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Abstract. We build a framework for R(p, q)-deformed calculus, which pro-
vides a method of computation for deformed R(p, q)-derivative and integration,
generalizing known deformed derivatives and integrations of analytic functions
defined on a complex disc as particular cases corresponding to conveniently cho-
sen meromorphic functions. Under prescribed conditions, we define the R(p, q)-
derivative and integration. Relevant examples are also given.
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§1. Introduction

The twin basic factors or (p, q)-factors (also called (p, q)-factors in physics
literature) were introduced in order to generalize or unify several forms of q-
oscillator algebras well known in the earlier physics literature related to the
representation theory of single parameter quantum algebras [3, 13]. In Ref.
[5], the authors examined the relation between the representation theory of
a two-parameter deformation of the oscillator algebra and certain bibasic La-
guerre functions and polynomials. Burban and Klimyk [1] investigated in de-
tail the (p, q)-differentiation, (p, q)-integration, and the (p, q)-hypergeometric
series. Gelfand et al., in Refs.[7, 8], generalized the two-parameter deformed
derivative and developed a very general theory of deformation of classical hy-
pergeometric functions.

Generalizing the definition of deformed hypergeometric functions by Bur-
ban and Klimyk [1], Jagannathan and Srinivasa Rao[12] gave a method to
embed the q-series by Gasper and Rahman[6], in a (p, q)-series and derived
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the corresponding (p, q)-extensions of q-identities. In the same way, Hounkon-
nou and Ngompe[10] and Burban[2] defined the (p, q, µ, ν)-derivative and de-
rived the related deformed hypergeometric series and associated Hopf algebra
structures.

In our previous paper [9], based on the K-derivative developed by Odzi-
jewicz in a nice, mathematically based work published in 1998 [15], but un-
fortunately hushed up in the recent literature on the topic, we introduced
the R(p, q)-derivative relative to a meromorphic function defined on a bidisc
and derived generalized deformed factors, deformed factorials and deformed
exponential functions.

The aim of this paper is to develop a deformed calculus forR(p, q)-deforma-
tions, especially the differential and integration calculi.

The paper is organized as follows. We first recall in Section 2 the definition
of the R(p, q)-factors and their associated quantum algebra. We introduce a
new algebra generated by four quantities provided some conditions are sat-
isfied. The Section 3 is devoted to the definition of the R(p, q)-differential
calculus yielding the R(p, q)-integration. In Section 4 we show that some par-
ticular cases can be deduced from the constructed general formalism. Then
follow some concluding remarks in Section 5.

§2. R(p, q)-factors and their associated quantum algebras

In our previous paper [9] we have built the R(p, q)-factors which are a gener-
alization of Heine q-factors (also called Heine q-number in physics literature)

[n]q =
1− qn

1− q
, n = 0, 1, 2, · · ·(2.1)

and Jagannathan-Srinivasa (p, q)-factors [12]

[n]p,q =
pn − qn

p− q
, n = 0, 1, 2, · · ·(2.2)

as follows. Let p and q be two positive real numbers such that 0 < q < p ≤ 1.
Consider a meromorphic function R, defined on C× C by

(2.3) R(x, y) =

∞∑
k,l=−L

rklx
kyl

with an eventual isolated singularity at the zero, where rkl are complex num-
bers, L ∈ N∪{0}, R(pn, qn) > 0 ∀n ∈ N, and R(1, 1) = 0 by definition. Then,
the R(p, q)-factors denoted by R(pn, qn), n = 0, 1, 2, · · · are used to deduce
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the R(p, q)-factorial

R!(pn, qn) =

{
1 for n = 0
R(p, q) · · ·R(pn, qn) for n ≥ 1,

(2.4)

the R(p, q)-binomial coefficient

[
m
n

]
R(p,q)

=
R!(pm, qm)

R!(pn, qn)R!(pm−n, qm−n)
, m, n = 0, 1, 2, · · · , m ≥ n,

(2.5)

and the R(p, q)-exponential function

ExpR(p,q)(z) =
∞∑
n=0

1

R!(pn, qn)
zn.(2.6)

Denote by DR ={z ∈ C : |z| < R} a complex disc and by O(DR) the set of
holomorphic functions defined on DR, where R is the radius of convergence of
the series (2.6).

We then define the following linear operators on O(DR) by (see [9] and
references therein):

Q : φ 7−→ Qφ(z) = φ(qz),

P : φ 7−→ Pφ(z) = φ(pz),

∂p,q : φ 7−→ ∂p,qφ(z) =
φ(pz)− φ(qz)

z(p− q)
,(2.7)

φ ∈ O(DR), 0 < q < p ≤ 1, and the R(p, q)-derivative by

(2.8) ∂R(p,q) := ∂p,q
p− q

P −Q
R(P,Q) =

p− q

pP − qQ
R(pP, qQ)∂p,q.

Note that the R(p, q)-exponential function is invariant under the action of the
R(p, q)-derivative since

∂R(p,q)z
n =

{
0 for n = 0
R(pn, qn)zn−1 for n ≥ 1.

(2.9)

In [9], we also studied the R(p, q)-deformed quantum algebra generated by the
set of operators {1, A,A†, N} and the commutation relations

(2.10) [N,A] = −A and
[
N,A†

]
= A†

with

(2.11) AA† = R(pN+1, qN+1), and A†A = R(pN , qN ).
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This algebra is defined on O(DR) as:

A† := z, A := ∂R(p,q), N := z∂z,(2.12)

where ∂z :=
∂
∂z is the usual derivative on C. Therefore, the following holds:

Proposition 1.

P = pz∂z, Q = qz∂z(2.13)

and the algebra AR(p,q) generated by {1, z, z∂z, ∂R(p,q)} satisfies the relations:

z ∂R(p,q) = R(P,Q), ∂R(p,q) z = R(pP, qQ),
[z∂z, z] = z, [z∂z, ∂R(p,q)] = −∂R(p,q).(2.14)

Proposition 2. If there exist two functions Ψ1 and Ψ2 : C × C −→ C such
that

Ψi(p, q) > 0 for i = 1, 2(2.15)

[
n+ 1
k

]
R(p,q)

= Ψk
1(p, q)

[
n
k

]
R(p,q)

+Ψn+1−k
2 (p, q)

[
n

k − 1

]
R(p,q)

,

(2.16)

ba = Ψ1(p, q)ab, xy = Ψ2(p, q)yx, and [i, j] = 0 for i∈{a, b}, j∈{x, y}
(2.17)

for some algebra elements a, b, x, y, then

(ax+ by)n =

n∑
k=0

[
n
k

]
R(p,q)

an−kbkykxn−k.(2.18)

Proof. By induction over n. Indeed, the equality (2.18) holds for n = 1 since

(ax+ by)1 = ax+ by =

[
1
0

]
R(p,q)

a1b0y0x2 +

[
1
1

]
R(p,q)

a0b1y1x0

=

1∑
k=0

[
1
k

]
R(p,q)

a1−kbkykx1−k.

Suppose that the equality (2.18) holds for n ≤ m, this means in particular for
n = m,

(ax+ by)m =

m∑
k=0

[
m
k

]
R(p,q)

am−kbkykxm−k,(2.19)
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and let us prove that it remains valid for n = m+ 1. Indeed,

(ax+ by)m+1 = (ax+ by)m(ax+ by)

=

m∑
k=0

[
m
k

]
R(p,q)

am−kbkykxm−k(ax+ by)

=
m∑
k=0

[
m
k

]
R(p,q)

am−kbkykxm−kax+
m∑
k=0

[
m
k

]
R(p,q)

am−kbkykxm−kby

=
m∑
k=0

[
m
k

]
R(p,q)

Ψk
1(p, q)a

m+1−kbkykxm+1−k

+

m∑
k=0

[
m
k

]
R(p,q)

Ψm−k
2 (p, q)am−kbk+1yk+1xm−k

= am+1xm+1 +

m∑
k=1

[
m
k

]
R(p,q)

Ψk
1(p, q)a

m+1−kbkykxm+1−k

+

m−1∑
k=0

[
m
k

]
R(p,q)

Ψm−k
2 (p, q)am−kbk+1yk+1xm−k + bm+1ym+1

= am+1xm+1 +

m∑
k=1

Ψk
1(p, q)

[
m
k

]
R(p,q)

am+1−kbkykxm+1−k

+

m∑
k=1

Ψm+1−k
2 (p, q)

[
m

k − 1

]
R(p,q)

am+1−kbkykxm+1−k + bm+1ym+1

= am+1xm+1 + bm+1ym+1 +

m∑
k=1

(
Ψk

1(p, q)

[
m
k

]
R(p,q)

+ Ψm+1−k
2 (p, q)

[
m

k − 1

]
R(p,q)

)
am+1−kbkykxm+1−k

= am+1xm+1 + bm+1ym+1 +

m∑
k=1

[
m
k

]
R(p,q)

am+1−kbkykxm+1−k.

�

§3. R(p, q)-differential and integration calculi

3.1. Differential calculus

We define a linear operator dR(p,q) on AR(p,q) by

(3.1) dR(p,q) = (dz)∂R(p,q).
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It follows that

dR(p,q)1 = 0, dR(p,q)z = (dz)R(p, q), dR(p,q)∂R(p,q) = (dz)∂2
R(p,q)

dR(p,q)(z∂z) = (dz)(z∂z + 1)∂R(p,q) and d2R(p,q) = 0.(3.2)

Hence, the set of 0-forms Ω0(AR(p,q)) is naturally AR(p,q), while a 1-form ω,
element of Ω1(AR(p,q)), is given by

ω = (dz)ω0(z, z∂z, ∂R(p,q)),(3.3)

where ω0(z, z∂z, ∂R(p,q)) =
∑∞

i,j,k=0 αijk(z)
i(z∂z)

j(∂R(p,q))
k with αijk belong-

ing to C. Therefore, dω = 0 for ω ∈ Ω1(AR(p,q)).

Proposition 3. For a nonnegative integer n, the following equalities hold:

dR(p,q)(z
n) = (dz)R(pn, qn)zn−1,

dR(p,q)(z∂z)
n = (dz)(z∂z + 1)n∂R(p,q),(3.4)

dR(p,q)(∂
n
R(p,q)) = (dz)∂n+1

R(p,q).

Moreover if f ∈ O(DR) then

dR(p,q)f(z) = (dz)∂R(p,q)f(z).(3.5)

Proof. The equalities in (3.4) follow from the definition of theR(p, q)-derivative
(2.8), the commutation relations (2.14) and the definition of the differential
(3.1). Then, (3.5) follows by definition (2.8). �

Proposition 4. The differential dR(p,q) obeys the two following equivalent
Leibniz rules

(3.6) dR(p,q)(fg) = (dz)
p− q

pP − qQ
R(pP, qQ) {∂p,q(f))(Pg) + (Qf)(∂p,q(g))} ,

(3.7) dR(p,q)(fg) = (dz)
p− q

pP − qQ
R(pP, qQ) {(∂p,q(f))(Qg) + (Pf)(∂p,q(g))}

for f, g ∈ O(DR).

Proof. This follows from

∂p,q(fg) = (∂p,q(f))(Qg) + (Pf)(∂p,q(f) = (∂p,q(f)(Pg) + (Qf)(∂p,q(g)).

�
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3.2. R(p, q)-integration

We define the operator IR(p,q) over O(DR) as the inverse image of the R(p, q)-
derivative. For elements zn of the basis of O(DR), IR(p,q) acts as follows:

IR(p,q)z
n :=

(
∂R(p,q)

)−1
zn =

1

R(pn+1, qn+1)
zn+1 + c,(3.8)

where n ≥ 0 and c is an integration constant. Hence, if f ∈ O(DR) then

IR(p,q) ∂R(p,q)f(z) = f(z) + c and ∂R(p,q) IR(p,q)f(z) = f(z) + c′,(3.9)

where c and c′ are integration constants.
Provided that R(P,Q) is invertible, one can define the R(p, q)-integration

by the following formula

IR(p,q) = R−1(P,Q) z,(3.10)

with c = c′ = 0.
One can also derive the definite integrals:∫ β

α
f(z)dR(p,q)z = IR(p,q)f(β)− IR(p,q)f(α), α, β ∈ DR;(3.11) ∫ +∞

α
f(z)dR(p,q)z = lim

n→∞

∫ pn/qn

α
f(z)dR(p,q)z;(3.12) ∫ +∞

−∞
f(z)dR(p,q)z = lim

n→∞

∫ pn/qn

−pn/qn
f(z)dR(p,q)z.(3.13)

Moreover, the Eqs. (3.6) and (3.7) lead to the following formulae:

IR(p,q) ∂R(p,q)(f(z)g(z))(3.14)

= f(z)g(z) + c

= IR(p,q)

{
p− q

pP − qQ
R(pP, qQ)(∂p,q(f))(Pg)

}
+ IR(p,q)

p− q

pP − qQ
R(pP, qQ) {(Qf)(∂p,q(g))}

and

IR(p,q) ∂R(p,q)(f(z)g(z))(3.15)

= f(z)g(z) + c

= IR(p,q)

{
p− q

pP − qQ
R(pP, qQ)(∂p,q(f))(Qg)

}
+ IR(p,q)

p− q

pP − qQ
R(pP, qQ) {(Pf)(∂p,q(g))} ,

respectively. These relation can be viewed as formulae of integration by parts.
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§4. Relevant particular cases

Let us now apply the above general formalism to particular deformed algebras,
well spred in the literature.

4.1. Jagannathan-Srinivasa deformation

A. Taking R(x, y) = x−y
p−q , we obtain the Jagannathan-Srinivasa (p, q)- fac-

tors and (p, q)-factorials

[n]p,q =
pn − qn

p− q
,

and

[n]!p,q =

{
1 for n = 0
((p,q);(p,q))n

(p−q)n for n ≥ 1,
(4.1)

respectively.

Referring the readers to [12] for details on (p, q)-calculus, let us restrict
the present description to some new relevant properties.

Proposition 5. If n and m are nonnegative integers, then

[n]p,q =

n−1∑
k=0

pn−1−kqk,

[n+m]p,q = qm[n]p,q + pn[m]p,q
= pm[n]p,q + qn[m]p,q,

[−m]p,q = −q−mp−m[m]p,q,(4.2)

[n−m]p,q = q−m[n]p,q − q−mpn−m[m]p,q
= p−m[n]p,q − qn−mp−m[m]p,q,

[n]p,q = [2]p,q[n− 1]p,q − pq[n− 2]p,q.

Proposition 6. The (p, q)-binomial coefficients

(4.3)

[
n
k

]
p,q

=
((p, q); (p, q))n

((p, q); (p, q))k((p, q); (p, q))n−k
, 0 ≤ k ≤ n; n ∈ N,

where ((p, q); (p, q))m = (p− q)(p2 − q2) · · · (pm − qm), m ∈ N satisfy the
following identities[

n
k

]
p,q

=

[
n

n− k

]
p,q

(4.4)

= pk(n−k)

[
n
k

]
q/p

= pk(n−k)

[
n

n− k

]
q/p

,
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[
n+ 1
k

]
p,q

= pk
[
n
k

]
p,q

+ qn+1−k

[
n

k − 1

]
p,q

,(4.5) [
n+ 1
k

]
p,q

= pk
[
n
k

]
p,q

+ pn+1−k

[
n

k − 1

]
p,q

(4.6)

−(pn − qn)

[
n− 1
k − 1

]
p,q

with [
n
k

]
q/p

=
(q/p; q/p)n

(q/p; q/p)k(q/p; q/p)n−k
,

where (q/p; q/p)n = (1 − q/p)(1 − q2/p2) · · · (1 − qn/pn) and the (p, q)-
shifted factorial

((a, b); (p, q))n ≡ (a− b)(ap− bq) · · · (apn−1 − bqn−1)

=

n∑
k=0

[
n
k

]
p,q

(−1)kp(n−k)(n−k−1)/2qk(k−1)/2an−kbk.

Proposition 7. If the quantities x, y, a and b are such that xy = qyx,
ba = pab, [i, j] = 0 for i ∈ {a, b} and j ∈ {x, y}, and, moreover, p and
q commute with each element of the set {a, b, x, y}, then

(ax+ by)n =
n∑

k=0

[
n
k

]
p,q

an−kbkykxn−k.(4.7)

The latter result is a generalization of noncommutative form of the q-
binomial theorem [6], which can be obtained setting a, b and p equal to
1, i.e.

(x+ y)n =
n∑

k=0

[
n
k

]
q

ykxn−k,(4.8)

where [
n
k

]
q

= (q; q)n/(q; q)k(q; q)n−k,

with (q; q)n = (1− q)(1− q2) · · · (1− qn).

Proof. An alternative proof has been also proposed in [12]. Here we
provide another one by induction on n. Indeed, the result is true for
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n = 1. Suppose it remains valid for all n ≤ m and prove that this is also
true for n = m+ 1:

(ax+ by)m+1

= (ax+ by)m(ax+ by)

=

m∑
k=0

[
m
k

]
p,q

am−kbkykxm−k(ax+ by)

=

m∑
k=0

[
m
k

]
p,q

pkam+1−kbkykxm+1−k

+

m∑
k=0

[
m
k

]
p,q

qm−kam−kbk+1yk+1xm−k

= am+1xm+1 +
m∑
k=1

[
m
k

]
p,q

pkam+1−kbkykxm+1−k

+

m−1∑
k=0

[
m
k

]
p,q

qm−kam−kbk+1yk+1xm−k + bm+1ym+1

= am+1xm+1 + bm+1ym+1

+

m∑
k=1

(
pk
[
m
k

]
p,q

qm+1−k

[
m

k − 1

]
p,q

)
am+1−kbkykxm+1−k

= am+1xm+1 +

m∑
k=1

[
m+ 1

k

]
p,q

am+1−kbkykxm+1−k + bm+1ym+1

=

m+1∑
k=0

[
m+ 1

k

]
p,q

am+1−kbkykxm+1−k,

where the use of (4.5) has been made. Hence the result is true for all
n ∈ N. �

The R(p, q)-derivative is thus reduced to the (p, q)-derivative [12]

∂p,q =
1

(p− q)z
(P −Q),(4.9)

namely, for f ∈ O(DR),

∂p,qf(z) =
f(pz)− f(qz)

z(p− q)
.(4.10)
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The associated algebra Ap,q, generated by {1, A, A†, N}, satisfies the
relations:

A A† − pA†A = qN , A A† − qA†A = pN ,(4.11)

[N, A†] = A†, [N, A] = −A,(4.12)

and its realization on O(DR), engendered by {1, z, z∂z, ∂p,q}, satisfies
the relations

z ∂p,q − p ∂p,q z = qz∂z , z ∂p,q − q ∂p,q z = pz∂z ,
[z∂z, z] = z, [z∂z, ∂p,q] = −∂p,q.(4.13)

Therefore, the differential operator dp,q is then given by

dp,q = (dz)
1

(p− q)z
(P −Q)(4.14)

with the following properties:

dp,q1 = 0, dp,qz = (dz), dp,q∂p,q = (dz)∂2
p,q,(4.15)

dp,q(z∂z) = (dz)(z∂z + 1)∂p,q and d2p,q = 0.

The differential of f ∈ O(DR) is then

dp,qf(z) = (dz)
f(pz)− f(qz)

(p− q)z
(4.16)

affording the Leibniz rule

dp,q(fg)(z) = (dz)
f(pz)− f(qz)

(p− q)z
g(qz)(4.17)

+ (dz)f(pz)
g(pz)− g(qz)

(p− q)z

= {dp,qf(z)} · g(qz) + f(pz) · dp,qg(z)

or, equivalently,

dp,q(fg)(z) = (dz)
f(pz)− f(qz)

(p− q)z
g(pz)(4.18)

+ (dz)f(qz)
g(pz)− g(qz)

(p− q)z

= {dp,qf(z)} · g(pz) + f(qz) · dp,qg(z).
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The (p, q)-integration is obtained from (3.10) as follows:

Ip,qf(z) =
p− q

P −Q
zf(z) = (p− q)

∞∑
ν=0

Qν

P ν+1
zf(z)(4.19)

= (p− q)z

∞∑
ν=0

f(zqν/pν+1)qν/pν+1.

Setting p = 1, one recovers the q-derivative and q-integral of Jackson
[14].

B. Taking R(x, y) =
x− y

a
px− b

qy
, where a, b ∈ C with a ̸= b, the R(p, q)-

factors are given by

R(pn, qn) = [n]a,bp,q =
pn − qn

apn−1 − bqn−1
, n = 0, 1, · · · .(4.20)

The R(p, q)-factorials become

[n]!a,bp,q =

 1 for n = 0
((p, q); (p, q))n
((a, b); (p, q))n

for n ≥ 1.
(4.21)

The derivative is now given by

∂R(p,q) = ∂p,q
p− q

P −Q

P −Q
a
pP − b

qQ
=

1

z

P −Q
a
pP − b

qQ
,(4.22)

so that for f ∈ O(DR) we have

∂R(p,q)f(z) =
1

z

P −Q
a
pP − b

qQ
f(z)(4.23)

=
1

z
(P −Q)

p

aP

∞∑
ν=0

(bp/aq)ν(Q/P )νf(z)

=
p

az

∞∑
ν=0

(bp/aq)ν
[
(Q/P )ν − (Q/P )ν+1

]
f(z)

=
p

az

∞∑
ν=0

(bp/aq)ν
[
f ((q/p)νz)− f

(
(q/p)ν+1z

)]
.

Moreover,

IR(p,q) =

a
pP − b

qQ

P −Q
z.(4.24)
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Applying this to f ∈ O(DR) we obtain

IR(p,q)f(z) =

a
pP − b

qQ

P −Q
zf(z)(4.25)

=

(
a

p
P − b

q
Q

)
1

P

∞∑
ν=0

(Q/P )ν zf(z)

=

(
a

p
− b

q
(Q/P )

) ∞∑
ν=0

(Q/P )ν zf(z)

=

∞∑
ν=0

[
(a/p) (Q/P )ν − (b/q) (Q/P )ν+1

]
zf(z)

=

∞∑
ν=0

[(a/p)(q/p)νzf ((q/q)νz)

−(b/q)(q/p)ν+1zf
(
(q/p)ν+1

)]
= (z/p)

∞∑
ν=0

(q/p)ν
[
af ((q/q)νz)− bf

(
(q/p)ν+1

)]
.

4.2. Chakrabarty and Jagannathan deformation

The algebra of Chakrabarty and Jagannathan [3] can be obtained from our
general formalism by taking R(x, y) = 1−xy

(p−1−q)x
. Indeed, the R(p, q)-factors

and R(p, q)-factorials are reduced to (p−1, q)-factors and (p−1, q)-factorials,
namely

[n]p−1,q =
p−n − qn

p−1 − q
,

and

[n]!p−1,q =


1 for n = 0
((p−1, q); (p−1, q))n

(p−1 − q)n
for n ≥ 1,

(4.26)

respectively. The properties of this deformation can be readily recovered from
the previous section 4.1 by replacing the parameter p by p−1.

The R(p, q)-derivative is also reduced to (p−1, q)-derivative. Indeed,

∂R(p,q) = ∂p,q
p− q

P −Q

1− PQ

(p−1 − q)P
(4.27)

=
1

(p−1 − q)z
(P−1 −Q) =: ∂p−1,q.
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Therefore, for f ∈ O(DR)

∂p−1,qf(z) =
f(p−1z)− f(qz)

z(p−1 − q)
(4.28)

and the differential of f ∈ O(DR) is given by

dp−1,qf(z) = (dz)
f(p−1z)− f(qz)

z(p−1 − q)
.(4.29)

Computing the Leibniz rule we get

dp−1,q(fg)(z) = (dz)
f(p−1z)− f(qz)

z(p−1 − q)
g(qz)(4.30)

+ (dz)f(p−1z)
g(p−1z)− g(qz)

z(p−1 − q)

= {dp−1,qf(z)} · g(qz) + f(p−1z) · dp−1,qg(z)

or, equivalently,

dp−1,q(fg)(z) = (dz)
f(p−1z)− f(qz)

z(p−1 − q)
g(p−1z)(4.31)

+ (dz)f(qz)
g(p−1z)− g(qz)

z(p−1 − q)

= {dp−1,qf(z)} · g(p−1z) + f(qz) · dp−1,qg(z).

We obtain from (3.10) the action of the (p−1, q)-integration on f ∈ O(DR) as
follows:

Ip−1,qf(z) =
p−1 − q

P−1 −Q
zf(z) = (p−1 − q)

∞∑
ν=0

QνP ν+1zf(z)(4.32)

= (1− pq)z

∞∑
ν=0

f(zqνpν+1)(pq)ν .

4.3. Generalized q-Quesne deformation

The generalized Quesne algebra [10, 16] can be found by taking R(x, y) =
xy−1

(q−p−1)y
. Indeed, the (p, q)-Quesne factors and factorials are given by

[n]Qp,q =
pn − q−n

q − p−1
,
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and

[n]Qp,q! =

{
1 for n = 0
((p,q−1);(p,q−1))n

(q−p−1)n
for n ≥ 1,

(4.33)

respectively. There follow some relevant new properties:

Proposition 8. If n and m are nonnegative integers, then

[−m]Qp,q = −p−mqm[m]Qp,q,(4.34)

[n+m]Qp,q = q−m[n]Qp,q + pn[m]Qp,q = pm[n]Qp,q + q−n[m]Qp,q,(4.35)

[n−m]Qp,q = qm[n]Qp,q − pn−mqm[m]Qp,q = p−m[n]Qp,q + p−mqm−n[m]Qp,q,(4.36)

[n]Qp,q =
q − p−1

p− q−1
[2]Qp,q[n− 1]Qp,q − pq−1[n− 2]Qp,q.(4.37)

Proof. We obtain Eqs.(4.34) and (4.35) applying the relations

p−m − qm = −p−mqm(pm − q−m)

and

pn+m − q−n−m = q−m(pn − q−n) + pn(pm − q−m)

= pm(pn − q−n) + q−n(pm − q−m),

respectively. Eq.(4.36) follows combining Eqs.(4.34) and (4.35). Note that

[n]p,q−1 =
pn − q−n

p− q−1
=

q − p−1

p− q−1

pn − q−n

q − p−1
= [n]Qp,q, n = 1, 2, · · ·(4.38)

which, combined with the following identity

[n]p,q−1 = [2]p,q−1[n− 1]p,q−1 − pq−1[n− 2]p,q−1

gives Eq.(4.37). �

Proposition 9. The (p, q)-Quesne binomial coefficients[
n
k

]Q
p,q

=
((p, q−1); (p, q−1))n

((p, q−1); (p, q−1))k((p, q−1); (p, q−1))n−k
,(4.39)

where 0 ≤ k ≤ n, n ∈ N, satisfy the following properties:[
n
k

]Q
p,q

=

[
n

n− k

]Q
p,q

= pk(n−k)

[
n
k

]
1/qp

= pk(n−k)

[
n

n− k

]
1/qp

,(4.40)
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[
n+ 1
k

]Q
p,q

= pk
[
n
k

]Q
p,q

+ q−n−1+k

[
n

k − 1

]Q
p,q

,(4.41) [
n+ 1
k

]Q
p,q

= pk
[
n
k

]Q
p,q

+ pn+1−k

[
n

k − 1

]Q
p,q

− (pn − q−n)

[
n− 1
k − 1

]Q
p,q

.

Proof. This is direct using the Proposition 5 and

[
n
k

]Q
p,q

=

[
n
k

]
p,q−1

.(4.42)

�

Proposition 10. If the quantities x, y, a and b are such that xy = q−1yx,
ba = pab, [i, j] = 0 for i ∈ {a, b} and j ∈ {x, y}, and, moreover, p and q
commute with each element of the set {a, b, x, y}, then

(ax+ by)n =

n∑
k=0

[
n
k

]Q
p,q

an−kbkykxn−k.(4.43)

Proof. By induction on n. Indeed, the result is true for n = 1. Suppose it
remains valid for n ≤ m and prove that this is also true for n = m+ 1 :

(ax+ by)m+1 = (ax+ by)m(ax+ by)

=

m∑
k=0

[
m
k

]Q
p,q

am−kbkykxm−k(ax+ by)

=
m∑
k=0

[
m
k

]Q
p,q

pkam+1−kbkykxm+1−k

+

m∑
k=0

[
m
k

]Q
p,q

q−m+kam−kbk+1yk+1xm−k

= am+1xm+1 +

m∑
k=1

[
m
k

]Q
p,q

pkam+1−kbkykxm+1−k

+

m−1∑
k=0

[
m
k

]Q
p,q

q−m+kam−kbk+1yk+1xm−k + bm+1ym+1



R(p, q)-CALCULUS 161

= am+1xm+1 +
m∑
k=1

(
pk
[
m
k

]Q
p,q

+q−m−1+k

[
m

k − 1

]Q
p,q

)
am+1−kbkykxm+1−k + bm+1ym+1

= am+1xm+1 +
m∑
k=1

[
m+ 1

k

]Q
p,q

am+1−kbkykxm+1−k

+ bm+1ym+1

=

m+1∑
k=0

[
m+ 1

k

]Q
p,q

am+1−kbkykxm+1−k,

where the use of (4.41) has been made. Therefore the result is true for all
n ∈ N. �

The (p, q)-Quesne derivative is then given by

∂Q
p,q = ∂p,q

p− q

P −Q

PQ− 1

(q − p−1)Q
=

1

(q − p−1)z
(P −Q−1).(4.44)

Therefore, for f ∈ O(DR)

∂Q
p,qf(z) =

f(pz)− f(q−1z)

z(q − p−1)
(4.45)

and the differential is given by

dQp,qf(z) = (dz)
f(pz)− f(q−1z)

z(q − p−1)
(4.46)

leading to the Leibniz rule

dQp,q(fg)(z) = (dz)
f(pz)− f(q−1z)

z(q − p−1)
g(q−1z)(4.47)

+ (dz)f(pz)
g(pz)− g(q−1z)

z(q − p−1)

= {dQp,qf(z)} · g(q−1z) + f(pz) · dQp,qg(z)

or, equivalently,

dQp,q(fg)(z) = (dz)
f(pz)− f(q−1z)

z(q − p−1)
g(pz)(4.48)

+ (dz)f(q−1z)
g(pz)− g(q−1z)

z(q − p−1)

= {dQp,qf(z)} · g(pz) + f(q−1z) · dQp,qg(z).
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The action of the (p, q)-Quesne integration on f ∈ O(DR) is obtained from
(3.10) as follows:

IQ
p,qf(z) =

q − p−1

P −Q−1
zf(z) = (p−1 − q)

∞∑
ν=0

P νQν+1zf(z)(4.49)

= (p−1 − q)z

∞∑
ν=0

f(zpνqν+1)pνqν+1.

4.4. (p, q;µ, ν, h)-deformation

The deformed Hounkonnou-Ngompe generalized algebra [11] can be obtained
by taking

R(x, y) = h(p, q)
yν

xµ
xy − 1

(q − p−1)y
,

such that 0 < pq < 1, pµ < qν−1, p > 1, and h(p, q) is a well behaved real and
non-negative function of deformation parameters p and q such that h(p, q) → 1
as (p, q) → (1, 1). Here theR(p, q)-factors become (p, q;µ, ν, h)-factors, namely

[n]µ,νp,q,h = h(p, q)
qνn

pµn
pn − q−n

q − p−1
.(4.50)

Proposition 11. The (p, q;µ, ν, h)-factors verify the following properties, for
m,n ∈ N:

[−m]µ,νp,q,h = − q−2νm+m

p−2µm+m
[m]µ,νp,q,h,(4.51)

[n+m]µ,νp,q,h =
qνm−m

pµm
[n]µ,νp,q,h +

qνn

pµn−n
[m]µ,νp,q,h(4.52)

=
qνm

pµm−m
[n]µ,νp,q,h +

qνn−n

pµn
[m]µ,νp,q,h ,

[n−m]µ,νp,q,h =
q−νm+m

p−µm
[n]µ,νp,q,h − qν(n−2m)+m

pµ(n−2m)−n+m
[m]µ,νp,q,h(4.53)

=
q−νm

p−µm+m
[n]µ,νp,q,h −

qν(n−2m)−n+m

pµ(n−2m)+m
[m]µ,νp,q,h,

[n]µ,νp,q,h =
q − p−1

p− q−1

q−ν

p−µ

1

h(p, q)
[2]µ,νp,q,h[n− 1]µ,νp,q,h −

q2ν−1

p2ν−1
[n− 2]µ,νp,q,h.(4.54)
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Proof. This is direct using the Proposition 8 and the fact that

[n]µ,νp,q,h = h(p, q)
qνn

pµn
[n]Qp,q,h.(4.55)

�

Proposition 12. he (p, q, µ, ν, h)-binomial coefficients

[
n
k

]µ,ν
p,q,h

:=
[n]µ,νp,q,h!

[k]µ,νp,q,h![n− k]µ,νp,q,h!
=

qνk(n−k)

pµk(n−k)

[
n
k

]Q
p,q

,(4.56)

where 0 ≤ k ≤ n, n ∈ N, satisfy the following properties:[
n
k

]µ,ν
p,q,h

=

[
n

n− k

]µ,ν
p,q,h

,(4.57) [
n+ 1
k

]µ,ν
p,q,h

=
qνk

p(µ−1)k

[
n
k

]µ,ν
p,q,h

+
q(ν−1)(n+1−k)

pµ(n+1−k)

[
n

k − 1

]µ,ν
p,q,h

,(4.58) [
n+ 1
k

]µ,ν
p,q,h

=
qνk

p(µ−1)k

[
n
k

]µ,ν
p,q,h

+
qν(n+1−k)

p(µ−1)(n+1−k)

[
n

k − 1

]µ,ν
p,q,h

(4.59)

− (pn − q−n)
qνn

pµn

[
n− 1
k − 1

]µ,ν
p,q,h

.

Proof. This is direct using the Proposition 9 and the fact that

[n]µ,νp,q,h! = hn(p, q)
qn(n+1)/2

pn(n+1)/2
[n]Qp,q!,(4.60)

where the use of Eq.(4.55) has been made. �

Proposition 13. If the quantities x, y, a and b are such that xy =
qν−1

pµ
yx,

ba =
qν

pµ−1
ab, [i, j] = 0 for i ∈ {a, b} and j ∈ {x, y}, and, moreover, p and q

commute with each element of the set {a, b, x, y}, then

(ax+ by)n =

n∑
k=0

[
n
k

]µ,ν
p,q,h

an−kbkykxn−k.(4.61)
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Proof. By induction on n. Indeed, the result is true for n = 1. Suppose it
remains valid for n ≤ m and prove that this is also true for n = m+ 1 :

(ax+ by)m+1 = (ax+ by)m(ax+ by)

=

m∑
k=0

[
m
k

]µ,ν
p,q,h

am−kbkykxm−k(ax+ by)

=

m∑
k=0

[
m
k

]µ,ν
p,q,h

qνk

q(µ−1)k
am+1−kbkykxm+1−k

+

m∑
k=0

[
m
k

]µ,ν
p,q,h

q(ν−1)(m−k)

pµ(m−k)
am−kbk+1yk+1xm−k

= am+1xm+1 +

m∑
k=1

[
m
k

]µ,ν
p,q,h

qνk

q(µ−1)k
am+1−kbkykxm+1−k

+

m−1∑
k=0

[
m
k

]µ,ν
p,q,h

q(ν−1)(m−k)

pµ(m−k)
am−kbk+1yk+1xm−k

+ bm+1ym+1

= am+1xm+1 + bm+1ym+1 +

m∑
k=1

(
qνk

q(µ−1)k

[
m
k

]µ,ν
p,q,h

+
q(ν−1)(m+1−k)

pµ(m+1−k)

[
m

k − 1

]µ,ν
p,q,h

)
am+1−kbkykxm+1−k

= am+1xm+1 +

m∑
k=1

[
m+ 1

k

]µ,ν
p,q,h

am+1−kbkykxm+1−k

+ bm+1ym+1

=
m+1∑
k=0

[
m+ 1

k

]µ,ν
p,q,h

am+1−kbkykxm+1−k,

where the use of (4.58) has been made. Therefore, the result is true for all
n ∈ N. �

The R(p, q)-derivative is then reduced to the (p, q;µ, ν, h)-derivative, given
by

∂R(p,q) = ∂p,q
p− q

P −Q
h(p, q)

Qν

Pµ

PQ− 1

(q − p−1)Q
(4.62)

=
h(p, q)

(q − p−1)z

Qν

Pµ
(P −Q−1) ≡ ∂µ,ν

p,q,h.
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Therefore the (p, q;µ, ν, h)-derivative and the (p, q;µ, ν, h)-differential of f ∈
O(DR) are given by

∂µ,ν
p,q,h = h(p, q)

f(zqν/pµ−1)− f(zqν−1/pµ)

z(q − p−1)
(4.63)

and

dµ,νp,q,hf(z) = (dz)h(p, q)
f(zqν/pµ−1)− f(zqν−1/pµ)

z(q − p−1)
(4.64)

respectively, with the Leibniz rule

dµ,νp,q,h(fg)(z) = (dz)h(p, q)
f(zqν/pµ−1)− f(zqν−1/pµ)

z(q − p−1)
g(zqν−1/pµ)

+ (dz)f(zqν/pµ−1)h(p, q)
g(zqν/pµ−1)− g(zqν−1/pµ)

z(q − p−1)

= {dµ,νp,q,hf(z)} · g(zq
ν−1/pµ) + f(zqν/pµ−1) · dµ,νp,q,hg(z)

which is equivalent to

dµ,νp,q,h(fg)(z) = (dz)h(p, q)
f(zqν/pµ−1)− f(zqν−1/pµ)

z(q − p−1)
g(zqν/pµ−1)

+ (dz)f(zqν−1/pµ)h(p, q)
g(zqν/pµ−1)− g(zqν−1/pµ)

z(q − p−1)

= {dµ,νp,q,hf(z)} · g(zq
ν/pµ−1) + f(zqν−1/pµ) · dµ,νp,q,hg(z).

From (3.10) we obtain the action of the (p, q, µ, ν, h)-integration on f ∈ O(DR)
as follows:

Iµ,ν
p,q,hf(z) =

q − p−1

h(p, q)

Pµ/Qν

P −Q−1
zf(z) =

p−1 − q

h(p, q)

Pµ/Qν−1

1− PQ
zf(z)(4.65)

=
p−1 − q

h(p, q)

Pµ

Qν−1

∞∑
j=0

P jQjzf(z)

=
p−1 − q

h(p, q)

∞∑
j=0

P j+µQj+1−νzf(z)

=
z(p−1 − q)

h(p, q)

pµ

qν−1

∞∑
j=0

f(zpj+µqj+1−ν).
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§5. Concluding remarks

In this paper we have provided a new noncommutative algebra related to the
R(p, q)-deformation and shown that the notions of differentiation and inte-
gration can be extended to it, thus generalizing well known q or/and (p, q)-
differential and integration calculi [1, 4, 14]. The whole formalism has been
illustrated by relevant examples.
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