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Geometry of charged rotating black hole
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Abstract. Some geometrical aspects of the Kerr-Newman black hole and its
special cases have been studied. It is seen that the Gaussian curvature of the
two or three dimensional induced metrics on some hypersurfaces outside of these
black holes can be expressed in terms of the eigen values of the characteristic
equation and depend upon the physical parameters which describe these black
holes.
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8§1. Introduction

In 1965, Newman et al. [1] have obtained a solution of Einstein-Maxwell equa-
tions. The corresponding metric in spherical coordinates (r, 6, ¢, t) is given by

2]
2 4+ a? cos? 0
r2+a?2+e2—-2mr

(1.1)  ds* = < > dr? + (r* + a* cos® 0)d*

a’®sin? (2mr — €?) i
r2 + a? cos? 6
B <2aSin20(2mT_62))d¢dt— (1 2mr — e? >dt2.

r2 + a?cos? 0 r2 4+ a2 cos? 6

+sin% 6 [7"2 +a®+

The solution (1.1) is now commonly known as Kerr-Newman solution and
represents the exterior gravitational field of a charged rotating mass; it con-
tains three real parameters; m (mass), e (charge) and a (angular momentum
per unit mass). The Kerr-Newman metric is a generalization of other exact
solutions of Einstein-Maxwell equations in general relativity and reduces to
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(i) Kerr metric - if the charge e is zero,
(ii) Reissner-Nordstrém metric - if the angular momentum a is zero,

(iii) Schwarzschild metric - if both the charge e and angular momentum a are
zero,

(iv) Minkowski metric - if the gravitational constant G is zero.

The Kerr-Newman solution with cosmological constant equal to zero, is
also a special case of more general exact solution of the Einstein-Maxwell
equations [1]. The Kerr-Newman solution (1.1) is of Petrov type D with non-
null electromagnetic field. This solution defines a black hole with an event
horizon only when the following relation is satisfied

(1.2) a? + e <m?.

It is known that rotating black holes are formed due to the gravitational
collapse of a massive spinning star or from the collapse of a collection of stars
or gas with a total non-zero angular momentum. Since most of the stars
rotate, it is expected that most of the black holes in nature are rotating and
thus Kerr-Newman solution represents the gravitational field outside a charged
rotating black hole.

Motivated by the all important role of rotating black holes, in this paper, we
have studied some geometric aspects of Kerr-Newman black hole and discussed
the special cases of this black hole.

§2. Kerr-Newman black hole

The non-zero components of the potential for the gravitation or the metric
tensor for Kerr-Newman spacetime (1.1) in spherical coordinates (6, ¢,t)
are given by

C D
(2.1) g1 = I goo = C, g33 = sin? 9[r2 +a%+ EaQ sin? 0],
D D
g44=<1c>, 93429432*5(26181&9)7
where

(2.2) C =7r?4a*cos’0, D =2mr—e?, E=r’+a*+e*—2mr =r’4+ad*>—D.
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The non-zero components of the Christoffel symbols, using equations (2.1),
can be calculated from the formula [5]

(2:3) G = 9" T
_ 1 [agzy‘ _ 99k | 3gkz}
2 |’

ork Ot oxJ

and are given by equations (Al — A17). While the non-zero components of
the Riemann curvature tensor for the Kerr-Newman solution (1.1) can be
calculated from the formula (cf., [5])

1( ga Py Pgi Py
2\ 0ziozk = Oxi0x! Oxidx!  Oxidxk

+gmn(1—‘;‘rllc Z_F;‘? ?k)

(2.4) Riji =

by using equations (2.1) and (Al — Al7), and are given by the equations
(B1 — B12). Equations (Al — A17) and (B1 — B12) are listed in Appendix.

Now for the non-singular case, we can use a 6-dimensional formalism in the
pseudo-Euclidean space R® and can move to the 6-dimensional formalism by
making the identification

i3: 23 31 12 14 24 34

(2:5) A1 2 3 4 5 6

We also introduce the metric tensor as
(2.6) 9ik9jl — 9i9ik = Gijkl — GAB,

where A, B =1,2,3,4,5,6 and g;; are the components of the metric tensor at
an arbitrary point of the charged rotating black hole. The tensor gap (A, B =
1,2,3,4,5,6) is symmetric and non-singular.

The non-zero components of the metric tensor gap are given by

(2.7)  gi1(z®) = sin?0[(D + E)C + a*Dsin’ 6],

o 26

G22(z%) = 22 [(D + E)C + a*Dsin® ),

.. . D-C _ .

933(m ):fv .944(m ): E 3 g55(IE ):D_Ca
sin®

Go6 (%) = = [{(D + E)C + a®Dsin? 6}(D — C) — (a®Dsin? §)?],

~ a —aDsin?0 .
924(1' ) = ?, 915(37 ) = —aD SlH2 0

In a similar way, we can transform the components of the Riemann curva-
ture tensor as R;ji; — Rap. Thus, for example R1234 can be written as Rzg
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(using identification (2.5)) and is same as equation (B2). The non-zero com-
pOIleIltS of the tensor EAB are /th EQQ, §33, §44, §55, §667 §367 §24, Egl, §25,
}Aﬁu, }?545, }?315 and are given by (B1— B12) under the identification (2.5). This
consideration enables us to find a canonical form of the A-tensor R AB — AJAB-
The solutions of the characteristic equation \f{ AB — Agap| = 0lead to the eigen
values for the Kerr-Newman spacetime. As such it is difficult to find the eigen
values as the calculations are very long but the procedure for finding the eigen
values has been illustrated for the very similar case of Reissner-Nordstrom
solution in the next section.

Consider now the case when § = 0 or § = 7 then equation (1.1) reduces to
(as 6 is constant, d0=0)

(2.8) ds* = Pdr? — P~ 'dt?,
where
(2.9) pP= iy

24 a?4e2 - 2mr’
The metric tensor, in coordinates (r,t) is given by

P 0
(2.10) =, _1)
P

where 4,5 = 1,4. Thus the induced metric on the hypersurface ﬁg (when 0 =
0 or § = 7) of the charged rotating black hole degenerate to a 2-dimensional
metric.

For a 2-dimensional case, the Riemann curvature tensor has only one inde-
pendent non-zero component, which for the metric (2.8) is given by

2mr(3a® — r?) + r2e? — a%e?

(2.11) Ri414 =

(r2 4+ a?)3
a(ma? + re? — mr?) 1+ ma?® + re? — mr?
(r2 4+ a2)3 (r24+a?+e2—2mr) |’

Moreover, the Gaussian curvature of the 2-dimensional metric is given by

=~ Ri14
2.12 K(z%) = — = —Ri414,
(2.12) (%) det gi; 1414
where det (g;;) = —1. It may be noted that this Gaussian curvature, expressed

in terms of the only non-zero component of Riemann curvature tensor, depends
on the parameters characterizing the charged rotating black hole.
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83. Special Cases

Since the Kerr-Newman solution (1.1) is the generalization of other known
solutions of Einstein and Einstein-Maxwell equations, so we shall consider the
following special cases. These considerations will help us to understand yet
another geometrical aspect of black holes.

(i) Kerr black hole
When charge e = 0 then the metric (1.1) reduces to

(3.1)

s 72 + a? cos? f
ST = —_—mm
r2 + a2 — 2mr

) dr? + (r* + a* cos® 0)do>
2 20 2
a”sin” 6(2mr) i
r2 + a?cos? 6§
damr sin? 6 2mr
— 55 | dodt — (1 — ——— | dt*.
<r2+a2cos29> ¢ ( r2+a200829>

Equation (3.1) is the well known Kerr metric.

The non-zero components of the Christoffel symbols and Riemann curva-
ture tensor can easily be obtained for the solution (3.1) by taking e = 0 in
equations (Al — A17) and (B1 — B12), respectively. Using the identification

(2.5), the components of metric tensor (2.6) in 6-dimensional formalism are
given by

+sin%0 {73 +a®+

(3.2)
g11(z*) = sin? 0[(D* + E*)C + a*>D* sin? 0],
Goo (%) = 5122*9 [(D* + E*)C + a®D* sin2 4],
@) = S G = 22 e =0 -,
. sin? # X % 2k el 2 ¥ 2% 2 )2
ges (%) = ﬁ[{(l) + E*)C + a*D*sin“ 0}(D* — C) — (a*D* sin” 6)~],
g24(z%) = —aD;sin26?, G15(z%) = —aD* sin? 6,

where

(3.3) D* =2mr, E* =12 +a* - 2mr.

We can also transform the components of Riemann curvature tensor as R;jr; —
Rap. When 6 =0 or § = 7, then equation (3.1) leads to

ds? = Qdr? — Q7 'dt?,
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where

r2+a2
24 a2 -2mr’

Q

Thus the induced metric on the hypersurface of the Kerr black hole de-
generates to a 2-dimensional metric; and the Gaussian curvature of this 2-
dimensional metric is

2mr(3a® —r?)  a(ma® — mr?) ma? — mr?

1 .
(r2 4+ a2)3 + (r2 4+ a?)3 + (r2 +a? —2mr)

K(z%) =

This shows that the Gaussian curvature of the 2-dimensional metric depends
upon the mass and angular momentum of the black hole.
(ii) Reissner-Nordstrom black hole

When a = 0, the Kerr-Newman metric, given by (1.1), reduces to

2
(3.4) ds? = (M) dr? + r2d6? + r? sin® Od¢?

r2 -t
- dt?.
r2 4+ e2 —2mr

Equation (3.4) represents the metric of the charged black hole and is known as
Reissner-Nordstrom black hole. We shall now discuss in detail the geometry
of this black hole.

The gravitational potential for the metric (3.4) in spherical coordinates
(r,0,¢,t) is given by

”
r2+e2 —2mr 02 0 0
(0 — 0 r 0 0
(85)  gy(=%) = 0 0 7r2sin26 0
0 0 0 r2+e2 —2mr

r2

The non-zero components of the Christoffel symbols and Riemann curva-



GEOMETRY OF CHARGED ROTATING BLACK HOLE 135

ture tensor for the solution (3.14) are given by

2 2

e —mr
3.6 I, =
(36) B r(r2 4+ €2 — 2mr)’

—(r? 4+ €2 — 2mr)

I3, =
22 r ’
1 (r? + €2 — 2mr)sin 0
I35 =— J
r
1 (r? 4+ €2 — 2mr)(—mr + €?)
Ly = 5 )
1
Il =13 =-
12 2= 05
I'2, = —sinf cosb,
1
IS, =T% = -
13 31 r’

IS, =T3, = cot b,

(re? — mr?)

F = F =
14 a1 r(r? +e2 —2mr)’
and
2
e’ —mr
3.7 Rigg = —— ™"
(37) PRI e oy
2
e — 2mr
Riq1a = —a

Rasp3 = sin? (2mr — €?),
(mr — €?)(r? + e — 2mr)

Rosoq = - ;

2
. e“ —mr
R3131 = Sln2 0 o5 9 o)
re 4 e —2mr

sin? @(mr — e2)(r? + €2 — 2mr)
1 :

R3y34 = "

Moreover, for the 6-dimensional formalism, using identification (2.5) and
equation (2.6), the non-zero components of the metric tensor are

4 32
~ 4.2, o~ _ risin®f
(38) gll($a> =T s 0) 922($a> - TQ + 62 — 2m7"7
N rd .
g33(z) ;o gu(z®) = -1,

2+ e2—2mr

Gs5(z%) = 2mr — r? — €2, Ges(z®) = (2mr — 12 — €2) sin? 6.
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While the non-zero components of §A B are given by
(3.9) Ri1(z%) = sin 0(2mr — €2),

~ 2 _2mr
Roo(2®) = sin® 0
22(2%) = sin (r2+e2—2mr>’
2

~ e —mr
Rgs(a®) = 0
33(27) r2 4+ e2 —2mr’
~ e? — 2mr
Rua®) = ==,
~ (€2 —2mr)(r? + €% — 2mr)
Rss(2) = | )
§66($a) _ sin? O(mr — 62)(7‘2 +e2 — 2mr)

rd

Now, it only remains to find the canonical form of the A-tensor R AB—AJAB-
It can easily be shown that the solution of the characteristic equation

|Rap — Agap| =0

is given by
2mr — e2
(310) )\1(7“) = )\4(T> = 7’74
or
3e? —mr
(3.11) A2(r) = A3(r) = As(r) = Xe(1) = ———

r

It may be noted that \;(i = 1,2,3,4,5,6) can be treated as the eigen values
(see [3]).

Consider now the case when # = 0 or § = 7 (the hypersurface H 0 Or H )
so that the 4-dimensional space of the charged black hole (3.4) degenerates to
2-dimensional metric given by

(3.12) e g (Y e
' C\r24+e2—2mr r2 +e2 —2mr '

The only non-zero component of the Riemann curvature tensor for the 2-
dimensional metric (3.12) is given by

- ez — 2mr
(3.13) R1414(x0‘) = .

rd
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Thus, the Gaussian curvature K of the 2-dimensional induced metric on the

hypersurface H o Or H = 18

- _« ﬁ [} 2 .2
R = 1414(1:): mr e'

(3.14) — -
|gij|
From equations (3.10) and (3.14) it may be noted that the curvature of

the 2-dimensional metric on the hypersurface Hg or H, induced from the
Reissner-Nordstrom metric is related to the eigen values A or A\y. That is the
Gaussian curvature of the 2-dimensional metric is expressed in terms of the
A-tensor.

While for the case 2m < r < 00, 0 < § < 7 and ¢ = 0, equation (3.4)
reduces to

2 r? 2 2 192 r? - 2
(3.15) ds® = <> dr® 4+ r=df* — <> dt*.
2mr

r2 4 e2 — 2mr r2 4 e2 —
Here )
r
0 0
r2 4 e2 — 2mr

*g,] = 0 7"2 0
r2+e2 —2mr
0 0 ———3

r

The only non-zero components of the Riemann curvature tensor for the
3-dimensional metric (3.15) are given by

2

e* —mr
3.16 *R N=————
(3.16) 1212(2%) r2+e2 —2mr’
2
. e’ —2mr
Rig14(2%) = —a
. (€2 —mr)(r? + €2 — 2mr)
Rogoa(z®) = " :

So that the sectional curvatures for 3-dimensional metric at each point z® =
(r,0,t) is given by the following three quantities

. *R2424(.%'a) . 62 —mr

3.17a K (2%) = - ,
(3.17) (@) = ) =
*R1414 (:Z,‘a) 2mr — 62
3.17b *Ko(2®) = — :
(3.170) 2(a7) = L =
* « 2
(3.17¢) (o) = Pzie(@?) el mmr

*g1a] 7t
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where 2t = r, 22 = 0, 2! =t and *go4 denotes the sub-matrix of *g;; corre-

sponding to ' = 7.

From equations (3.10), (3.11) and (3.17) it may be noted that the sectional
curvature of the 3-dimensional spacetime of Reissner-Nordstrom black hole
can be expressed in terms of a A-tensor which happens to be the solutions
(eigen-values) of the characteristic equation ]ﬁ AB — Agap| = 0.

(iii) Schwarzschild Black hole

When we take a = e = 0 in equation (1.1), the Kerr-Newman black hole
reduces to Schwarzschild black hole and in such case the gravitational field
has been discussed by Borgiel [4].

84. Conclusion

An attempt has been made to investigate some geometrical properties of
charged rotating black holes. Different cases that arise from this black hole
have been considered and the case of Reissner-Nordstrom solution (charged
black hole) has been discussed in detail to illustrate the procedure for ob-
taining the solutions of the characteristic equation |§AB — Agag| = 0. It is
seen that the sectional curvature of the two and three dimensional metrics on
the above hypersurfaces induced from the Riessner-Nordstrém metric of these
black holes can be expressed in terms of the solutions of the characteristic
equation and depends upon the parameters which describe these black holes.
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Appendix
Cm—r)+Er
1 _
2ADsin 6 cos
A2) Tl =2 .
(42) T, (AB + a2D2sin? 0)C
—rk
(43) Th=—.
Esin? 0{rC? — (mC +rD)a?®sin? 6
(Ag) 1, = DR nC D)t 0]
aE sin? 0
E(mC —rD
2 .
o a“sinfcost
A8) T2, =_.
(48) Th="
—a?sinf cos
(49) I3, = -
—sinfcos 0{(D + E)C? 4 2a>CDsin? 0 4 a* D sin* 0
(A10) T3, = 0 :
—aD(D + E)sinfcos 6
(A11) TZ, = ( 03) .
a’Dsinf cos
(A12) T2, = —
2sin% 0)(mC — rD)}(B — D) rBC
A13) T4, = LoTsin .
(A13) T (AB + a2D?sin? )C * AB + a2D?sin? ¢
C —rD)(D — B)
A14) 13, = 4 .
(414) Ty (AB + a2D?sin? 0)C
1 [ —a®D?sin 20(C + a?sin? )
A15) T3 = -
(A15) Tz 2{ (AB + a2D2sin? 0)C sin? § }
N 1 BC
2 | (AB + a2D?sin?0) sin? ¢
47 ain2 0 o
{(D + E)sin 20 + 4a*CDsin® 0 cos § + 2 DsmC29 S 29}.
—asinfcos0{a*D + (D + E)B}
Alg) T3, — —9sin
(416) Tz (AB + a2D?sin? 0)C
mC —rD){A + a?Dsin? 0
(A17) T, = ( it 3

C{AB + a2D?sin? 0}
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a’cos20 C a’AD sin 6 cos 0 2
Bl) Ryppp= 222 4 =
(B1) Rz D B H (AB + a2D? sin? 9)0}
N rE(rE —C(r—m)) n ﬁ n a’®sin? 6 cos 6 .
C?D C CE '
—a(a®m + 4e*r — 6mr? + a?m cos 26 sin 260
<B2) R1234 = ( Va2 )
27 ain2 2 _ :
(B3) R1313:—sin29[1+ a®Dsin® 6 + 4a (CTZC’ rD)schos@}

rE—C(r—m) . 2 202
B3 sin® 0[rC* — a“ sin” 0(mC + rD))]
2 502 2
%QDCOSQ[(D + E)C? +2aCDsin 0 + a*Dsin® 4]
?Dsin® 6
+sin20{(D +E+ aém}
(a%sin?0(mC — rD))(B — D) n rBC
(AB + a2D?sin? 0)C AB +a2D?%sin?6 |
4a cos 20 sin® 0
(B4) Riziu = %[—GESD +2r2{—3e* + 4e*(2m — r)r

+ mr?(—4m + 3r)} + a*{e* + mr(=7+ 4mr — 4%)

+e2(1 — 4mr + 2r°)} + a*{e* (1 +r?)

+ 2r(=Tr + 13 — 8m — 4mr?)

+mr2(12m + 4mr? —r — 2r3)} + a{a*D + *(1 + %)

+e2r(r + 13 — 8m — 4mr?) + mr?(12m + 4mr? — 7r — 213}

+ a?{e* + mr (=74 dmr — 4r%) + €2(1 — dmr 4 2r)}].

a?cosfsin 6
2EC3

N { —2a’D(D + E)(a?>m — 2rD + a*m cos 20 sin* 0) }

F
— 4EC{a®r cos* 0 + cos? (2r® + a*msin® 0)}

EC
+ ﬁ(Sa2 — ae? + 8mr + 8r? + 4E cos 20 + a® cos? 0)
{a*r cos* 0 + cos? 0(2ar® 4+ a*msin® 0)
+r(rt + a®(e® — mr)sin? 0)} — 10a>E sin? 6{a*r cos* 0
2

(B5) Riszes = [QEF{TE — a®(m — r) cos 20} sin® 0

+ cos? 0(2a%r3 + a'*msin® 0) + 5 + a’r(e* — mr)sin” 0}
—2{r(mr — a® — %) — a(m — r) cos® O} {a?*r* 4 O

+a*(D + E) cos 0 4 2a*r* Dsin? 0 + a* D sin* 0
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(B6)

(B7)

(B8)

Riq14 =

Rigo3 =
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+ 2a% cos? O(a*r? + r* — a®e*sin?0) + a4mrsin220}} .
CD + 4r(mC —rD)
O3
N H a(mC — rD)(A + a*Dsin’0) }2D — c}
C(AB + a2D?sin? 0) C
a2Dsin®0\ [a(mC —rD)(D — B)]?
C >] |:C(AB+CL2DZ sin? 9)]
a(mC — rD)(=rC +mC +rE)  a*Dsin?6 cos? 0
c? - C3E

[—9a%m — 13a'e®*m — 36a’e®r — 40a2e’r

—|—Sin29<E+D+

—asin 20
2FF3
+ 26a*m?r + 35a*mr? + 120a%e*mr? — 60a’e’r® — 32¢*r3

— 80a*m?r3 4 76a’mr? + 104e*mrt — 24er® — 80m>r®

+ 32mr% — 4a*{2a*m + 3a*(e*(m — r) + mr(—2m + 3r))}
+ r{=2¢* + e*(10m — 3r)r + mr?(—12m + 7r)} cos 6

+ a'mFE cos 44).

D
Rozoz = —(D + E) cos 20 — —[¢?{a?(C cos 20 — 2a” sin® # cos? 6)

4
— a*(3sin? 0 cos? § — sin? 0)}
— (a®C'sinf cos O + a’ sin® 0 cos 0) (—2aC sin? § cos? 0)]
rEsin? 6
3

a?sin? 6 cos? 0

(rC* — maC'sin® 0 — a*rDsin® 0)

(D4 E)C? +2a*CDsin? 0 + a* D sin” 6]

O3
a?Dsin? 6
—a?D?(C sin 260 + 24> sin® 6 cos 0)
[{ (AB + a2D?sin? 0)C }
BC
AB + a2D?sin? 6) sin? 0

sin? 0

{2(D 4+ E) cos*0

"

+ 4a?CD sin® 0 cos 6 + 2a* D sin® 6 cos 9}] .
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a
2EC3
cos® 0(3a* — 4a?e? + 8a*mr + 8a*r? + 8r* + 4a*F cos 20
+a*cos’@ —2CDE(D + E)sin?6)

1
(Bg) Rozo4 = |:20DE(D + E) cos® 6 + FQ{_CDE(D + E)

+7(a® — D + a*(m — ) cos® 8)(E + a®m cos 26) sin’ 9}

4a®?D?E sin* 6 cos? 0 5
{ a S;l o8 } + 5-a’DE(D + E) sin’ 9} .
a

—a?D(C cosf + a?sin20)  rE(mC —1rD)
3 s
a*D sin? 0 cos?
3

(BlO) Royoq =

2D 102 2
+Sin29{(E+D+CLC?H1}{(QDQSiHQCOSQ)(a2D—B)} .

C5
(mC —rD)} + {aD(D + E)sinf cos 0} — a®> D?sin?  cos®

1
(B11) Rsazqa = —= [a4E sin? @ — (mC — rD)Esin? 0{rC? — a*sin? 9

{C*(D + E) 4+ 2a*CDsin? 0 + a* D sin* 0}} .
(B12) Riza2 = —(R1234 + Ri423)-
Here
= (r* 4+ a®)(r® + a® cos? §),
= (1% + a®cos? 0) — (2mr — &%),

A
B
C = (r® + a®cos?0),
D
E
F

2+ a® + €% — 2mr),

= (a® 4+ 2r* + a® cos 20).

(
(
= (2mr — e?),
(
(
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