=0.
From (1.2) it follows from (2.7) and (2.9) that

(5.1) alg((Va B)(X,V)Z,U) 4 n(0)n(Tw R)(X, Y)2))
P9, ) + (X)n(0)} (T S)(Y: 2)
—{g(Y,U) +n(Y)n(U) }(VwS)(X, Z)
+9(Y, 2){(VwS)(X,0) ~ n(U)S(X, 6W) + (n — n(U)g(X, 6W)}
0, Z){(TwS)(Y,U) — n(0)S, W) + (1~ 1(U)a(Y, oW)]]
T (20 o3, 2)(0 X, 0) + 00}
~0(X, 2){g(¥0) + (¥ n(U)}] = 0.

Putting Z = &, in (5.1) and using of (2.7), (2.9) and (2.10), we obtain

n

(5:2) a{g(Y,oW)g(X,U) — g(X, oW)g(Y,U) — g(R(X,Y)oW,U)}
+o[n(Y)(VwS)(X,U) = n(X)(VwS) (Y, U)
—g(X, UN{S(Y, W) — (n — 1)g(Y, oW)}
+9(YV, UNS(X, oW) — (n — 1)g(X, oW)}]

dr(W) (nil 4 2b> {n(Y)g(X,U)

-n(X)g(Y,U)} =0.

n
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Moreover, putting X = U = ¢; in (5.2) and taking summation over i, we
obtain

{a+ (n—2)b} {S(Y, oW) — (n—1)g(Y, W) +

Thus if a 4+ (n — 2)b # 0, then we find

S(Y,pW) = (n—1)g(Y, W) — @n(}/). Setting Y = &, we have dr(W) = 0,
that is, the scalar curvature is constant. It is easy to see form (2.9) that
S(Y,W) = (n—1)g(Y,W), that is, M is an Einstein. Since (5.2), we find that
M is of constant curvature 1. Next, when a + (n — 2)b = 0, it is clear from
(5.2) that

(n = 2){g(R(X, Y)W, U) — g(Y, oW )g(X,U) + g(X, oW )g(Y,U)}
+n(Y)(VwS)(X,U) = g(X,UN{S(Y, ¢W) — (n — 1)g(Y, oW)}
—n(X)(VwS)(Y,U) + g(YV,U{S(X,oW) — (n — 1)g(X, W)}
S ) (X, 0) — n(X)a(v0)) =0,

Setting Y = £ in the above equation, we get

(VwS)(X,U) = n(X){SU,¢W) — (n—1)g(U,oW)}
+nUNS(X, W) — (n — 1)g(X, W)}

+IW 1o, 1) + ().

Therefore, we obtain
1
+nf{5(ya Z)—(n—1)g(Y, 2)}¢*X

1
— 50X, Z) = (n - 1)g(X, Z)}¢?Y.
Hence we have

Theorem 5.1. Let M™ (n > 3) be a globally ¢-quasiconformally symmetric
LP-Sasakian manifold.

(1) If a+ (n—2)b# 0, then M is of constant curvature 1.

(2) If a+ (n—2)b =0, then M is a space satisfying (5.3).

From [11], we have
Theorem 5.2. Let M"™(n > 3) be a complete simply connected LP-Sasakian
manifold. If M is globally ¢-quasiconformally symmetric and a+ (n—2)b # 0,



42 K. DE AND U. C. DE

then M is isometric to the Lorentz sphere ST(1).

Moreover, by virtue of (5.1) and Theorem 5.1, we find
al(Vw R)(X,Y)Z + n((Vw R)(X,Y)Z)¢] = 0,

which implies that ¢?((Viw R)(X,Y)Z) = 0 if a # 0. Hence we can state:

Theorem 5.3. A globally ¢-quasiconformally symmetric LP-Sasakian mani-
fold is globally ¢-symmetric if a # 0.

86. 3-dimensional locally ¢-quasiconformally symmetric
L P-Sasakian manifolds

Let us consider a 3-dimensional L P-Sasakian manifold. It is known that the
conformal curvature tensor vanishes identically in the 3-dimensional Rieman-
nian manifold. Thus we find

(6.1) R(X,Y)Z = g(Y,2)QX — g(X,Z)QY + S(Y,Z)X — S(X,Z)Y
r
where @ is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.
Putting Z = ¢ in (6.1) and using (2.10) we have
r
(6.2) n(Y)QX —n(X)QY = (5~ 1) (¥)X - n(X)Y].

Putting Y = £ in (6.2) and using (2.1) and (2.9), we get

(63) QX = 5[(r = 29X + (r — O)n(X)¢],
that is,
(6.4) S(X,Y) = 5lr = 2g(X,Y) + (r — 6n(X)n(¥)].
Using (6.3) in (6.1), we get
r—4

05 RXZ = (51) 002X (X, 2)Y)

2

+ (750 v 20
—9(X, Z2)n(Y)§ +n(Y)n(Z2)X —n(X)n(Z2)Y].
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Putting (6.3), (6.4) and (6.5) into (1.1) we have
66) CX,Y)Z = (a+Db)(r—6) [%{Q(Y, 2)X — g(X, Z)Y)

+ 549V, 20 - 9(X, Zn(¥ e
+n(Y)n(Z)X —n(X)n(Z)Y}.

Thus we have
Lemma 6.1. Let M be a 3-dimensional LP-Sasakian manifold. If a +b =0
or r = 6, then the quasi-conformal curvature tensor vanishes identically.
Next, we assume that a+b # 0 or  # 6. Taking the covariant differentiation
of (6.6), we get
~ dr(W
Vwd)x 2 = TV ner 2)x - g(x, 27y
dr(W)
2

(a+b){g(Y, Z)n(X)¢
( ZM(Y)E+n(Y)n(2)X —n(X)n(Z)Y'}
= 6)(a+0)[{g(Y, Z2)g(X, oW)
—g(X 2)9(Y, oW)}¢
Ho(Y, Z)n(X) — g(X, Z)n(Y)}oW
+Hn(2)g(Y,oW) +n(Y)g(Z, oW)} X
—{n(2)g(X,oW) +n(X)g(Z,oW)}Y].
Operating ¢? to the above equation, then we find

AW )2) = Py byigy, 2)6°X — (X, 2)6Y)

TV 4t oy 2) {n(V) 62X — n(X) 82

2
450 6)(a+ B){g(Y, Z2)n(X) — g(X, Z)n(¥ ) }6W

+{n(2)g(Y,oW) + n(Y)g(Z, oW )} > X
—{n(2)g(X, W) + n(X)g(Z, W) }$°Y].

If the vector fields X, Y and Z are horizontal, then the above equation is
rewritten as follows:

_l’_

+

A0 (X, V)2) = T (0 1) g(v, 2)% — g(xX, 2)v),

Hence we conclude the following theorem:
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Theorem 6.1. A 3-dimensional LP-Sasakian manifold is locally ¢-quasicon-
formally symmetric if and only if the scalar curvature r is constant if a+b # 0
and r # 6.

87. Example

We consider the 3-dimensional manifold M = {(z,y, 2) € R}}, where (z,v, 2)
are standard coordinates of R3.
The vector fields

e—ez2 eq = €° £+2 e—2
YT 0y T or " oy)’ T 0z

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

9(81761) - 9(62762) = 179(63763) = _17
g(e1,e2) = g(e1,e3) = g(ez,e3) = 0.

Let 1 be the 1-form defined by 1n(Z) = g(Z, e3) for any vector field Zex(M).
Let ¢ be the (1,1) tensor field defined by

d(e1) = —e1, P(e2) = —ea, d(ez) = 0.

Then using the linearity of ¢ and g we have

77(63) =—1,
¢2Z =Z+ U(Z)BS»
9(9Z, W) = g(Z, W) + n(Z)n(W)
for any vector fields Z, W € x(M).
Then for e3 = £ , the structure (¢, &, 7, g) defines a Lorentzian paracontact
structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g and R be the curvature tensor of g. Then we have

le1,ea] =0, [e1,e3] = —e1
and
[e2, e3] = —ea.
Taking es = £ and using Koszul’s formula for the Lorentzian metric g, we

can easily calculate

Ve, 01 = —es, Ve, e2 =0, Ve, €3 = —eq,

Ve,e1 =0, Ve €9 = —e3, Ve,€3 = —€2,

Vese1 =0, Vese2 =0, Vese3 = 0.
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From the above it can be easily seen that M3(¢, £, 7, g) is an LP-Sasakian
manifold. With the help of the above results it can be easily verified that

R(e1,ez)e3 = 0, R(ez,e3)es = —ea, R(e1,es)e3 = —ey,
R(617 62)62 = 61, R(€2, 63)62 e —637 R(€17 63)62 — 07
R(617 62)61 = _62’ R(€27 €3>61 = 07 R(el7 63)61 = —63_

From the above expressions of the curvature tensor we obtain

S(er,e1) = g(R(e1,e2)ez,e1) — g(R(e1,e3)es, er)
= 2.

Similarly we have

and

S(eg,eg) = 2, 5(63,63) = -2

S(ei,ej) = 0(i # ).

Therefore,

r = S(e1,e1) + S(ez,e2) — S(es, e3) = 6.

Thus the 3-dimensional L P-Sasakian manifold is quasi-conformally flat. There-
fore Lemma 6.1. is verified.

Acknowledgement. The authors are thankful to the referee, for his/her
comments and valuable suggestions towards the improvement of this paper.
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