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Abstract In this paper, we propose a modified scaling BFGS method for
unconstrained minimization. A remarkable feature of the proposed method is
that it can improve the performance of the BFGS method and possesses a global
convergence property without convexity assumption on the objective function.
Under certain assumptions, we also establish superlinear convergence of the
method. Finally we show numerical results.
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§1. Introduction

This paper is concerned with the unconstrained minimization problem

min f(x), x ∈ Rn,(1.1)

where f : Rn → R is continuously differentiable. In the following, g(x) and
G(x) denote the gradient and Hessian matrix of f at x, respectively. Quasi-
Newton methods are effective numerical methods for solving (1.1), and they
are iterative methods of the form

xk+1 = xk + αkdk,

where xk is a current approximation to a solution for (1.1), αk is a step size
and dk is a search direction obtained by solving the linear system of equations

Bkdk = −gk.
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Here gk denotes g(xk) and the matrix Bk is an approximation to Gk ≡ G(xk).
The matrix Bk is updated at every iteration by means of a quasi-Newton
updating formula. There are some kinds of updating formulas. In particular,
the BFGS formula is one of the most effective formulas and is given by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
,

where

sk = xk+1 − xk and yk = gk+1 − gk.

Throughout this paper, let fk denote f(xk).

The BFGS method is widely used due to its favorable numerical experience
and fast convergence property. However, the performance of the conventional
BFGS method may be greatly influenced by an unsuitable search direction
when the Hessian matrix is ill-conditioned. To overcome this difficulty, sev-
eral researchers proposed scaling BFGS methods. For example, Oren and
Luenberger [14, 13] suggested a class of the method that they referred to as
self-scaling variable metric methods (SSVMs). They multiplied Bk by an ap-
propriate scalar ωk before it was updated, and they used the sized BFGS
updating formula

Bk+1 = ωk

(
Bk −

Bksks
T
kBk

sTkBksk

)
+

yky
T
k

yTk sk
,

in which the parameter ωk was chosen as

ωOL
k =

yTk sk

sTkBksk
, ωIOL

k =
yTk B

−1
k yk

yTk sk
,

which can accelerate the single-step convergence of quasi-Newton methods for
a quadratic objective function. Another choice of ωk is given by Al-Baali [2]
as follows

ωAB
k = min

{
yTk sk

sTkBksk
, 1

}
.

In [2], Al-Baali showed that the sized BFGS method with ωAB
k is competi-

tive with the standard BFGS method. Furthermore, other choices of ωk and
numerical results were derived by Al-Baali [1, 2], Nocedal and Yuan [11] and
Yabe et al. [16], for example.

More recently, a different scaling BFGS method was derived by Cheng and
Li [5]. In order to improve the condition number of the Hessian matrix, they
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noticed the following approximate relation

γkf(x)(1.2)

≈ γk

(
fk+1 + gTk+1(x− xk+1) +

1

2
(x− xk+1)

TGk+1(x− xk+1)

)
,

where γk is some scalar. Differentiating (1.2) and substituting xk into x yield
the relation

γkGk+1sk ≈ γkyk,

from which they proposed a new secant condition:

Bk+1sk = γkyk.(1.3)

We call γk the scaling factor in this paper. In [5], they chose the following
scaling factor

γCL
k =

yTk sk
∥yk∥2

.(1.4)

Based on (1.3) and (1.4), Bk is updated by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+ γCL

k

yky
T
k

yTk sk
.(1.5)

They called the method based on (1.4) and (1.5) the spectral scaling BFGS
method. By using this method, the largest eigenvalue of Bk is strictly less
than Tr(B1)+k. Therefore, the spectral scaling BFGS method has a good self-
correcting property with respect to the trace of Bk. Moreover, they showed the
global convergence of their method for a uniformly convex objective function
and good numerical performance in [5]. Yuan [17] also proposed a modified
BFGS method.

Besides, several researchers studied another secant condition:

Bk+1sk = ŷk, ŷk = yk + ϕksk.(1.6)

Li and Fukushima [9] showed that under some conditions the modified BFGS
method based on (1.6) with a nonnegative parameter ϕk has a global conver-
gence property without convexity assumption on the objective function. In
addition, they also established superlinear convergence of their method.

In this paper, we study a scaling BFGS method with γkŷk (We call the
modified scaling BFGS method) and obtain the global convergence property
without convexity assumption of f . Moreover, we also establish the superlinear
convergence of the method. In addition, we apply a new scaling factor to the
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method and prove its convergence property.
We organize the paper as follows. In the next section, we propose a modified

scaling BFGS method. In Section 3, we prove the global and superlinear
convergence of our method. In Section 4, we apply new scaling factors to
the method and establish its convergence property. Finally, in Section 5, we
present some numerical experiments.

§2. Modified scaling BFGS method

In this section, we propose a modified scaling BFGS method. First, we recall
the modification to the standard BFGS method in [9]. Note that if f is twice
continuously differentiable, we have the following approximation

Gk+1sk ≈ yk,(2.1)

which yields the secant condition Bk+1sk = yk. So the approximate matrix of
Gk+1 is usually produced based on (2.1). However, since Gk+1 is not generally
positive definite when f is nonconvex, Bk+1 may not afford a good approx-
imation of Gk+1. To overcome this difficulty, we can replace Gk+1 by the
matrix

Ḡk+1 ≡ Gk+1 + ϕkI,

where I is the identity matrix and ϕk is chosen so that Ḡk+1 is positive definite.
The matrix Ḡk+1 will satisfy the following relation

Ḡk+1sk = (Gk+1 + ϕkI)sk ≈ ŷk,(2.2)

where ŷk is defined by (1.6). Li and Fukushima [9] used the modified secant
condition (1.6) based on (2.2).

Following the idea of Cheng and Li [5], we multiply the both sides of (2.2)
by a scaling factor γk as follows

γkḠk+1sk ≈ γkŷk.

This leads to the following secant condition

(2.3) Bk+1sk = γkŷk.

When γk = 1 and ϕk = 0, we get the standard secant condition. An appropri-
ate choice of γk and ϕk may give a scaling BFGS method which has a global
convergence property without convexity assumption of f and good numerical
results. In Section 4, we will present several concrete choices of γk and ϕk.
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Now, we propose the modified scaling BFGS method (msBFGS) based on
(2.3).

[Algorithm of the msBFGS method]

　 Step 0. Choose an initial point x0 ∈ Rn and an initial symmetric positive
definite matrix B0 ∈ Rn×n. Choose constants σ1, σ2 and C such that
0 < σ1 < σ2 < 1 and C > 0. Let k:=0.

　 Step 1. Solve the following linear system of equations to obtain dk:

Bkdk = −gk.

　 Step 2. Find a step size αk satisfying the Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk,(2.4)

g(xk + αkdk)
Tdk ≥ σ2g

T
k dk.(2.5)

　 Step 3. Let the next iterate be xk+1 = xk + αkdk.

　 Step 4. If the stopping condition is satisfied, then stop. Otherwise go to
Step5

　 Step 5. Give γk > 0 and ϕk ∈ [0, C]. Let ŷk = yk + ϕksk.

　 Step 6. Update Bk by using the msBFGS formula

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+ γk

ŷkŷ
T
k

ŷTk sk
.(2.6)

　 Step 7. Let k := k + 1 and go to Step 1.

It follows from γk > 0, ϕk ≥ 0 and (2.5) that for any k

γkŷ
T
k sk ≥ γky

T
k sk > 0.(2.7)

Therefore, the matrix Bk+1 is positive definite as long as Bk is positive definite.
Consequently, dk becomes a descent search direction of f at xk.

§3. Convergence analysis

In this section, we will establish the global and superlinear convergence prop-
erty of the msBFGS method. To this end, we make the following assumptions.
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Assumption A
(1) The level set at the initial point x0

Ω = {x ∈ Rn | f(x) ≤ f(x0)}

is bounded.
(2) The objective function f is continuously differentiable in an open convex
set containing Ω, and there exists a positive constant Lg such that

∥g(x)− g(y)∥ ≤ Lg∥x− y∥ for all x, y ∈ Ω.

Now we analyze convergence properties of our method. The global convergence
is proved in Section 3.1, and the local and superlinear convergence is shown
in Section 3.2.

In the remainder of this paper, let

cos θk =
sTkBksk

∥sk∥∥Bksk∥
,(3.1)

qk =
sTkBksk
∥sk∥2

,(3.2)

Ψ(Bk) = Tr(Bk)− ln(detBk)

and

zk = γkŷk.(3.3)

Note that Ψ(Bk) can be represented by the expression

(3.4) Ψ(Bk) =

n∑
i=1

(µk,j − lnµk,j),

where 0 < µk,1 ≤ · · · ≤ µk,n are the eigenvalues of Bk. We also note that the
function

w(p) = p− ln(p), p > 0

is strictly convex and has the minimum value of 1 at p = 1. Therefore,
Ψ(Bk) ≥ n holds. Taking the trace in the msBFGS formula, we get

Tr(Bk+1) = Tr(Bk)−
∥Bksk∥2

sTkBksk
+

∥zk∥2

zTk sk
.
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Furthermore, taking the determinant in the msBFGS formula, we have

det(Bk+1) = det

(
Bk

(
I −

sks
T
kBk

sTkBksk
+

B−1
k zkz

T
k

zTk sk

))

= det(Bk)

(
1−

sTk
sTkBksk

Bksk

)(
1 +

(B−1
k zk)

T

zTk sk
zk

)

−det(Bk)

(
−zTk sk

sTkBksk

)(
sTkBkB

−1
k zk

zTk sk

)

= det(Bk)
zTk sk

sTkBksk
,

where the second equality can be found in Lemma 7.6 of [7]. Therefore, we
derive the following expression for Ψ(Bk).

Ψ(Bk+1)

= Ψ(Bk)−
∥Bksk∥2

sTkBksk
+

∥zk∥2

zTk sk
− ln

(
zTk sk

sTkBksk

)
= Ψ(Bk)−

(
∥Bksk∥∥sk∥
sTkBksk

)2 sTkBksk
∥sk∥2

+
∥zk∥2

zTk sk
− ln

(
zTk sk
∥sk∥2

∥sk∥2

sTkBksk

)
.

Using the definitions (3.1) and (3.2), we have

Ψ(Bk+1) = Ψ(Bk) +
∥zk∥2

zTk sk
− ln

zTk sk
∥sk∥2

− qk
cos2 θk

+ ln qk(3.5)

= Ψ(Bk) +
∥zk∥2

zTk sk
− ln

zTk sk
∥sk∥2

+ ln cos2 θk − 1

+

(
1− qk

cos2 θk
+ ln

qk
cos2 θk

)
.

3.1. Global convergence

To prove the global convergence, we first introduce the following general result
(see Theorem 3.2 of [12]).

Lemma 3.1. Suppose that Assumption A holds. Consider any iterative method
of the form xk+1 = xk+αkdk, where a search direction dk satisfies the descent
condition gTk dk < 0 and a step size αk satisfies the Wolfe conditions (2.4) and
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(2.5). Then the following Zoutendijk condition holds

(3.6)
∞∑
k=0

(gTk dk)
2

∥dk∥2
< ∞.

The next lemma gives the conditions on γk and ϕk and is useful in showing
the global convergence.

Lemma 3.2. Let B0 be symmetric positive definite and Bk be updated by
(2.6). Suppose that there exist positive constants m,M and t1 such that for
any k ≥ t1, γk and ϕk satisfy

γk(ρ
(1)
k + ϕk) ≥ m,(3.7)

γk(ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k) ≤ M(ρ
(1)
k + ϕk),(3.8)

where ρ
(1)
k =

yTk sk
∥sk∥2

and ρ
(2)
k = ∥yk∥2

∥sk∥2
. Then there exist positive constants

β0, β1, β2 and β3 such that for any positive integer k (≥ t1), the following
inequalities

cos θj ≥ β0,(3.9)

∥Bjsj∥ ≤ β1∥sj∥,(3.10)

β2∥sj∥2 ≤ sTj Bjsj ≤ β3∥sj∥2(3.11)

hold at least ⌈(k − t1 + 1)/2⌉ values of j ∈ {t1, . . . , k}.

Proof. We can prove this lemma similarly to the proof of Theorem 2.1 in [4].
We first note that

ρ
(1)
k + ϕk =

ŷTk sk
∥sk∥2

(3.12)

and

ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k

ρ
(1)
k + ϕk

=
∥yk∥2 + 2ϕky

T
k sk + ϕ2

k∥sk∥2

yTk sk + ϕk∥sk∥2
=

∥ŷk∥2

ŷTk sk
.(3.13)

From (3.3), (3.7), (3.8), (3.12) and (3.13), we have

zTk sk
∥sk∥2

= γk
ŷTk sk
∥sk∥2

= γk(ρ
(1)
k + ϕk) ≥ m

and

∥zk∥2

zTk sk
= γk

∥ŷk∥2

sTk ŷk
= γk

ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k

ρ
(1)
k + ϕk

≤ M.
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Thus, it follows from (3.5) that

Ψ(Bk+1) ≤ Ψ(Bk) +M − lnm+ ln cos2 θk − 1 +

(
1− qk

cos2 θk
+ ln

qk
cos2 θk

)
≤ . . .

≤ Ψ(Bt1) + (M − lnm− 1)(k − t1 + 1)

+

k∑
j=t1

(
ln cos2 θj +

(
1− qj

cos2 θj
+ ln

qj
cos2 θj

))
.

Let us define ηj by

ηj = − ln cos2 θj −
(
1− qj

cos2 θj
+ ln

qj
cos2 θj

)
.(3.14)

The function

u(p) = 1− p+ ln p(3.15)

achieves the maximum value of 0 at p = 1. Thus, ηj ≥ 0 holds. Furthermore,
since Ψ(Bk+1) > 0, we have

1

k − t1 + 1

k∑
j=t1

ηj <
Ψ(Bt1)

k − t1 + 1
+ (M − 1− lnm).(3.16)

Let us now define Jk to be a set consisting of the
⌈
k−t1+1

2

⌉
indices correspond-

ing to the
⌈
k−t1+1

2

⌉
smallest values of ηj for t1 ≤ j ≤ k, and let ηmk denote

the largest value of ηj for j ∈ Jk. Then

1

k − t1 + 1

k∑
j=t1

ηj =
1

k − t1 + 1

∑
j∈Jk

ηj +
∑
j ̸∈Jk

ηj


≥ 1

k − t1 + 1

ηmk +
∑
j ̸∈Jk

ηmk


≥ 1

k − t1 + 1

(
ηmk + ηmk

(
k − t1 + 1−

⌈
k − t1 + 1

2

⌉))
≥ ηmk

k − t1 + 1

+
ηmk

k − t1 + 1

(
k − t1 + 1−

(
k − t1 + 1

2
+ 1

))
=

ηmk

2
.
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Thus, from (3.16), we have that, for all j ∈ Jk,

ηj < 2 (Ψ(Bt1) +M − 1− lnm) ≡ β
′
0.(3.17)

Since the term inside brackets in (3.14) is less than or equal to zero, we con-
clude from (3.14) and (3.17) that for all j ∈ Jk

− ln cos2 θj < β
′
0.

Therefore, we obtain

cos θj > e−β
′
0/2 ≡ β0,

which implies (3.9). Similarly, from (3.14) and (3.17), we have that for all
j ∈ Jk,

1− qj
cos2 θj

+ ln
qj

cos2 θj
> −β

′
0.

Note also that the function (3.15) achieves the maximum value of 0 at p = 1
and satisfies u(p) → −∞ both as p → 0 and p → ∞. Therefore, it follows that
for all j ∈ Jk

0 < β
′
2 ≤

qj
cos2 θj

≤ β3

for positive constants β
′
2 and β3. Therefore, we obtain

qj ≤ β3 cos
2 θj ≤ β3,

qj ≥ β
′
2 cos

2 θj ≥ β
′
2β

2
0 ≡ β2

from which we get by using (3.2)

β2 ≤
sTj Bjsj

∥sj∥2
≤ β3,

which implies (3.11). Finally, since

∥Bjsj∥
∥sj∥

=
qj

cos θj
,

we have for j ∈ Jk
∥Bjsj∥
∥sj∥

≤ β3
β0

≡ β1.

Therefore, the proof is complete.
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By (3.12) and (3.13), we note that (3.7) and (3.8) equal

γk
ŷTk sk
∥sk∥2

≥ m and γk
∥ŷk∥2

sTk ŷk
≤ M.

The following theorem shows the global convergence of the msBFGS method.

Theorem 3.3. Let {xk} be the infinite sequence generated by the msBFGS
method. Suppose that Assumption A holds. If (3.7) and (3.8) are satisfied for
any k ≥ 0, then

lim inf
k→∞

∥gk∥ = 0.

Proof. Let K = {k|Inequalities (3.9), (3.10) and (3.11) hold}. Since Lemma
3.2 holds for the case t1 = 0, the set K is not empty. For the msBFGS method,
Lemma 3.1 holds and the Zoutendijk condition can be written as

∞∑
k=0

(∥gk∥ cos θk)2 < ∞.

Therefore, by (3.9), we obtain

lim
k→∞, k∈K

∥gk∥ = 0,

which implies the result.

Theorem 3.3 yields the following corollary that corresponds to the conver-
gence result of Cheng and Li [5].

Corollary 3.4. Suppose that Assumption A and the following two assump-
tions hold.

(1) The objective function f is twice continuously differentiable.

(2) The level set Ω is convex and there exist positive constants λ1 and λ2

such that

λ1∥v∥2 ≤ vTG(x)v ≤ λ2∥v∥2 ∀x ∈ Ω, v ∈ Rn.

Let γk =
yTk sk
∥yk∥2

, ϕk = 0 and {xk} be the infinite sequence generated by the

msBFGS method. Then

lim inf
k→∞

∥gk∥ = 0.
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3.2. Superlinear convergence

Now we turn to prove the superlinear convergence of the msBFGS method.
To do this, we make the following additional assumptions.

Assumption B
(1) The function f is twice continuously differentiable in an open convex neigh-
borhood U(x∗) of x∗, where g(x∗) = 0 and G(x∗) is positive definite.
(2) The second derivative G is Lipschitz continuous in U(x∗), i.e. there exists
a constant LG > 0 such that

∥G(x)−G(x∗)∥ ≤ LG∥x− x∗∥(3.18)

holds for any x in U(x∗).
(3) {xk} converges to x∗.
(4) There exist positive constants c1 and c2 such that c1 ≤ γk ≤ c2 holds for
any k.

Under Assumption B(1), G(x) is uniformly positive definite for any x ∈ U(x∗).
Therefore, there is a constant m′ > 0 such that for all x ∈ U(x∗)

∥g(x)∥ ≥ m′∥x− x∗∥(3.19)

and

vTG(x)v ≥ m′∥v∥2 ∀v ∈ Rn.(3.20)

Particularly, by using the mean-value theorem, these show that for k ≥ k0

yTk sk =

(∫ 1

0
G(xk + tsk)skdt

)T

sk ≥ m′∥sk∥2,

since xk + tsk ∈ U(x∗) for k ≥ k0, where k0 is some nonnegative integer.
Therefore, under Assumptions A and B, (3.12) and (3.13) yield that

γk(ρ
(1)
k + ϕk) = γk

ŷTk sk
∥sk∥2

= γk

(
yTk sk
∥sk∥2

+ ϕk

)
≥ γk

(
m′∥sk∥2

∥sk∥2
+ ϕk

)
≥ γk(m

′ + ϕk)

≥ γkm
′

≥ c1m
′
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and

γk(ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k)

ρ
(1)
k + ϕk

= γk
∥ŷk∥2

ŷTk sk

≤ γk
(Lg + ϕk)

2∥sk∥2

m′∥sk∥2

≤ c2
(Lg + ϕk)

2

m′ .

These imply that inequalities (3.7) and (3.8) hold form = c1m
′, M = c2

(Lg+C)2

m′

and t1 = k0. Thus, there exists a nonempty set Jk = {j|Inequalities (3.9),
(3.10) and (3.11) hold, k0 ≤ j ≤ k} from Lemma 3.2.

Lemma 3.5. Under Assumptions A and B, we have

∞∑
k=0

∥xk − x∗∥ < ∞(3.21)

and

∞∑
k=0

τk < ∞,(3.22)

where τk = max{∥xk − x∗∥, ∥xk+1 − x∗∥}.

Proof. We can assume k ≥ k0 without loss of generality. It follows from (2.5)
that

−(1− σ2)g
T
k sk ≤ (gk+1 − gk)

T sk ≤ ∥gk+1 − gk∥∥sk∥ ≤ Lg∥sk∥2.

Using (3.1) yields the relation

(1− σ2)

Lg
∥gk∥ cos θk ≤ ∥sk∥.(3.23)

Since f is convex function on U(x∗), we have

fk − f∗ ≤ gTk (xk − x∗)

≤ ∥gk∥∥xk − x∗∥

≤ ∥gk∥2

m′ ,(3.24)
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where the last inequality follows from (3.19). For j ∈ Jk, we obtain from (2.4),
(3.1) and (3.23)

fj+1 ≤ fj + σ1g
T
j sj

= fj − σ1∥gj∥∥sj∥ cos θj

≤ fj − σ1
1− σ2
Lg

∥gj∥2 cos θj2.

Therefore, by (3.9), we have

fj − fj+1 ≥ σ1β
2
0

1− σ2
Lg

∥gj∥2.(3.25)

Letting η ≡ σ1β
2
0(1− σ2)/Lg, we obtain from (3.24) and (3.25)

m′(fj − f∗) ≤ 1

η
(fj − fj+1),

which implies

fj+1 − f∗ ≤ r2(fj − f∗),

where r ≡
√
1− ηm′. (Note that 1 > 1 − ηm′ ≥ 0 since {fk} is a decreasing

sequence.) Since Jk has at least ⌈(k − k0 + 1)/2⌉ elements by Lemma 3.2 and
{fk} is decreasing, we have

fk+1 − f∗ ≤ (fjkmax+1 − f∗) (jkmax ≡ argmax{j|j ∈ Jk})
≤ r2(fjkmax

− f∗)

≤ . . .

≤ r2⌈(k−k0+1)/2⌉−1(fjkmin
− f∗) (jkmin ≡ argmin{j|j ∈ Jk})

≤ r2(k−k0+1)/2−1(fjkmin
− f∗)

= rk−k0(fjkmin
− f∗)

≤ rk−k0(fk0 − f∗).

Moreover, we can derive the lower bound of fk+1−f∗ from Taylor’s expansion
and (3.20) as follows

1

2
m′∥xk+1 − x∗∥2 ≤ fk+1 − f∗.

Therefore, we obtain

∥xk+1 − x∗∥ ≤
√

2(fk+1 − f∗)

m′

≤
√

2(fk0 − f∗)rk

m′rk0

= a1

(√
r
)k

,
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where a1 ≡
√

2(fk0−f∗)

m′rk0
. Hence we obtain (3.21). Finally, since τk ≤ ∥xk −

x∗∥+ ∥xk+1 − x∗∥, (3.22) follows from (3.21) directly.

Now, we add the following assumption.

Assumption C
The parameters γk and ϕk satisfy

∞∑
k=0

|γk − 1| < ∞ and

∞∑
k=0

ϕk < ∞.(3.26)

Adding Assumption C, we have the following lemma.

Lemma 3.6. Suppose that Assumptions A, B and C hold. Then there exists
a sequence {ϵk} such that {sk} and {zk} satisfy for k sufficiently large

∥γkŷk −G(x∗)sk∥
∥sk∥

≤ ϵk,(3.27)

and
∞∑
k=0

ϵk < ∞ holds.

Proof. Using (3.18), we have

∥γkŷk −G(x∗)sk∥
≤ ∥(γk − 1)ŷk∥+ ∥yk + ϕksk −G(x∗)sk∥

≤| γk − 1 | ∥ŷk∥+
∫ 1

0
∥G(xk + tsk)−G(x∗)∥dt∥sk∥+ ∥ϕksk∥

≤| γk − 1 | ∥ŷk∥+
∫ 1

0
∥xk + tsk − x∗∥dtLG∥sk∥+ ∥ϕksk∥

≤| γk − 1 | ∥ŷk∥+
∫ 1

0
(∥t(xk+1 − x∗)∥+ ∥(1− t)(xk − x∗)∥)dtLG∥sk∥

+ ∥ϕksk∥

=| γk − 1 | ∥ŷk∥+
1

2
(∥xk+1 − x∗∥+ ∥xk − x∗∥)LG∥sk∥+ ∥ϕksk∥

≤| γk − 1 | ∥ŷk∥+max{∥xk+1 − x∗∥, ∥xk − x∗∥}LG∥sk∥+ ∥ϕksk∥
≤| γk − 1 | (∥yk∥+ ∥ϕksk∥) + (LGτk + ϕk)∥sk∥
≤ (| γk − 1 | (Lg + ϕk) + LGτk + ϕk) ∥sk∥.

Therefore, (3.27) holds for ϵk =| γk−1 | (Lg+ϕk)+LGτk+ϕk, and
∞∑
k=0

ϵk < ∞

follows from (3.22) and (3.26).
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Moreover, we give the following lemma to show the convergence property.
This lemma was shown by Dennis and Moré [6].

Lemma 3.7. Let f : Rn → R be twice differentiable in an open convex set
D in Rn, and assume that for some x̂ in D, G is continuous at x̂ and G(x̂)
is nonsingular. Let {Bk} in Rn×n be a sequence of nonsingular matrices and
suppose that for some x0 in D, the sequence {xk} generated by

xk+1 = xk −B−1
k gk

remains in D and converges to x̂. Then the sequence {xk} converges Q-
superlinearly to x̂ and g(x̂) = 0 if and only if

lim
k→∞

∥(Bk −G(x̂))(xk+1 − xk)∥
∥xk+1 − xk∥

= 0.(3.28)

Note that (3.28) is called the Dennis-Moré condition. From Lemma 3.7, we
obtain the next theorem.

Theorem 3.8. Let the sequences {xk} and {Bk} be generated by the msBFGS
method. Suppose that Assumptions A, B and C hold. Then

lim
k→∞

∥(Bk −G(x∗))sk∥
∥sk∥

= 0(3.29)

holds and the sequence {∥B−1
k ∥} is bounded. Moreover, if the parameter σ1 in

(2.4) is chosen to satisfy σ1 ∈
(
0, 12
)
, then the sequence {xk} converges to x∗

superlinealy.

Proof. Let us define

s̃k = G(x∗)
1
2 sk, z̃k = G(x∗)−

1
2 zk,(3.30)

B̃k = G(x∗)−
1
2BkG(x∗)−

1
2 ,(3.31)

cos θ̃k =
s̃Tk B̃ks̃k

∥B̃ks̃k∥∥s̃k∥

and

q̃k =
s̃Tk B̃ks̃k
∥s̃k∥2

.

Though the first part of this theorem can be shown in the same way as the
proof of Theorem 3.2 in [4], we do not omit the proof for readability. From
(2.6), (3.30) and (3.31), it follows that

B̃k+1 = B̃k −
B̃ks̃ks̃

T
k B̃k

s̃Tk B̃ks̃k
+

z̃kz̃
T
k

z̃Tk s̃k
.
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Thus, we obtain, just as in (3.5)

Ψ(B̃k+1) = Ψ(B̃k) +
∥z̃k∥2

s̃Tk z̃k
− ln

s̃Tk z̃k
∥s̃k∥2

+ ln cos2 θ̃k − 1(3.32)

+

(
1− q̃k

cos2 θ̃k
+ ln

q̃k

cos2 θ̃k

)
.

For k sufficiently large, it follows from (3.27) that

∥z̃k − s̃k∥ = ∥G(x∗)−
1
2 zk −G(x∗)

1
2 sk∥(3.33)

≤ ∥G(x∗)−
1
2 ∥∥γkŷk −G(x∗)sk∥

≤ ∥G(x∗)−
1
2 ∥ϵk∥sk∥

= ∥G(x∗)−
1
2 ∥ϵk∥G(x∗)−

1
2G(x∗)

1
2 sk∥

≤ ∥G(x∗)−
1
2 ∥2ϵk∥s̃k∥

= c̄ϵk∥s̃k∥,

where c̄ = ∥G(x∗)−
1
2 ∥2. Using the triangle inequality yields

∥z̃k − s̃k∥ ≥ ∥z̃k∥ − ∥s̃k∥

and

∥z̃k − s̃k∥ = ∥s̃k − z̃k∥ ≥ ∥s̃k∥ − ∥z̃k∥.

So we have

(1− c̄ϵk)∥s̃k∥ ≤ ∥z̃k∥ ≤ (1 + c̄ϵk)∥s̃k∥.(3.34)

From (3.33) and (3.34), it follows that

∥z̃k∥2 − 2z̃Tk s̃k + ∥s̃k∥2 ≤ c̄2ϵ2k∥s̃k∥2

and

(1− c̄ϵk)
2∥s̃k∥2 − 2z̃Tk s̃k + ∥s̃k∥2 ≤ ∥z̃k∥2 − 2z̃Tk s̃k + ∥s̃k∥2,

from which we get

(1− c̄ϵk)
2∥s̃k∥2 − 2z̃Tk s̃k + ∥s̃k∥2 ≤ c̄2ϵ2k∥s̃k∥2.(3.35)

By (3.35), we have

z̃Tk s̃k
∥s̃k∥2

≥ 1− c̄ϵk.(3.36)
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Since z̃Tk s̃k > 0 is satisfied, (3.34) yields

∥z̃k∥2

z̃Tk s̃k
≤ (1 + c̄ϵk)

2 ∥s̃k∥2

z̃Tk s̃k
.(3.37)

By using the fact
∑∞

k=0 ϵk < ∞, there exists an integer k̄ such that c̄ϵk ≤ 1
2

for k ≥ k̄. Therefore, it follows from (3.36) and (3.37) for k ≥ k̄ that

∥z̃k∥2

z̃Tk s̃k
≤ (1 + c̄ϵk)

2 ∥s̃k∥2

z̃Tk s̃k
(3.38)

≤ (1 + c̄ϵk)
1 + c̄ϵk
1− c̄ϵk

= 1 + ϵk

(
2c̄

1− c̄ϵk
+ c̄+

2c̄2ϵk
1− c̄ϵk

)
≤ 1 + ϵk

(
2c̄

1− 1
2

+ c̄+
2c̄12
1− 1

2

)
= 1 + 7c̄ϵk.

We notice that the inequality − ln(1 − x) ≤ 2x holds for 0 < x ≤ 1
2 . So it

follows from (3.36)

− ln
z̃Tk s̃k
∥s̃k∥2

≤ − ln(1− c̄ϵk) ≤ 2c̄ϵk.(3.39)

Thus, by (3.32), (3.38) and (3.39), for k ≥ k̄ we have

Ψ(B̃k+1) ≤ Ψ(B̃k) + 9c̄ϵk + ln cos2 θ̃k +

(
1− q̃k

cos2 θ̃k
+ ln

q̃k

cos2 θ̃k

)
.

Hence by using (3.32) again, there is a positive constant ĉ such that

Ψ(B̃k+1)(3.40)

≤ Ψ(B̃k̄) +
k∑

j=k̄

(
9c̄ϵj + ln cos2 θ̃j +

(
1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j

))

= Ψ(B̃k̄−1) +
∥z̃k̄−1∥2

s̃T
k̄−1

z̃k̄−1

− ln
s̃T
k̄−1

z̃k̄−1

∥s̃k̄−1∥2
+ ln cos2 θ̃k̄−1 − 1

+

(
1−

q̃k̄−1

cos2 θ̃k̄−1

+ ln
q̃k̄−1

cos2 θ̃k̄−1

)

+

k∑
j=k̄

(
9c̄ϵj + ln cos2 θ̃j +

(
1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j

))
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= Ψ(B̃k̄−1) +

k∑
j=k̄−1

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j
+ 9c̄ϵj

)

+

k̄−1∑
j=k̄−1

(
−9c̄ϵj +

∥z̃j∥2

s̃Tj z̃j
− ln

s̃Tj z̃j

∥s̃j∥2
− 1

)

= Ψ(B̃k̄−2) +

k∑
j=k̄−2

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j
+ 9c̄ϵj

)

+

k̄−1∑
j=k̄−2

(
−9c̄ϵj +

∥z̃j∥2

s̃Tj z̃j
− ln

s̃Tj z̃j

∥s̃j∥2
− 1

)
= . . .

= Ψ(B̃0) +
k∑

j=0

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j
+ 9c̄ϵj

)

+

k̄−1∑
j=0

(
−9c̄ϵj +

∥z̃j∥2

s̃Tj z̃j
− ln

s̃Tj z̃j

∥s̃j∥2
− 1

)

= Ψ(B̃0) +
k∑

j=0

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j
+ 9c̄ϵj

)
+ ĉ.

Furthermore, similar comments to those for (3.4) and (3.15) indicate

Ψ(B̃k+1) ≥ n and 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j
≤ 0.(3.41)

From (3.40), (3.41), the expressions ln cos2 θ̃j ≤ 0 and
∑∞

k=0 ϵk < ∞, we see
that {Ψ(B̃k)} is bounded, and since

n−
k∑

j=0

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j

)
≤ Ψ(B̃0) +

k∑
j=0

9c̄ϵj + ĉ,

we have

0 ≤ −
k∑

j=0

(
ln cos2 θ̃j + 1− q̃j

cos2 θ̃j
+ ln

q̃j

cos2 θ̃j

)
< ∞.

So we obtain

ln cos θ̃k → 0(3.42)
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and

1− q̃k

cos2 θ̃k
+ ln

q̃k

cos2 θ̃k
→ 0.(3.43)

Expression (3.42) implies

cos θ̃k → 1.(3.44)

Furthermore, since (3.43) and the comments following (3.15) show q̃k
cos2 θ̃k

→ 1,

(3.44) implies

q̃k → 1.(3.45)

Now it follows from (3.44) and (3.45) that

∥(Bk −G(x∗))sk∥2

∥sk∥2
1

∥G(x∗)
1
2 ∥4

≤ ∥(Bk −G(x∗))sk∥2

∥G(x∗)
1
2 sk∥2∥G(x∗)

1
2 ∥2

≤ ∥G(x∗)−
1
2 (Bk −G(x∗))sk∥2

∥G(x∗)
1
2 sk∥2

=
∥(B̃k − I)s̃k∥2

∥s̃k∥2

=
∥B̃ks̃k∥2 − 2s̃Tk B̃ks̃k + ∥s̃k∥2

∥s̃k∥2

=
q̃2k

cos2 θ̃k
− 2q̃k + 1 → 0,

which implies (3.29). Since {Ψ(B̃k)} is bounded, (3.4) implies that there is a
positive constant P such that for all k

P ≥
n∑

j=1

(µ̃k,j − ln µ̃k,j) > 0,

where 0 < µ̃k,1 ≤ · · · ≤ µ̃k,n are the eigenvalues of B̃k. Since this means
P ≥ µ̃k,j − ln µ̃k,j > 0 for all 1 ≤ j ≤ n, there exist positive constants p1 and
p2 such that

p1 ≤ µ̃k,j ≤ p2 for all 1 ≤ j ≤ n,

where p1 and p2 satisfy p1 − ln p1 = P and p2 − ln p2 = P . So we get

∥B̃−1
k ∥2 =

√
ρ(B̃−T

k B̃−1
k ) =

√
ρ
(
(B̃−1

k )2
)
=

1

µ̃k,1
≤ 1

p1
,
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where ρ(A) denotes the spectral radius of the matrix A. Therefore, the upper
bound of ∥B−1

k ∥ is estimated by

∥B−1
k ∥ = ∥G(x∗)−

1
2G(x∗)

1
2B−1

k G(x∗)
1
2G(x∗)−

1
2 ∥

≤ ∥G(x∗)−
1
2 ∥2∥(G(x∗)−

1
2BkG(x∗)−

1
2 )−1∥

≤ ∥G(x∗)−
1
2 ∥2∥B̃−1

k ∥.

Next we verify that αk = 1 is accepted for all k sufficiently large. Since
∥dk∥ = ∥B−1

k gk∥ ≤ ∥B−1
k ∥∥gk∥ → 0 from the boundedness of ∥B−1

k ∥ and
Assumptions B(1) and B(3), by Taylor’s expansion we obtain

f(xk + dk)− f(xk)− σ1g
T
k dk = (1− σ1)g

T
k dk +

1

2
dTkG(xk + tdk)dk

= −(1− σ1)d
T
kBkdk +

1

2
dTkG(xk + tdk)dk

= −
(
1

2
− σ1

)
dTkG(x∗)dk + o(∥dk∥2),

where t ∈ (0, 1) and the last equality follows from (3.29). Thus, f(xk + dk)−
f(xk) − σ1g

T
k dk ≤ 0 is satisfied for all k sufficiently large. This means that

αk = 1 satisfies (2.4) for all k sufficiently large. On the other hand, we have

g(xk + dk)
Tdk − σ2g

T
k dk = (g(xk + dk)− gk)

Tdk + (1− σ2)g
T
k dk

= dTkG(xk + tdk)dk − (1− σ2)d
T
kBkdk

= σ2d
T
kG(x∗)dk + o(∥dk∥2),

where t ∈ (0, 1). Thus, we have g(xk + dk)
Tdk ≥ σ2g

T
k dk, which means that

αk = 1 satisfies (2.5) for all k sufficiently large. From Lemma 3.7 and (3.29),
we can deduce that the sequence {xk} converges superlinearly to x∗.

§4. Practical choices of γk

In this section, we propose three kinds of scaling factors for the msBFGS
method and show the convergence properties with them, respectively. The
convergence properties of the msBFGS method depend on the choices of γk
and ϕk. For the global convergence, it is important to choose γk and ϕk that
satisfy (3.7) and (3.8), and for the superlinear convergence, it is important to
choose them that satisfy (3.26). Li and Fukushima [9] suggested that one of
suitable choices of ϕk for the msBFGS method with γk = 1 is

ϕk = δk∥gk∥,(4.1)



68 K. SUGASAWA AND H. YABE

where δk ∈ [δ, δ̄] (δ and δ̄ are positive constants). This choice may be also
efficient for the convergence properties of the msBFGS method with γk ̸= 1.
Therefore, we choose ϕk in (4.1).

Now, we propose three kinds of scaling factors as follows:

(i) Let Dk be some scaling matrix for Ḡk. Then, we expect that the ms-
BFGS method with Bk which approximates to DkḠk has a numerical stability.
Such Dk must be the matrix which is a rough approximation to Ḡ−1

k . Thus,
we require the relation Dk+1ŷk ≈ sk. Let Dk+1 = γkI for simplicity. By
minimizing the norms ∥sk − γkŷk∥ and ∥ 1

γk
sk − ŷk∥, we have

γ
(1)
k =

ŷTk sk
∥ŷk∥2

and γ
(2)
k =

∥sk∥2

ŷTk sk
,

respectively. Now, we propose the first scaling factor by using the convex

combination of γ
(1)
k and γ

(2)
k as follows

γk = (1− t)γ
(1)
k + tγ

(2)
k ,(4.2)

where t ∈ [0, 1]. If the Wolfe conditions (2.4) and (2.5) are satisfied, then
ŷTk sk > 0 holds. Thus, γk in (4.2) is always positive, which implies that the
msBFGS method with (4.1) and (4.2) generates a descent search direction. For
the msBFGS method with (4.1) and (4.2), we obtain the following convergence
theorem.

Theorem 4.1. Let ϕk and γk be defined by (4.1) and (4.2), respectively. Let
{xk} be the infinite sequence generated by the msBFGS method. Suppose that
Assumption A holds. Then

lim inf
k→∞

∥gk∥ = 0.

Proof. To prove this theorem by contradiction, we assume that there is a con-
stant ε > 0 such that ∥gk∥ ≥ ε for all k. Since dk is a descent search direction
and (2.4) is satisfied, we have xk ∈ Ω for all k. Thus, from Assumption A, ∥gk∥
is bounded above. Therefore, ϕk(= δk∥gk∥) is included in a bounded interval
[0, C] for some C > 0. We note that

ŷTk sk = yTk sk + ϕk∥sk∥2 ≥ ϕk∥sk∥2 = δk∥gk∥∥sk∥2 ≥ δε∥sk∥2.(4.3)



A MODIFIED SCALING BFGS METHOD 69

From (3.12) and (4.3), we have

γk(ρ
(1)
k + ϕk) = γk

ŷTk sk
∥sk∥2

= (1− t)
(ŷTk sk)

2

∥ŷk∥2∥sk∥2
+ t

≥ (1− t)
(δε∥sk∥2)2

(Lg + C)2∥sk∥4
+ t

≥ (1− t)
(δε)2

(Lg + C)2
+ t

≥ min

{
(δε)2

(Lg + C)2
, 1

}
and by (3.13) and (4.3), we obtain

γk(ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k)

ρ
(1)
k + ϕk

= γk
∥ŷk∥2

ŷTk sk

= (1− t) + t
∥sk∥2∥ŷk∥2

(ŷTk sk)
2

≤ (1− t) + t
(Lg + C)2∥sk∥4

(δε)2∥sk∥4

≤ (1− t) + t
(Lg + C)2

(δε)2

≤ max

{
1,

(Lg + C)2

(δε)2

}
.

These imply that inequalities (3.7) and (3.8) hold with m = min
{

(δε)2

(Lg+C)2
, 1
}

and M = max
{
1,

(Lg+C)2

(δε)2

}
for any k ≥ 0. Thus, it follows from Theorem

3.3 that lim infk→∞ ∥gk∥ = 0, which yields a contradiction. Therefore, the
theorem is proved.

(ii) Next, we give another scaling factor. Powell [15] indicated that the
BFGS method suffers more from large eigenvalues of Bk than from small ones
(see also [16]). Thus, we choose

γ
′
k =

(
−l +

∥Bksk∥2

sTkBksk

)
ŷTk sk
∥ŷk∥2

,(4.4)

where l is a positive constant, because taking the trace in the msBFGS formula
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with γ
′
k, we have

Tr(Bk+1) = Tr(Bk)−
∥Bksk∥2

sTkBksk
+ γ

′
k

∥ŷk∥2

ŷTk sk

= Tr(Bk)− l.

This equality shows that the msBFGS update with γ
′
k can decrease the sum

of eigenvalues by −l. Thus, this choice may influence the performance well.
However, we can not obtain the convergence property of the msBFGS method
with γ

′
k and ϕk in (4.1) by using Theorem 3.3. Hence, for given ϕk, we propose

the modified version of (4.4)

γk =


γ

′
k if

γ
′
k(ρ

(1)
k + ϕk) ≥ m
and

γ
′
k(ρ

(2)
k + 2ϕkρ

(1)
k + ϕ2

k) ≤ M̄(ρ
(1)
k + ϕk),

1 otherwise,

(4.5)

where m and M̄ are positive constants. If the Wolfe conditions are satisfied,

then ρ
(1)
k ≥ 0 holds and then γk in (4.5) is always positive. Therefore, the

msBFGS method with (4.1) and (4.5) generates a descent search direction.
The following theorem shows the global convergence of the msBFGS method

with (4.1) and (4.5).

Theorem 4.2. Let ϕk and γk be defined by (4.1) and (4.5), respectively. Let
{xk} be the infinite sequence generated by the msBFGS method. Suppose that
Assumption A holds. Then

lim inf
k→∞

∥gk∥ = 0.

Proof. To prove this theorem by contradiction, we assume that there is a
constant ε > 0 such that ∥gk∥ ≥ ε for all k. For the case γk = 1, expressions
(3.12) and (4.3) yield

γk(ρ
(1)
k + ϕk) =

ŷTk sk
∥sk∥2

≥ δε

and equation (3.13) implies

γk(ρ
(2)
k + 2ϕkρ

(1)
k + ϕ2

k)

ρ
(1)
k + ϕk

=
∥ŷk∥2

ŷTk sk

≤ (Lg + C)2∥sk∥2

δε∥sk∥2

=
(Lg + C)2

δε
.
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Thus, these imply that inequalities (3.7) and (3.8) hold with m = min {δε,m}
and M = max

{
(Lg+C)2

δε , M̄
}

for any k. It follows from Theorem 3.3 that

lim infk→∞ ∥gk∥ = 0, which yields a contradiction. Therefore, the theorem is
proved.

(iii) The msBFGS methods with the above two scaling factors (4.2) and
(4.5) have the global convergence properties, but do not necessarily have the
superlinear convergence. To establish the superlinear convergence, we propose
the following scaling factor based on (4.2):

γk =

{
(1− t)γ

(1)
k + tγ

(2)
k if ∥gk∥∞ > ξ,

1 otherwise,
(4.6)

where t ∈ [0, 1] and ξ is a positive constant. If the Wolfe conditions are sat-
isfied, then ŷTk sk > 0 holds. Therefore, γk in (4.6) is always positive. Finally,
we show the global and superlinear convergence of the msBFGS method with
(4.1) and (4.6).

Theorem 4.3. Let ϕk and γk be defined by (4.1) and (4.6), respectively. Let
{xk} be the infinite sequence generated by the msBFGS method. Suppose that
Assumption A holds. Then

lim inf
k→∞

∥gk∥ = 0.

In addition, if Assumptions B(1)-(3) hold and the parameter σ1 in (2.4) is
chosen to satisfy σ1 ∈

(
0, 12
)
, then the sequence {xk} converges to x∗ superlin-

ealy.

Proof. To prove the first part of this theorem by contradiction, we assume
that there is a constant ε > 0 such that ∥gk∥ ≥ ε holds for all k. For the

case γk = (1− t)γ
(1)
k + tγ

(2)
k , the proof of Theorem 4.1 implies that (3.7) and

(3.8) hold for m = min
{

(δε)2

(Lg+C)2
, 1
}

and M = max
{
1,

(Lg+C)2

(δε)2

}
. Similarly,

for the case γk = 1, the proof of Theorem 4.2 implies that (3.7) and (3.8) hold

for m = δε and M =
(Lg+C)2

δε . Therefore, the msBFGS method with ϕk in

(4.1) and γk in (4.6) satisfy (3.7) and (3.8) for m = min
{
δε, (δε)2

(Lg+C)2
, 1
}

and

M = max
{

(Lg+C)2

δε ,
(Lg+C)2

(δε)2
, 1
}
for any k. Thus, it follows from Theorem 3.3

that lim infk→∞ ∥gk∥ = 0, which yields a contradiction. Therefore, we obtain
the first result.

In addition, suppose that Assumptions B(1)-(3) hold. Assumptions B(1)
and B(3) imply that γk = 1 holds for k sufficiently large. Thus, Assumption
B(4) is fulfilled and we get

∑∞
k=0 |γk − 1| < ∞. Since Assumptions A and B
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hold, it follows from Lemma 3.5 that
∑∞

k=0 ∥xk − x∗∥ < ∞ is satisfied. Thus,
the relation

ϕk = δk∥gk∥ ≤ δ̄∥gk − g(x∗)∥ ≤ δ̄Lg∥xk − x∗∥

yields

∞∑
k=0

ϕk < ∞.

It follows that {γk} and {ϕk} satisfy (3.26), i.e., Assumption C is fulfilled.
Therefore, from Theorem 3.8, we obtain the superlinear convergence.

§5. Numerical experiments

In this section, we show some numerical experiments. We used the 132 nonlin-
ear unconstrained optimization problems in the CUTEr library [3]. We chose
the test problems whose dimensions were between 499 and 1000. In Table 1,
we give the methods examined in our experiments.

Table 1. Methods examined in our experiments

Method
number

Method name Note

(1) msBFGS use ϕk in (4.1) and γk in (4.2)
(2) msBFGS use ϕk in (4.1) and γk in (4.5)
(3) msBFGS use ϕk in (4.1) and γk in (4.6)
(4) standard BFGS ——–
(5) sized BFGS size B0 by wIOL

0

(6) spectral scaling BFGS Cheng and Li [5]

In order to compare the proposed method with some existing BFGS type
methods, we tested the standard BFGS, sized BFGS method, spectral scaling
BFGS method and the msBFGS method based on (4.1), (4.2), (4.5) and (4.6).
We number from (1) to (6) in Table 1. we tested the sized BFGS method
(Method (5)) in which we sized B0 only at the first iteration by the inverse

Oren - Luenberger parameter ωIOL
0 =

y0B
−1
0 y0

yT0 s0
. The spectral scaling BFGS

method (Method (6)) corresponds to Method (1) with ϕk = 0 and t = 0,
which is the Cheng - Li method.

All codes were written in C and run on a PC with 3.40 GHz CPU processor,
2.0GB RAM memory, and Linux operating system. We show the numerical
results in Figures 1-5. In Figures 1-3, we stopped the iteration if the inequality

∥gk∥∞ ≤ 10−6
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was satisfied, or if CPU time exceeded 600 seconds, and in Figures 4 and 5,
we stopped the iteration if the inequality

∥gk∥∞ ≤ 10−8

was satisfied or if CPU time exceeded 600 seconds. For all examined methods,
we chose the initial matrix B0 = I. For each method, to get the search
direction dk, we did not solve the linear system of equations Bkdk = −gk.
Instead we used the inverse updating formula as follows

Hk+1 = Hk −
Hkŷks

T
k + sk(Hkŷk)

T

ŷTk sk
+

(
1

γk
+

ŷTk Hkŷk

ŷTk sk

)
sks

T
k

ŷTk sk
.

In the line search, the step size αk was obtained so as to satisfy the Wolfe
conditions:

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk,

g(xk + αkdk)
Tdk ≥ σ2g

T
k dk,

where we chose σ1 = 10−3 and σ2 = 0.5.
We adopt the performance profiles by Dolan and Moré [8] to compare the

performance of the methods based on the CPU time. We introduce the per-
formance profile by Dolan and Moré. We assume that we are concerned with
the set of solvers S, which has ns solvers, and the test set P, which has np

problems. For each problem p and solver s, let us define

tp,s = computing time required to solve problem p by solver s,

rp,s =
tp,s

min {tp,s : s ∈ S}

and

ρs(ν) =
1

np
|{p ∈ P : rp,s ≤ ν}| .

The function ρs(ν) is the probability for solver s ∈ S that a performance ratio
rp,s is within a factor ν ∈ R of the best performance ratio. In Figures 1, 2 and
3, the function ρs(ν) distributes the curve, and the top curve is the method
which solved the most problems in a result that is within a factor ν of the best
result.
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Table 2. The parameter in a preliminary experiment

Method number Values of parameters

(1) t ∈ {0, 0.25, 0.5, 0.75, 1}, δk ∈ [0, 10]

(2) l ∈ {10−2, 10−1, 1, 10}, m, M̄ ∈ [10−7, 107], δk ∈ [0, 10]

(3) t ∈ {0, 0.25, 0.5, 0.75, 1}, ξ ∈ [10−2, 102], δk ∈ [0, 10]

As a preliminary experiment, we chose the value of parameter for Method
(1), (2), (3) in Table 2. In Figure 1, we examine Method (1) in which we
always choose t = 1 and vary the value of δk. Figure 1 implies that Method
(1) with t = 1 has the tendency that the choice of the small value for δk
performs well. In our experiments, Methods (1), (2) and (3) have the similar
tendency. However, the influence of δk is different a little for each method. As
shown in Figure 1, in some methods, by letting δk be a small positive value,
the performance becomes rather better than the case δk = 0. Meanwhile, in
some methods, even if we let δk be a small positive value, the performance
dose not. In Figure 2, we examine Method (1) in which we always choose
δk = 10−5 and vary the value of t. Figure 2 shows that the parameter t hardly
affects the performance of Method (1). Moreover, in Method (3), we also find
that the parameter t does not have big influence on computational efficiency.

Table 3. The parameter values which give good numerical results

Method number Values of the parameters

(1) t = 1, δk = 10−5

(2) m = 10−2, M̄ = 104, l = 10−2, δk = 10−6

(3) t = 1, ξ = 10, δk = 10−5

Next, we choose t = 1 and compare Methods (1)-(6). For this comparison,
we first changed the parameter values in the range of Table 2 except t (however,
the case δk = 0 is removed), and investigated which parameter values gave
good numerical results for every method. We show such values in Table 3.
In Figure 3, we compare numerical performance of Methods (1)-(6) with the
parameter values in Table 3. Figure 3 implies that Method (2) is the best
solution, Method (3) is the second and Method (1) is the third. Hence, the
msBFGS method with a suitable choice of the parameter values is superior to
the standard BFGS method from the viewpoint of the CPU time. In particular,
we observe that reducing the trace of Bk by Method (2) is efficient. However,
Method (2) with l = 1 and 10 did not perform better than the standard
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BFGS method even if we suitably chose m, M̄ and δk. Thus, it is preferable
to select a small value for l. Furthermore, the results of Methods (1) and
(3) imply that switching the scaling factor by (4.6) is efficient owing to the
superliner convergence property of Method (3). In order to investigate the
local behavior of Methods (1) and (3) with the parameter values in Table 3,
in Figures 4 and 5, we compare the numerical results for solving the Extended
Rosenbrock function (the problem 21 in [10]). These figures present the values
of log10 |fk−f∗|, where f∗ denotes the optimal value. We can find that Method
(3) converges superlinearly for the Extended Rosenbrock function, but Method
(1) dose not.

From the above observations, by choosing the parameter values suitably,
our method performs effectively on the CPU time. Though we show the results
only for the case t = 1 in Figure 3, we obtain similar results to Figure 3 for the
other cases t (∈ {0, 0.25, 0.5, 0.75}), by selecting the parameter values suitably.
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　　 Figure 1. The case of choosing t = 1 and varying δk in Method (1)
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§6. Conclusion

In this paper, we have proposed a modified scaling BFGS method (msBFGS)
for unconstrained minimization, and proved the global and superliner con-
vergence of our method. In addition, we have applied concrete parameters
(scaling factors) to the msBFGS method, proved its convergence properties
and done the numerical experiments. The numerical results show that our
methods perform better in general than the standard BFGS method. As fur-
ther works, we would apply a scaling factor to other updating formulas.
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[7] J.E. Dennis, Jr. and J.J. Moré, Quasi-Newton methods, motivation and theory,
SIAM Review 19 (1977), 46-89.
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