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Abstract. For the analysis of square contingency tables, many kinds of sym-
metry models have proposed. The present paper proposes a new kind of sym-
metry model, and gives a decomposition of the new model by introducing an
extended model of it. Moreover, it shows the orthogonality of statistic for test-
ing goodness-of-fit of the new model. Two unaided vision data analyses are also
shown.
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§1. Introduction

For analyzing the data of a square contingency table such as Tables 1 and
2, one usually uses the well-known symmetry (S) model (Bowker [1]) and its
many extended models, for example, the conditional symmetry (CS) model
(McCullagh [2]) and so on. Table 1, taken directly from Tomizawa [5], is the
data of the unaided distance vision of 3168 pupils aged 6-12 including about
half girls at elementary schools in Tokyo, Japan, examined in June 1984. Table
2, taken directly from Stuart [4], is the data of the unaided distance vision of
7477 women aged 30-39 employed in Royal Ordnance factories in Britain from
1943 to 1946. In Tables 1 and 2 the row variable is the right eye grade and
the column variable is the left eye grade with the categories ordered from the
lowest grade (1) to the highest grade (4).
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Table 1: Unaided distance vision of 3168 pupils aged 6-12, including about
half the girls at elementary schools in Tokyo, Japan examined in June 1984;
from Tomizawa [5]. (The parenthesized values are the maximum likelihood
estimates of expected frequencies under the SS model.)

Left eye grade
Lowest Second Third Highest

Right eye grade (1) (2) (3) (4) Total

Lowest (1) 92 16 7 12 127
(92.00) (15.50) (6.00) (10.78)

Second (2) 15 75 42 10 142
(15.50) (75.00) (37.72) (15.50)

Third (3) 5 33 138 96 272
(6.00) (37.22) (138.00) (111.00)

Highest (4) 10 21 126 2470 2627
(11.28) (15.50) (111.00) (2470.00)

Total 122 145 313 2588 3168

Table 2: Unaided distance vision of 7477 women aged 30-39 employed in Royal
Ordnance factories from 1943 to 1946; from Stuart [4]. (The parenthesized
values are the maximum likelihood estimates of expected frequencies under
the CSS model.)

Left eye grade
Lowest Second Third Highest

Right eye grade (1) (2) (3) (4) Total

Lowest (1) 492 179 82 36 789
(492.00) (177.83) (74.09) (37.53)

Second (2) 205 1772 362 117 2456
(206.17) (1772.00) (377.40) (111.60)

Third (3) 78 432 1512 234 2256
(85.91) (417.31) (1512.00) (231.55)

Highest (4) 66 124 266 1520 1976
(63.76) (129.40) (268.45) (1520.00)

Total 841 2507 2222 1907 7477

It seems natural to see the degree of an individual’s eye grade as the sum of
the grades of both of right and left eyes. Thus, we define the degree of an in-
dividual’s eye grade as the sum of his/her right and left eye grades throughout
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this paper.

In this paper, thus, we propose a new kind of symmetry model to represent
such a structure, and give a decomposition of the new model by introducing
an extended model of it. In addition, we show the orthogonality of the test
statistics for decomposed models.

§2. New models

Consider a square r × r contingency table with row variable X, and column
variable Y . Let pij denote the probability that an observation will fall in the
ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r).

Consider a model defined by

Pr(X + Y = t,X < Y ) = Pr(X + Y = t,X > Y ) (3 ≤ t ≤ 2r − 1).

We shall refer to this model as the sum-symmetry (SS) model. The SS model
is also expressed as∑∑

(i,j)∈R(t)

pij =
∑∑
(i,j)∈R(t)

pji (3 ≤ t ≤ 2r − 1),

where

R(t) = {(i, j) | i+ j = t, i < j}.

We note that when r = 3, the SS model is equivalent to the S model.

If the SS model holds for the vision data like Tables 1 and 2, the probability
that the degree of the eye grade for an individual whose left eye grade is greater
than his/her right eye grade, is t (3 ≤ t ≤ 2r − 1), is equal to the probability
that the degree of the eye grade for the individual whose right eye grade is
greater than his/her left eye grade, is t.

Consider an extension of the SS model as follows:

Pr(X + Y = t,X < Y ) = ∆Pr(X + Y = t,X > Y ) (3 ≤ t ≤ 2r − 1),

where the parameter ∆ is unspecified. Then, this model may be expressed as

Pr(X + Y = t|X < Y ) = Pr(X + Y = t|X > Y ) (3 ≤ t ≤ 2r − 1).

So we shall refer to this model as the conditional SS (CSS) model. The CSS
model is also expressed as∑∑

(i,j)∈R(t)

pij = ∆
∑∑
(i,j)∈R(t)

pji (3 ≤ t ≤ 2r − 1).
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A special case of the CSS model obtained by putting ∆ = 1 is the SS model.
Also we note that when r = 3, the CSS model is equivalent to the CS model.

If the CSS model holds for the vision data, the probability that the degree
of the eye grade for an individual whose left eye grade is greater than his/her
right eye grade, is t (3 ≤ t ≤ 2r − 1), is ∆ times higher than the probability
that the degree of the eye grade for the individual whose right eye grade is
greater than his/her left eye grade, is t.

§3. Decomposition of the SS model

Read’s [3] global symmetry (GS) model is defined by

Pr(X < Y ) = Pr(X > Y ).

This model is also expressed as∑∑
i<j

pij =
∑∑

i<j

pji.

Then we obtain the following theorem:

Theorem 1. The SS model holds if and only if both the CSS and GS models
hold.

Proof. If the SS model holds, then the CSS and GS models hold. Assuming
that both the CSS and GS models hold, then we shall show that the SS model
holds. From the assumption that the CSS model holds, we have

2r−1∑
t=3

Pr(X + Y = t,X < Y ) = ∆
2r−1∑
t=3

Pr(X + Y = t,X > Y ),

thus, we see
Pr(X < Y ) = ∆Pr(X > Y ).

Since the GS model holds, we obtain ∆ = 1. Namely the SS model holds, so
the proof is completed.

§4. Goodness-of-fit test

Let nij denote the observed frequency in the (i, j)th cell of the table (i =
1, . . . , r; j = 1, . . . , r). Assume that a multinomial distribution is applied to the
r×r table. The maximum likelihood estimates (MLEs) of expected frequencies
{mij} under the SS, CSS and GS models, are expressed as the closed-forms
as follows:
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(a) The MLE of mij under the SS model is

m̂ij =



U(t) + L(t)

2U(t)
nij (i+ j = t, i < j)

nij

N
(i = j)

U(t) + L(t)

2L(t)
nij (i+ j = t, i > j),

where

U(t) =
∑∑

i+j=t
i<j

nij , L(t) =
∑∑

i+j=t
i<j

nji (3 ≤ t ≤ 2r − 1).

(b) The MLE of mij under the CSS model is

m̂ij =



U

U + L
· U(t) + L(t)

U(t)
nij (i+ j = t, i < j)

nij

N
(i = j)

L

U + L
· U(t) + L(t)

L(t)
nij (i+ j = t, i > j),

where
U =

∑∑
i<j

nij , L =
∑∑

i<j

nji.

(c) The MLE of mij under the GS model is

m̂ij =



U + L

2U
nij (i < j)

nij

N
(i = j)

U + L

2L
nij (i > j).

Each model can be tested for goodness-of-fit by, e.g., the likelihood ratio
chi-squared statistic with the corresponding degrees of freedom (df). The
likelihood ratio statistic for testing goodness-of-fit of model Ω is given by

G2(Ω) = 2

r∑
i=1

r∑
j=1

nij log

(
nij

m̂ij

)
,

where m̂ij is the MLE of expected frequency mij under model Ω. The numbers
of df for the SS, CSS and GS models are 2r − 3, 2(r − 2), and 1, respectively.
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§5. Orthogonality of test statistics

Theorem 2. The test statistic G2(SS) is equal to the sum of G2(CSS) and
G2(GS).

Proof. From Section 4, we see that the (nij/m̂ij) under the SS model is equal
to the product of the (nij/m̂ij) under the CSS model and that under the GS
model. Therefore, the proof is completed.

§6. Examples

6.1. Example 1

Consider the data in Table 1. From Table 3 we see that the SS model fits
these data well. Also the CSS and GS models fit these data well. According
to the test (at the 0.05 level) based on the difference between the likelihood
ratio chi-squared values of two nested models, the SS model may be preferable
to the other models.

Under the SS model, the probability that the degree of the eye grade for
a pupil whose left eye grade is greater than his/her right eye grade, is t (3 ≤
t ≤ 2r − 1), is estimated to be equal to the probability that the degree of the
eye grade for the pupil whose right eye grade is greater than his/her left eye
grade, is t.

Table 3: Likelihood ratio statistic G2 for models applied to the data in Tables
1 and 2.

Applied For Table 1 For Table 2
Model df G2 p-value df G2 p-value

SS 5 9.673 0.085 5 15.299∗ 0.009
CSS 4 7.817 0.099 4 3.403 0.493
GS 1 1.856 0.173 1 11.896∗ < 0.001

*means significant at 5% level

6.2. Example 2

Consider the data in Table 2. The SS model fits the data in Table 2 poorly.
Also, the GS model fits these data poorly, however, the CSS model fits these
data well. Therefore, it is seen from Theorem 1 that the poor fit of the SS
model is caused by the influence of the lack of structure of the GS model rather
than the CSS model.
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Under the CSS model, the MLE of ∆ is 0.86. Thus, under the CSS model,
the probability that the degree of the eye grade for a woman whose right eye
grade is greater than her left eye grade, is t (3 ≤ t ≤ 2r−1), is estimated to be
1.16 (= 0.86−1) times higher than the probability that the degree of the eye
grade for the woman whose left eye grade is greater than her right eye grade,
is t. Namely, a woman’s right eye is estimated to be better than her left eye.

§7. Concluding Remarks

In this paper we have proposed the decomposition for the SS model into the
CSS and GS models. This decomposition (i.e., Theorem 1) may be useful for
seeing a reason for the poor fit of the SS model.

In addition, we point out that the likelihood ratio chi-squared statistic for
testing goodness-of-fit of the SS model assuming that the CSS model holds
true, is G2(SS) − G2(CSS) and this is equal to the likelihood ratio chi-
squared statistic for testing goodness-of-fit of the GS model, i.e., G2(GS)
(from Theorem 2). We observe that for the data in Tables 1 and 2 the value
of G2(SS) is exactly equal to the sum of the values G2(CSS) and G2(GS).
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