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§1. Introduction

In 1989 Matsumoto [7] introduced the notion of Lorentzian para-Sasakian
manifolds. Then Mihai and Rosca [10] defined the same notion independently
and they obtained several results in this manifold. LP -Sasakian manifolds
have also been studied by Matsumoto and Mihai [8], Matsumoto, Mihai and
Rosca [9], De and Shaikh [3], Ozgur [12] and many others.

The notion of the quasi-conformal curvature tensor was introduced by Yano
and Sawaki [16]. According to them a quasi-conformal curvature tensor is
defined by

C̃(X,Y )Z = aR(X,Y )Z(1.1)

+b[S(Y, Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ]

− r

n

(
a

n− 1
+ 2b

)
[g(Y, Z)X − g(X,Z)Y ],

where a and b are non-zero constants, R is the curvature tensor, S is the Ricci
tensor, Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ) and r is the
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scalar curvature of the Riemannian manifold (Mn, g)(n ≥ 3). If a = 1 and
b = − 1

n−2 , then (1.1) takes the form

C̃(X,Y )Z = R(X,Y )Z(1.2)

− 1

n− 2
[S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]

= C(X,Y )Z,

where C is the conformal curvature tensor [15]. Thus the conformal curvature
tensor C is a particular case of the tensor C̃. For this reason C̃ is called the
quasi-conformal curvature tensor. A Riemannian manifold (Mn, g) (n > 3)
shall be called quasi-conformally flat if the quasi-conformal curvature tensor
C̃ = 0. It is known [1] that the quasi-conformally flat Riemannian manifold is
either conformally flat if a ̸= 0 or, Einstein if a = 0 and b ̸= 0. Since they give
no restrictions if a = 0 and b = 0, it is essential for us to consider the case of
a ̸= 0 or b ̸= 0.

In [5], De and Matsuyama studied quasi-conformally flat Riemannian mani-
folds satisfying a certain condition on the Ricci tensor. From Theorem 5 of [5],
it can be proved that a 4-dimensional quasiconformally flat semi-Riemannian
manifold is the Robertson-Walker space time. Robertson-Walker spacetime is
the warped product I ×f M

∗, where M∗ is a space of constant curvature and
I is an open interval [11]. From (1.1), we obtain

(∇W C̃)(X,Y )Z = a(∇WR)(X,Y )Z + b[(∇WS)(Y,Z)X(1.3)

−(∇WS)(X,Z)Y

+g(Y, Z)(∇WQ)(X)− g(X,Z)(∇WQ)(Y )]

−dr(W )

n

[
a

n− 1
+ 2b

]
[g(Y, Z)X − g(X,Z)Y ],

where ∇ denotes the Levi-Civita connection. If the condition

∇R = 0

holds on Mn, then Mn is called locally symmetric. An LP -Sasakian manifold
(Mn, g) is said to be locally ϕ-symmetric if

(1.4) ϕ2((∇XR)(Y,Z)W ) = 0

for all vector fields X,Y, Z,W orthogonal to ξ. This notion was introduced for
Sasakian manifolds by Takahashi [14]. Later in [2], Blair, Koufogiorgos and
Sharma studied locally ϕ-symmetric contact metric manifolds.
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In (1.4), if X,Y, Z and W are not horizontal vectors then we call the man-
ifold globally ϕ-symmetric.

In this paper, we study locally ϕ-quasiconformally symmetric and glob-
ally ϕ-quasiconformally symmetric LP -Sasakian manifolds. An LP -Sasakian
manifold is called locally ϕ-quasiconformally symmetric if the condition

(1.5) ϕ2
((

∇XC̃
)
(Y, Z)W

)
= 0

holds on Mn, where X,Y, Z and W are horizontal vectors. If X,Y, Z and W
are arbitrary vectors then the manifold is called globally ϕ-quasiconformally
symmetric.

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([13], [6]) if R(X,Y ) ·R = 0, where R is the Riemannian curvature tensor and
R(X,Y ) is considered as a derivation of the tensor algebra at each point of
the manifold for tangent vectors X,Y . If a Riemannian manifold satisfies
R(X,Y ) · C̃ = 0, then the manifold is said to be quasi-conformally semi-
symmetric manifold.

The paper is organized as follows.
After introduction in Section 2, we give a brief account of LP -Sasakian mani-
folds. In the next two sections, we prove that in a complete simply connected
LP -Sasakian manifold if M is quasi-conformally flat, then M is isometric to
the Lorentz sphere Sn1 (1), and if M is a quasi-conformally semi-symmetric and
a+(n−2)b ̸= 0, then M is isometric to the Lorentz sphere Sn1 (1). In Section 5,
we study globally ϕ-quasiconformally symmetric LP -Sasakian manifolds. We
prove that a globally ϕ-quasiconformally symmetric LP -Sasakian manifold is
globally ϕ-symmetric if a ̸= 0. In the next Section, we study 3-dimensional
locally ϕ-quasiconformally symmetric LP -Sasakian manifolds. We prove that
a 3-dimensional LP -Sasakian manifold is locally ϕ-quasiconformally symmet-
ric if and only if the scalar curvature r is constant if a + b ̸= 0 and r ̸= 6.
Finally, we construct an example of a 3-dimensional quasi-conformally flat
LP -Sasakian manifold.

§2. Preliminaries

Let Mn be an n-dimensional differentiable manifold endowed with a (1, 1)
tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and
a Lorentzian metric g of type (0, 2) such that for each point p εM , the ten-
sor gp: TpM × TpM → R is a non-degenerate inner product of signature
(−,+,+, . . . ,+), where TpM denotes the tangent space of M at p and R is
the real number space which satisfies

(2.1) ϕ2(X) = X + η(X)ξ, η(ξ) = −1,
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(2.2) g(X, ξ) = η(X), g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X,Y . Then such a structure (ϕ, ξ, η, g) is termed as
Lorentzian almost paracontact structure and the manifold Mn with the struc-
ture (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold [7]. In the
Lorentzian almost paracontact manifold Mn, the following relations hold [7] :

(2.3) ϕξ = 0, η(ϕX) = 0,

(2.4) Ω(X,Y ) = Ω(Y,X),

where Ω(X,Y ) = g(X,ϕY ).
Let {ei} be an orthonormal basis such that e1 = ξ. Then the Ricci tensor S
and the scalar curvature r are defined by

S(X,Y ) =
n∑

i=1

ϵig(R(ei, X)Y, ei)

and

r =

n∑
i=1

ϵiS(ei, ei),

where we put ϵi = g(ei, ei), that is, ϵ1 = −1, ϵ2 = · · · = ϵn = 1.
A Lorentzian almost paracontact manifold Mn equipped with the structure
(ϕ, ξ, η, g) is called Lorentzian paracontact manifold if

Ω(X,Y ) =
1

2
{(∇Xη)Y + (∇Y η)X}.

A Lorentzian almost paracontact manifold Mn equipped with the structure
(ϕ, ξ, η, g) is called an LP -Sasakian manifold [7] if

(∇Xϕ)Y = g(ϕX, ϕY )ξ + η(Y )ϕ2X.

In an LP -Sasakian manifold the 1-form η is closed. Also in [7], it is proved
that if an n-dimensional Lorentzian manifold (Mn, g) admits a timelike unit
vector field ξ such that the 1-form η associated to ξ is closed and satisfies

(∇X∇Y η)Z = g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z),

then Mn admits an LP -Sasakian structure. Also since the 1-form η is closed
in an LP -Sasakian manifold, we have ([7], [8])

(2.5) (∇Xη)Y = Ω(X,Y ),
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(2.6) Ω(X, ξ) = 0,

(2.7) ∇Xξ = ϕX

for any vector field X and Y .
Further, on such an LP -Sasakian manifold Mn (ϕ, ξ, η, g), the following rela-
tions hold [7]:

(2.8) η(R(X,Y )Z) = [g(Y,Z)η(X)− g(X,Z)η(Y )],

(2.9) S(X, ξ) = (n− 1)η(X),

(2.10) R(X,Y )ξ = [η(Y )X − η(X)Y ],

(2.11) R(ξ,X)Y = g(X,Y )ξ − η(Y )X,

(2.12) (∇Xϕ)(Y ) = [g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X]

for all vector fieldsX,Y, Z, where R,S denote respectively the curvature tensor
and the Ricci tensor of the manifold.

§3. Quasi-conformally flat LP -Sasakian manifold

When the quasi-conformal curvature tensor vanishes identically on the Lorentz-
ian manifold, then we find from (1.1)

aR̃(X,Y, Z,W ) = b{S(X,Z)g(Y,W )− S(Y,Z)g(X,W )(3.1)

+S(Y,W )g(X,Z)− S(X,W )g(Y, Z)}

+
r

n

(
a

n− 1
+ 2b

)
{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )},

which implies that

(3.2) {a+ (n− 2)b}
{
S(Y, Z)− r

n
g(Y,Z)

}
= 0.

Thus we obtain a + (n − 2)b = 0 or S(Y,Z) = r
ng(Y, Z). If a + (n − 2)b = 0,

then the conformal curvature tensor vanishes identically. It is known that a
conformally flat LP -Sasakian manifold is of constant curvature [4]. When M
is an Einstein LP -Sasakian manifold, we get r = n(n − 1). It is easy to see
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form (3.1) that M is of constant curvature 1. Conversely, if M is of contant
curvature, then the quasi-conformal curvature tensor vanishes. Hence we have

Theorem 3.1. Let Mn (n > 3) be an LP -Sasakian manifold. Then M is
quasi-conformally flat if and only if it is of constant curvature.

From [11], we have
Theorem 3.2. Let Mn (n > 3) be a complete simply connected LP -Sasakian
manifold. If M is quasi-conformally flat, then M is isometric to the Lorentz
sphere Sn1 (1).

§4. LP -Sasakian manifolds satisfying R(ξ, Y ) · C̃ = 0

In this section we consider an LP -Sasakian manifold Mn (n > 3) satisfying
the condition

(4.1) (R(ξ, Y ) · C̃)(U, V )W = 0,

which yields from (2.11) that

g(C̃(U, V )W,Y )ξ − η(C̃(U, V )W )Y − g(Y,U)C̃(ξ, V )W

+η(U)C̃(Y, V )W − g(Y, V )C̃(U, ξ)W + η(V )C̃(U, Y )W

−g(Y,W )C̃(U, V )ξ + η(W )C̃(U, V )Y = 0.

Operating η to the above equation and using of (1.1), (2.8) ∼ (2.11) we
obtain

g(C̃(U, V )W,Y ) + bg(U, Y ){S(V,W ) + (n− 1)η(V )η(W )}(4.2)

−bg(Y, V ){S(U,W ) + (n− 1)η(U)η(W )}
+b{S(V, Y )η(U)− S(Y, U)η(V )}η(W )

−
{
a+ (n− 1)b− r

n

(
a

n− 1
+ 2b

)}
{g(V,W )g(Y,U)− g(U,W )g(V, Y )} = 0.

Putting Y = U = ei in the above equation and taking summation over i,
we get

(a− b)S(V,W )− {(n− 1)a+ (n− 1)2b− br}g(V,W )(4.3)

+b{r − n(n− 1)}η(V )η(W ) = 0,

moreover, we find {a+ (n− 2)b}{r − n(n− 1)} = 0.
We can consider the two cases. At first, in the case of r = n(n− 1) , we have
form (4.3)

(a− b){S(V,W )− (n− 1)g(V,W )} = 0.
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If a ̸= b, then S(V,W ) = (n − 1)g(V,W ). Therefore it is clear form (4.2)
that the quasi-conformal curvature tensor vanishes, namely, M is of constant
curvature 1 from Theorem 3.1. Also, if a = b(̸= 0), then we get form (1.1)
and (4.2)

g(R(U, V )W,Y ) + {2S(V,W )− ng(V,W ) + (n− 1)η(V )η(W )}g(U, Y )

−{2S(U,W )− ng(U,W ) + (n− 1)η(U)η(W )}g(V, Y )

+{g(V,W )− η(V )η(W )}S(U, Y )− {g(U,W )− η(U)η(W )}S(V, Y ) = 0.

If we put W= ξ, then we have η(V )S(U, Y )− η(U)S(V, Y ) = 0. Furthermore,
putting U= ξ, we get S(V, Y ) = −(n− 1)η(V )η(Y ), that is r = n− 1. This is
the contradiction. Thus a ̸= b holds.
Secondly, in the case of a+(n−2)b = 0, equation (4.2) is rewritten as follows:

(n− 2)g(R(U, V )W,Y )(4.4)

−{2S(V,W )− g(V,W ) + (n− 1)η(V )η(W )}g(U, Y )

+{2S(U,W )− g(U,W ) + (n− 1)η(U)η(W )}g(V, Y )

−{g(V,W )− η(V )η(W )}S(U, Y )

+{g(U,W )− η(U)η(W )}S(V, Y ) = 0.

We put U = W = ξ. Then we find S(V, Y ) = −(n − 1)η(V )η(Y ), which
yields form (4.2) that

R(U, V )W =
1

4
(c+ 3){g(V,W )U − g(U,W )V }(4.5)

+
1

4
(c− 1){η(V )η(W )U − η(U)η(W )V

+g(V,W )η(U)ξ − g(U,W )η(V )ξ},

where c = −3n−2
n−2 . Hence we have

Theorem 4.1. Let Mn(n > 3) be an LP -Sasakian manifold satisfying R(ξ, Y )·
C̃ = 0 for any Y .
(1) If a+ (n− 2)b ̸= 0, then M is of constant curvature 1.
(2) If a+ (n− 2)b = 0, then M is a space satisfying (4.5).

Corollary 4.1. Let Mn(n > 3) be an LP -Sasakian manifold. If M is a
quasi-conformally semi-symmetric, then
(1) when a+ (n− 2)b ̸= 0, then M is of constant curvature 1.
(2) when a+ (n− 2)b = 0, then M is a space satisfying (4.5).

From [11], we have
Theorem 4.2. Let Mn(n > 3) be a complete simply connected LP -Sasakian
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manifold satisfying R(ξ, Y ) · C̃ = 0 for any Y . If a+ (n− 2)b ̸= 0, then M is
isometric to the Lorentz sphere Sn1 (1).

Corollary 4.2. Let Mn(n > 3) be a complete simply connected LP -Sasakian
manifold. If M is a quasi-conformally semi-symmetric and a+ (n− 2)b ̸= 0,
then M is isometric to the Lorentz sphere Sn1 (1).

§5. Globally ϕ-quasiconformally symmetric LP -Sasakian
manifolds

Let us suppose thatM is a globally ϕ-quasiconformally symmetric LP -Sasakian
manifold. Then by definition

ϕ2
((

∇W C̃
)
(X,Y )Z

)
= 0.

Using (2.1) we have(
∇W C̃

)
(X,Y )Z + η

((
∇W C̃

)
(X,Y )Z

)
ξ = 0.

From (1.2) it follows from (2.7) and (2.9) that

a{g((∇WR)(X,Y )Z,U) + η(U)η((∇WR)(X,Y )Z)}(5.1)

+b[{g(X,U) + η(X)η(U)}(∇WS)(Y, Z)

−{g(Y, U) + η(Y )η(U)}(∇WS)(X,Z)

+g(Y, Z){(∇WS)(X,U)− η(U)S(X,ϕW ) + (n− 1)η(U)g(X,ϕW )}
−g(X,Z){(∇WS)(Y, U)− η(U)S(Y, ϕW ) + (n− 1)η(U)g(Y, ϕW )}]

−dr(W )

n

(
a

n− 1
+ 2b

)
[g(Y, Z){g(X,U) + η(X)η(U)}

−g(X,Z){g(Y,U) + η(Y )η(U)}] = 0.

Putting Z = ξ, in (5.1) and using of (2.7), (2.9) and (2.10), we obtain

a{g(Y, ϕW )g(X,U)− g(X,ϕW )g(Y, U)− g(R(X,Y )ϕW,U)}(5.2)

+b[η(Y )(∇WS)(X,U)− η(X)(∇WS)(Y, U)

−g(X,U){S(Y, ϕW )− (n− 1)g(Y, ϕW )}
+g(Y, U){S(X,ϕW )− (n− 1)g(X,ϕW )}]

−dr(W )

n

(
a

n− 1
+ 2b

)
{η(Y )g(X,U)

−η(X)g(Y, U)} = 0.
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Moreover, putting X = U = ei in (5.2) and taking summation over i, we
obtain

{a+ (n− 2)b}
{
S(Y, ϕW )− (n− 1)g(Y, ϕW ) +

dr(W )

n
η(Y )

}
= 0.

Thus if a+ (n− 2)b ̸= 0, then we find

S(Y, ϕW ) = (n−1)g(Y, ϕW )− dr(W )
n η(Y ). Setting Y = ξ, we have dr(W ) = 0,

that is, the scalar curvature is constant. It is easy to see form (2.9) that
S(Y,W ) = (n− 1)g(Y,W ), that is, M is an Einstein. Since (5.2), we find that
M is of constant curvature 1. Next, when a + (n − 2)b = 0, it is clear from
(5.2) that

(n− 2){g(R(X,Y )ϕW,U)− g(Y, ϕW )g(X,U) + g(X,ϕW )g(Y,U)}
+η(Y )(∇WS)(X,U)− g(X,U){S(Y, ϕW )− (n− 1)g(Y, ϕW )}
−η(X)(∇WS)(Y, U) + g(Y, U){S(X,ϕW )− (n− 1)g(X,ϕW )}

−dr(W )

n− 1
{η(Y )g(X,U)− η(X)g(Y, U)} = 0.

Setting Y = ξ in the above equation, we get

(∇WS)(X,U) = η(X){S(U, ϕW )− (n− 1)g(U, ϕW )}
+η(U){S(X,ϕW )− (n− 1)g(X,ϕW )}

+
dr(W )

n− 1
{g(X,U) + η(X)η(U)}.

Therefore, we obtain

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y(5.3)

+
1

n− 2
{S(Y,Z)− (n− 1)g(Y,Z)}ϕ2X

− 1

n− 2
{S(X,Z)− (n− 1)g(X,Z)}ϕ2Y.

Hence we have

Theorem 5.1. Let Mn (n > 3) be a globally ϕ-quasiconformally symmetric
LP -Sasakian manifold.
(1) If a+ (n− 2)b ̸= 0, then M is of constant curvature 1.
(2) If a+ (n− 2)b = 0, then M is a space satisfying (5.3).

From [11], we have
Theorem 5.2. Let Mn(n > 3) be a complete simply connected LP -Sasakian
manifold. If M is globally ϕ-quasiconformally symmetric and a+(n−2)b ̸= 0,
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then M is isometric to the Lorentz sphere Sn1 (1).

Moreover, by virtue of (5.1) and Theorem 5.1, we find

a[(∇WR)(X,Y )Z + η((∇WR)(X,Y )Z)ξ] = 0,

which implies that ϕ2((∇WR)(X,Y )Z) = 0 if a ̸= 0. Hence we can state:

Theorem 5.3. A globally ϕ-quasiconformally symmetric LP -Sasakian mani-
fold is globally ϕ-symmetric if a ̸= 0.

§6. 3-dimensional locally ϕ-quasiconformally symmetric
LP -Sasakian manifolds

Let us consider a 3-dimensional LP -Sasakian manifold. It is known that the
conformal curvature tensor vanishes identically in the 3-dimensional Rieman-
nian manifold. Thus we find

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y(6.1)

−r

2
[g(Y, Z)X − g(X,Z)Y ],

where Q is the Ricci operator, that is, g(QX,Y ) = S(X,Y ) and r is the scalar
curvature of the manifold.
Putting Z = ξ in (6.1) and using (2.10) we have

(6.2) η(Y )QX − η(X)QY =
(r
2
− 1

)
[η(Y )X − η(X)Y ].

Putting Y = ξ in (6.2) and using (2.1) and (2.9), we get

(6.3) QX =
1

2
[(r − 2)X + (r − 6)η(X)ξ],

that is,

(6.4) S(X,Y ) =
1

2
[(r − 2)g(X,Y ) + (r − 6)η(X)η(Y )].

Using (6.3) in (6.1), we get

R(X,Y )Z =

(
r − 4

2

)
[g(Y, Z)X − g(X,Z)Y ](6.5)

+

(
r − 6

2

)
[g(Y, Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].
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Putting (6.3), (6.4) and (6.5) into (1.1) we have

C̃(X,Y )Z = (a+ b)(r − 6)
[1
3
{g(Y, Z)X − g(X,Z)Y }(6.6)

+
1

2
{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y }
]
.

Thus we have
Lemma 6.1. Let M be a 3-dimensional LP -Sasakian manifold. If a+ b = 0
or r = 6, then the quasi-conformal curvature tensor vanishes identically.

Next, we assume that a+b ̸= 0 or r ̸= 6. Taking the covariant differentiation
of (6.6), we get

(∇W C̃)(X,Y )Z =
dr(W )

3
(a+ b){g(Y, Z)X − g(X,Z)Y }

+
dr(W )

2
(a+ b){g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }

+
1

2
(r − 6)(a+ b)[{g(Y, Z)g(X,ϕW )

−g(X,Z)g(Y, ϕW )}ξ
+{g(Y, Z)η(X)− g(X,Z)η(Y )}ϕW
+{η(Z)g(Y, ϕW ) + η(Y )g(Z, ϕW )}X
−{η(Z)g(X,ϕW ) + η(X)g(Z, ϕW )}Y ].

Operating ϕ2 to the above equation, then we find

ϕ2((∇W C̃)(X,Y )Z) =
dr(W )

3
(a+ b){g(Y, Z)ϕ2X − g(X,Z)ϕ2Y }

+
dr(W )

2
(a+ b)η(Z){η(Y )ϕ2X − η(X)ϕ2Y }

+
1

2
(r − 6)(a+ b)[{g(Y, Z)η(X)− g(X,Z)η(Y )}ϕW

+{η(Z)g(Y, ϕW ) + η(Y )g(Z, ϕW )}ϕ2X

−{η(Z)g(X,ϕW ) + η(X)g(Z, ϕW )}ϕ2Y ].

If the vector fields X, Y and Z are horizontal, then the above equation is
rewritten as follows:

ϕ2((∇W C̃)(X,Y )Z) =
dr(W )

3
(a+ b){g(Y,Z)X − g(X,Z)Y }.

Hence we conclude the following theorem:
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Theorem 6.1. A 3-dimensional LP -Sasakian manifold is locally ϕ-quasicon-
formally symmetric if and only if the scalar curvature r is constant if a+b ̸= 0
and r ̸= 6.

§7. Example

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3
1}, where (x, y, z)

are standard coordinates of R3
1.

The vector fields

e1 = ez
∂

∂y
, e2 = ez

(
∂

∂x
+

∂

∂y

)
, e3 =

∂

∂z

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1,

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any vector field Zεχ(M).
Let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = −e1, ϕ(e2) = −e2, ϕ(e3) = 0.

Then using the linearity of ϕ and g we have

η(e3) = −1,

ϕ2Z = Z + η(Z)e3,

g(ϕZ, ϕW ) = g(Z,W ) + η(Z)η(W )

for any vector fields Z,W ∈ χ(M).
Then for e3 = ξ , the structure (ϕ, ξ, η, g) defines a Lorentzian paracontact

structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric

g and R be the curvature tensor of g. Then we have

[e1, e2] = 0, [e1, e3] = −e1

and
[e2, e3] = −e2.

Taking e3 = ξ and using Koszul’s formula for the Lorentzian metric g, we
can easily calculate

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.
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From the above it can be easily seen that M3(ϕ, ξ, η, g) is an LP -Sasakian
manifold. With the help of the above results it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = −e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = −e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1)− g(R(e1, e3)e3, e1)

= 2.

Similarly we have

S(e2, e2) = 2, S(e3, e3) = −2

and

S(ei, ej) = 0(i ̸= j).

Therefore,

r = S(e1, e1) + S(e2, e2)− S(e3, e3) = 6.

Thus the 3-dimensional LP -Sasakian manifold is quasi-conformally flat. There-
fore Lemma 6.1. is verified.
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