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Abstract. When K is an algebraically closed field of characteristic p = 3, we
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8§1. Introduction

Throughout this paper let K be always an algebraically closed field of odd
prime characteristic p, R the polynomial ring K[z, y|, RP the polynomial ring
K[zP,y?] and R’ a subring of R such that RP C R’ C R. In the previous paper
[10], we showed the following statements:

(A1) (Theorem 3.4 of [10]). For a given integer d greater than or equal to
3, there is a polynomial f € R with deg f = d such that {f} is a p-basis of
RP[f] over RP, RP[f] is reqular non-factorial and R has a p-basis over RP[f].

(A2) (Theorem 3.5 of [10]). For a given integer d greater than or equal to
4, there is a polynomial f € R with deg f = d such that {f} is a p-basis of
RP[f] over RP, RP[f] is reqular non-factorial and R has no p-basis over RP[f].

In the other paper [3], we showed the fact that R’ has a p-basis over RP
if R’ is regular and factorial. From (A1), (A2) and this fact, it is natural
to ask whether a statement similar to (A1) or (A2) holds if ‘non-factorial’ is
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replaced with ‘factorial’. In particular we take an interest in the existence of a
regular factorial subring which is not a polynomial ring in two variables over
K. Under the condition p = 3 we shall consider this question (see Theorems
3.1 and 3.4). In [10], when f € R has no monomial which belongs to RP, we
have classified RP[f] when deg f < 3 as below.

(B) (Theorem 6.1 and Corollary 6.4 of [10]). Let f be a non-zero polynomial
of R, and let R' = RP[f]. Assume that no monomial appearing in [ belongs to

RP, and R' is reqular. Then R has a p-basis over R'. Moreover the following
hold:

(1) ifdeg f =1 or 2, then R is a polynomial ring in two variables over K.

(2) if deg f = 3, then R’ is either a polynomial ring in two variables over K
or a non-factorial ring RP[u+u?v] for some system u and v of variables
of R.

Similarly when deg f = 4, we shall classify RP[f] under the condition p = 3
(see Theorem 4.3). Consequently we see that there is no polynomial f with
deg f < 4 such that RP[f] is regular and factorial, but is not a polynomial ring
in two variables over K (see Corollary 4.4).

§2. Preliminary facts

In this paper, for the terminology and notation of algebraic geometry resp.
commutative algebra, we use those of [1] resp. [6] and [7]. Let AP C A’ C A be
a tower of commutative rings of prime characteristic p where AP = {a” |a € A}.
A subset {g1,...,gn} of A is called a p-basis of A over A’ if the monomials
gil coogin (0 < iqy...,in < p— 1) are linearly independent over A’ and A =
A'lgr,...,9n]. Considering a tower of rings (A')? C AP C A'| a p-basis of
A" over AP is defined similarly. Under the conditions for R and R’ that are
specified in the previous section, we recall the results of the previous papers
([9], [10]). First note the well-known fact that {f} (f € R) is a p-basis of
RP[f] over RP if f & RP (cf. Lemma 2.1 of [10]).

Lemma 2.1 (Lemma 3.1 of [9]). Let f and g be polynomials of R — RP. Then
the following hold:

(1) RP[f] is regular if and only if Of /Ox, Of /0y generate R as an R-module.

(2) {f,g} is a p-basis of R over RP if and only if the Jacobian determinant
a(f,9)/0(x,y) € K —{0}.
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Lemma 2.2 (Lemma 2.6 of [10]). Let f be a polynomial of R such that Of /0x
has a non-zero constant term, R’ = RP(f] and Q(R') the field of fractions of
R'. Suppose that R’ is reqular. Then,
af\r-1 2
( f>p @Q (Ry “if and only if R has a p-basis over R'.

Lemma 2.3 (Lemma 2.7 of [10]). Let f = co + c1x + cox? where co, c1,ca €

K[xP,y|. Then
of\pr—1 (p—1)/2
N
Lemma 2.4 (Lemma 2.5 of [10]). Let f be a polynomial of R — RP which has
no monomial belonging to RP. If RP[f] is reqular and factorial, then f 4+ hP is
irreducible for any polynomial h € R such that pdegh < deg f.

83. Regular factorial subrings of a polynomial ring

Theorem 3.1. Assume that p = 3. Then, for each d € N with d > 5 and
d # 0(mod 3), there exists f € R with deg f = d which satisfies the following
conditions:

(1) No monomial appearing in f belongs to RP;

(2) RP[f] is regular and factorial, but is not a polynomial ring in two vari-
ables over K;

(3) R has a p-basis over RP[f].

Proof. Let fi =z — y(y + 2?)P and fo = 2 — y(y + 22)?". For any odd prime
characteristic p, we proved in [10] that RP[f1] is regular and factorial, but is
not a polynomial ring in two variables over K, and R has a p-basis over RP[f1].
By the same argument as that in Example 4.2 of [10], we can show that RP[fs]
is not a polynomial ring in two variables over K if p is an odd prime number,
as follows. Suppose that RP[fs] is a polynomial ring in two variables over K.
According to the main theorem of [2] there exists a system u and v of variables
of R such that RP[fs] = K[u,vP]. Set z := 0(u,v) and Y= (;S(u v). Since u is
of the form Ef:_ol cifs (¢; € RP), we have 1 = (Zp Licifa )0 fa/0u, and so

Gu " ou @TE)TE, € K10k
Since fy € K[u,vP] = Ker 9/0v, we obtain
v v —(@+6) o 0
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Hence, we see that
00 ol
deg{u,v} % > deg{u,v} %7

00 96
deg{u,v} % > deg{u,v} %a

00 00
max{deg{u,v} %7 deg{u,v} %} > 2p deg{u,v}(qs + 92)7

where degy,, .y f is the degree of f for the system u and v of variables of R.
We denote by dg the maximal degree of monomials (for the system u and v of
variables of R) appearing in € which do not belong to RP. Similarly we use
the notations dg2, dy and dyyg2. The above first and second inequalities for
degyy ) imply dp > dy, and so dg2 > dy. Hence dg g2 = dg2. It follows that
degyy, v} (¢ + 6%) > dg, 92 > dp. On the other hand, we easily see that

00 00
do > max{deg{um} 70’ degy, vy %}

This is a contradiction. Thus R’ is not a polynomial ring in two variables over
K.

Next we shall prove that RP|[fs] is regular factorial if p = 3. First note
that by Lemma 2.1 RP[fs] is regular and {y} is a p-basis of R over RP[fs],
since dfs/0x = 1. The second fact implies R = @?:0 RP[fo]y'. To show
that RP[fs] is factorial, we make use of a derivation of R over RP[fs]. Let
D = (y+2%)%0/0x + 0/0y. First we shall show that Ker D = RP|[f5]. Writing
g € R as ag+ a1y +azy? (ap,a1,as € RP[f2]), we have D(g) = (a1 — a2y) D(y).
Since D(y) # 0, we see the following:

D(g)=0<a1 —ay=0< a1 =as =0<& g € RP[fy).

This implies Ker D = RP|[f>]. Since {D, d/0z} forms a basis for Dergr(R) and
df2/0x # 0, {D} forms a basis for Dergp(s,)(R). Clearly D? € Derpgos,)(R).
Hence D? = aD for some a € R. From Dy = 1 we have a = 0, i.e.,

D3 =0.

Put s := z and ¢t := y + 2%, Then 9/0x = 0/ds — s0/0t and 0/0y =
d/0t, so that D is expressed as t99/9s + (1 — st®)9/0t. By a straightforward
computation we obtain

7 7 )

2 _ 1207 604 _ 46 _ o6
D* =t 052 t°(1 st)asat—i-(l st)8t2 5

To prove that RP[fs] is factorial, suppose that RP[f2] is not factorial. By
Lemma 4.1 of [10] there exist non-zero polynomials h, £ of R such that D(h) =
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h¢, since Ker D = RP[fs]. Then D?*(h) = D(h)¢ + hD(€), and so

D?(h) = D(D(h)¢ + hD(¢))
= D*(h)¢ +2D(h)D(€) + hD*(8)
= (D(h)¢ + hD(€))é + 2hED() + hD?(€)
= h(&’ + D*(€)).
Since D3 = 0 and h # 0, it follows that D?(¢) = —¢3. Here note that

degy, 1 & < 6, because D(h) = Eh. Let [D2%(¢)], be the homogeneous part of
D?(¢) with degree r (for the system s and t of variables of R). Hence, writing
& as 22:0 &, where & is the homogeneous part of £ with degree k, we have

2
1) 2 =Dl = &

2
@) T8 = Do) = <

2
(3) G =Dl =0,

352

W 052 pe)s= g,

6 o280 awdh el =g,

0 108l g, - g

@ el el e g g
ORI e TR R LU
DR T )

From (9) it follows that & = est® (c € K). Hence we obtain & = 0 by (3),
so that 92¢5/0t2 = 0 by (8). Moreover we have & = 0 by (2). From (4) i
follows that & = 0. Hence we get £, = 0 by (1), and moreover {4 = 0 by (6).
Since & = &4 = 0, &5 is of the form t*(cos + c1t) (co,c1 € K) by (7), and so
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0%¢5/0s? = 0. Hence &5 = 0 by (7), so that &3 = 0 by (5). Consequently we
obtain £ = 0, which is a contradiction. Thus RP[f2] is factorial.

Now, set u := z— (y+22)% and v := y+2? where « is a positive integer such
that & # 0 (mod 3). Then u and v form a system of variables of R, and we
have f1 = u+v*—v3(v—u?+uv®—v2*) and fo = u+v* -8 (v—u?+uv® —v2).
Hence degy, ,y f1 = 2+ 3 and degy,, ,y f2 = 2a+ 6. Thus f; and f; have the
desired properties. O

Corollary 3.2. Assume that p = 3. Then, for each d € N with d # 0 (mod 3),
there exist a polynomial g € R with deg g = d and a subring R’ of R containing
RP which satisfy the following properties:

(1) No monomial appearing in g belongs to RP;
(2) {g} is a p-basis of R over R';

(3) R’ is regular and factorial, but is not a polynomial ring in two variables
over K.

Proof. Let f2 be as in the proof of Theorem 3.1. Then, we have already seen
that {y} is a p-basis of R over RP[fs]. Put g :=y and ¢/ := y + % Then g is
expressed as 3y — x%. So the assertion holds. O

Lemma 3.3. Let f be a polynomial of R — RP, D a derivation of R over
K such that D(z) # 0 and D(y) # 0, and K(zP,yP) the field of fractions of
RP. Suppose that D(f) = 0. Then Ker D = K (2P, yP)[f] N R. Furthermore,
Ker D = RP[f] if and only if RP[f]NhR C hRP[f] holds for any h € RP —{0}.

Proof. Let K(x,y) be the field of fractions of R, and D the extension of D
to K(z,y). Set L := K(aP,yP)[f]. Clearly L is a subfield of K(z,y), and
[L : K(aP,yP)] = p, since f ¢ K(aP,y") and [K(z,y) : K(aP,yP)] = p2-
Hence [K(x,y) : L] = p, and so K(x,y) is either @f:_ol L' or @f:_ol Lyt. We
consider the case where K(z,y) = @f:_& Lx'. Then any g € K(x,y) is of
the form Y7~} a2’ (a; € L). Therefore D(g) = (320~ ia;a*"1)D(z). Since
D(z) # 0, we have the following:

p—1
D(g) =0 & Zmiu’ﬂi_lzo@a1=a2='“=ap71=0@gEL.
i=1

Hence Ker D = L. Similarly we can show Ker D = L in the case where
K(x,y) = @ Ly

Next, we shall prove the second assertion. Suppose that Ker D = RP[f].
Let h be a polynomial of RP — {0}. For each g € RP[f] N hR, there exists
an element ¢’ of R such that ¢ = hg’. Since 0 = D(g) = hD(¢’) from the
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assumption, we have D(¢') = 0 so that ¢’ € RP[f]. This implies g € hRP[f].
Thus RP[f] N hR C hRP[f] for each h € RP — {0}. Conversely suppose that
RP[flNhR C hRP[f] for each h € RP — {0}. Any g € Ker D is of the form

f;ol(ai/bi)fi (ai, bi € RP) by the first assertion. Set h := f;ol b;. Then hg €
RP[f]N hR and so hg € hRP[f]. Hence g € RP[f]. Thus Ker D = RP[f]. O

Theorem 3.4. Assume that p = 3. Then, for each d € N with d > 5 and
d # 0 (mod 3), there exists a polynomial f € R with deg f = d which satisfies
the following properties:

(1) No monomial appearing in f belongs to RP;

(2) RP[f] is regular and factorial, but is not a polynomial ring in two vari-
ables over K,

(3) R has no p-basis over RP[f].

Proof. Let fi = x —y? + 2%y and fy = x — 3° + 2%¢y5. We already treated f;
in Example 4.3 of [10]. So we only give a proof of the assertion that RP[fs] is
regular and factorial, but is not a polynomial ring in two variables over K. Set

,, := RP[f2]. First note that R} is regular by Lemma 2.1 (1). From Lemma
2.3 we see that

0 2
(55) =1+4°(f+17) £ QUL & Q(Ry)y.
According to Lemma 2.2 this implies that R has no p-basis over R}, hence R}
is not a polynomial ring in two variables over K by the result of [2] (also see
5)).

Let D = y*0/0x — (1 + 22y%)0/dy. To show that Ker D = R}, by Lemma
3.3 it is sufficient to verify the condition that R, N AR C hR! holds for any
h € RP — {0}. Suppose that hg € hR belongs to R). From the assumption hg
is of the form hg + hyfo + haf2 (ho,h1, ha € RP). Since fo = x — y3y? + y522,
we obtain

ho + hifa + ha f3 = (ho — hoa®y®) + (1 + hoz®y'?)x + hoy®y
+ (hy® + ho)a® — hay®y® + hayxy® + hoy 2y,

Note that the coefficients of 1, z, y, 22, y?, 2y?, 2%y® (as an RP -linear com-
bination of 2y’ for i,j € {0,1,2}) belong to hRP, because {z'y’ }o<i j<2 is a
p-basis of R over RP. Since h1y® + ho, —h1y® € hRP, we see ho € hRP, and so
ho— hox?y% € hRP resp. hi +hox3y'? € hRP implies hg € hRP resp. hy € hRP.
Therefore ho/h, h1/h,ha/h € RP. Hence g = ho/h+(h1/h)fa+(he/h)f3 € R.
Thus R, NhR C hR} holds for any h € RP — {0}. Put D' := (1 —2xy5)0/0x +
422y80/0y. Then, since {D, D'} forms a basis for Dergs(R) and D’(f2) # 0,
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we see that {D} forms a basis for Derp, (R). Clearly D3 € Der ry (). Hence,

D3 = aD for some a € R. Since Dz = y* and D3z = y'3, we see a =3, i.e.,
D? =4°D.

(From this fact we can also see that R has no p-basis over R}, (see [8]).) By a
straightforward computation we obtain

D? = y8—82 + 34 (1 + 229%) i +(1+ 2xy6)2—82
0z 0x0y oy?
0 0
.3 6 109
y(1+2my)8x+y 9y

To prove that R, is factorial, suppose that R, is not factorial. By Lemma 4.1
of [10] there exist non-zero polynomials h, £ of R such that D(h) = h&, and
we have D3(h) = h(€2 + D?(¢)) as in the proof of Theorem 3.1. Hence

D*(§) = —& +y°¢.

Clearly deg & < 6. Let & (0 < k < 6) and [D?(¢)], (0 < r < 18) be as in the
proof of Theorem 3.1, and moreover we express £ as ZOSHJ‘SG c,-J:ciyj (cij €
K). Now we consider the equation D?(¢) = —&3+¢%¢. Since 2%y'20%¢4/0y° =
[D2(6)]1s = —€2, we have 2c42059y'2 + 2¢1 523y!® = —€3. It follows that
C6,0 = C5,1 = C42 = €33 = C24 = Co6 = 0. Since y482§4/8x8y — y38§4/8x =
[D2(¢)]s = —&3, we get cog = 0. Since y102&,/0x0y + 0266 /0y — y20&2 /0 =
[D%(€)]4 = 0, we have 0171y4 + 2¢1 57y — 2 (2c0,07 + c11y) =0, and so ¢c1 5 =
cap = 0. Hence & = 0. Note that 0%¢3/0y? = 0%€4/0y* = 0%¢5/0y? = 0,
since 0%6s/0y? = [D2(E)] = 0, 0%4/0” = [D2(E)]a = 0 and 22y'20%¢5/0y? =
[D2(€)]17 = 0. The left-hand side of [D?(¢)]15 = —&8 + 1% = —& is of the

form ) )
0% 073 &g &g

10 2 12 99s6 |, 10956
0xdy Ty Oy? Y Ox Ty oy
It follows that & = 0. Since y*0%&5/0x0y + xy80%&s/0y? — y20¢5/0x =
[D%(&)]7 = 0, we get 9%63/0y? = 0. So we have & = 0, because §%¢2/0y? =
[D?(€)]o = —&. Since y®0%E3/02* + xy00%€4/9y® = [D*(€)]g = =& + y°& =
—&3, we obtain 2cp1y? = —¢&3. This implies &5 = 0. The left-hand side of
[D2(&)]12 = —€3 + y°&3 = —&} is of the form

90083

8¢ 0%&3
8 10 39
Y o2 0x0y oy Ox +y

2zy

10083

+ 2zy ay

It follows that &4

= 0. So, by considering the equation y*9%¢,/0x0y —
y?0&/0x = [D*(€)]s =

—¢£3 again, we obtain & = 0. Since 0%¢5/0y* —
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y30€1/0z = [D?(€)]3 = —&}, we have c10y® = &. This implies £; = 0. Conse-
quently we see & = 0, which is a contradiction. Thus R} is factorial.

Now, set u := x — y® and v := y where « is a positive integer such that
a # 0 (mod 3). Then the system u and v is a system of variables of R, and we
have f1 = u+v® —v? + (u+v*)%03 and fo = u+v* —v° + (u+0v*)?08. Clearly
degyy vy J1 = 200+ 3 and degy,, ) fo = 2o + 6. Hence the assertion holds. [

Next we give examples of a non-regular factorial subring K 2P, y?, f] (deg f =
5) of the polynomial ring K[z, y].

Example 3.5. Assume that p = 3. Let fo = x —y> + 2%y% and f| = = —
y* + 223, and let fi be (1 —t)fo+tf1 for anyt € K. Let Dy = {(1 —t)y —
ty3}0/0x — (1 — xy3)0/0y and K; = Ker D;. Then K; = RP[f;], and K; is
factorial, but is not a polynomial ring in two variables over K. Moreover, the
following properties hold:

(1) Ky is regular if and only if t =0 or 1.
(2) R has a p-basis over K if and only if t = 1.

Proof. Note that fy is the same as f; in the proof of Theorem 3.4. Hence,
RP[fo] is regular and factorial, but is not a polynomial ring in two variables
over K, and R has no p-basis over RP[fy]. Consider the system v = x and
v =y — 22 of variables of R. Then f; =z — (y — 22)y® = u — v(v + v?)3 is the
same as f1 in the proof of Theorem 3.1. Hence, RP[fi] is regular and factorial,
but is not a polynomial ring in two variables over K, and R has a p-basis over
RP[f1].

To show that K; = RP[f:], by Lemma 3.3 we only check that RP[f;|NhR C
hRP|[f;] holds for any h € RP — {0}. Take any ho + h1 f; + haf? € RP[f) N hR
with hg, h1, ho € RP, and write

ho + hafe + haff = ho + ho{—2®y® + t(t — 1)y°} + (b1 + hax®y®)
+ {~th1 + (t = 1)*ha}y’y + (hy® + ho)z?
+ thoyzy + {(t — 1)hy + t2hoy®ly? + thoy®a?y
+ (1= t)hawy® + (1 — t)hay’a?y”.

Then, by looking at the coefficients of 1, =, 22, y? and zy? (as an RP-linear
combination of 2y’ for 7,5 € {0,1,2}), we know that hg + ho{—23y> + t(t —
1)y®Y, hy + hox3yS, hiy® + ha, (t — 1)hy + t2hoy®, (1 — t)hs belong to hRP as
in the proof of Theorem 3.4. When ¢ = 1, we have hy + hox3y®, hoy® € hRP,
and hence hy € hRP. Since hiy> + ho, hg — hox®y> € hRP, it follows that hg
and hgo also belong to hRP. Similarly, we have hg, h1, ho € hRP when t # 1,
since (1 — t)ha, ho + ho{—23y> +t(t — 1)y®} and hy + hoz3y® belong to hRP.
Hence hg + h1fi + th% € th[ft].
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From now on assume that ¢ # 0,1. The equations df;/0z = 1 — 23> = 0
and df; /0y = (1 —t)y — ty® = 0 have common zeros. Lemma 2.1 (1) says that
K, is not regular. Hence K} is not a polynomial ring in two variables over K,
and R has no p-basis over K; by Theorem 15.7 of [6] (cf. [4]). Clearly D} €
Derg, (R) C Derge(R), so that D} is of the form a;0/0z +b;0/0y (as, by € R).
By an easy computation we have a; = Dj(z) = (1 — t)y3{(1 — t)y — ty®} and
by = D}(y) = —(1 — t)y3(1 — 2y?). Tt follows that

D} = (1-t)y*Dy.
By a straightforward computation we obtain

92 BE
2 . _ 312 . _ 3 o 3
Dy ={(1-t)y —ty’} 92T {1 =ty -ty (1 —ay )%ay

0? 0 0
1—ay)? = — (1 -t)(1 —zp®)=— + *{(1 — t)y — ty*} =—.
12y g s — (1= zy”) - Tyl =ty y}ay
To prove that K; is factorial, suppose that K; is not factorial. Then, by
Lemma 4.1 of [10] there exist non-zero polynomials h:, & of R such that
Dy(hy) = hi&t, and moreover deg &, < 3. We obtain D?(&;) = —& + (1 —t)y3¢
as in the proof of Theorem 3.4. To consider this equation, we prepare the
notations & (0 < k < 3) and [D?(&)], (0 < r < 9) as in the proof of
Theorem 3.1, and we express & as Zogi+j§3 cti,jxiyj (ctsj € K). Since
2?y00%¢3/0y* = [D}(&)]o = —&Ps, we get ¢i30 = cra1 = cro3 = 0. The
left-hand side of [D?(&;)]s = 0 is of the form

5 0%
Oy?

6073 698t3
—xy .
0xdy oy

+ txy

Hence we obtain c;02 = 0. The left-hand side of [D?(&)]s = —&5y + y3&3 is
of the form

%o %3 &3 &3 &1
248 — (1 —t)xy* 1—tay> 222 1— )yt 22 gy
vz — (L=tzy awoy T (1= tay” =+ (1-t)y o oy
It follows that (1 — t)cp1 2my° — tcto,lyﬁ = —( 5’2701‘6 + 03171x3y3) + Ct172IL‘y5.

Hence ct1,2 = ¢r0,1 = ci2,0 = ¢t1,1 = 0, so that {2 = &3 = 0. From these facts
we have

—(1- t)ctl,O(l - fyg) = D?(ft) = *f?o - Ctl,oﬁﬂ?’ + §t0y3 + Ct1,0$y3~

It follows that c¢;1,0 = £0 = 0. Hence we have & = 0, which is a contradiction.
Thus K; is factorial. The assertion follows from these facts. O
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§4. Regular subrings RP[f] with deg f =4

Throughout this section, let A2 resp. P? be the affine plane Specm R resp. the
projective plane over K, and let K[X,Y, Z] be the homogeneous coordinate
ring of P2 and we denote by [a, b, c] the point of P? given by X = a, Y =
b, Z = c. Let v : A2 — P? be the canonical embedding of A? given by
(a,b) + [a,b,1], and put Lo := P? — 1(A%) = {Z = 0}, P := [0,1,0] and
Q :=[1,0,0]. Let f(x,y) be a polynomial Zl§i+j§4 cija'y’ of R with degree 4
such that 0f /0x, 0f /0y generate R as an R-module. Note that either ¢ 9 # 0
or co1 # 0. Let F(X,Y,Z) € K[X,Y,Z] be the homogeneous polynomial
Y i<itj<a CigX ' YIZ477T such that f(z,y) = F(X,Y, Z)/Z*. Then

X > e XTI ZYT g0 XP 4 200, XY 1377,
1<its<3

OF - ini—1 ph—iej 3 2 3

ay Y e XYz 31 X7 4 2029 X7Y 4 coaY

1<i+;5<3

We put Hy = c40X3 +2c20XY? 4+ ¢13Y2 and Hy = c31 X3 + 2c22X%Y +
0074}/3.
Since 0f /0x and Jf/Jy generate R as an R-module, V(9f/0x)NV (0f/0y) =
0 and so V(OF/0X) NV (0F/0Y) C L. If Hx # 0 and Hy # 0, we have
V(OF/0X) NV (OF/9Y) = V(Hx) NV (Hy) N Luo.

Lemma 4.1. Assume that p = 3. Let f € R be such that deg f = 4 and
R' := RP|[f] is regular. If the monomial x*y* appears in f, then R’ is not
factorial, R' = RP[u + u?v?] for some system u and v of variables of R, and
R has no p-basis over R’.

Proof. Since ca2 # 0, after a suitable K-linear change of the system z and
y of variables of R, we are able to assume that co2 = 1 and ¢4 = cp4 = 0.
Moreover we may assume that cp1 = c12 = 0 with a suitable affine change of
the system x and y of variables of R. We will argue about 4 cases as below.

Case 1. Suppose that c¢31 = ¢13 = 0. Clearly V(0F/0X) NV (0F/0Y) =
{P, Q}. Now we consider the intersection number I(P,0F/0X NOF/JY) of
OF/0X and OF/0Y at P. Set

1 OF

le = W@iX = 01702’3 + 2027()%‘22 + 61’122 + 2.%,
1 OF

fy1: = 007123 + 01,13322 + 200,222 + 2:02,

= yiay
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where 2 = X/Y (we use the same symbol with an affine coordinate = of A?)
and z = Z/Y. Then

I(P,0F/0X NOF/0Y) = I(P, fx1N fy1) = I(P, fx1 N (fy1 — vfx1)).

Since fy1 — xfx1 = Z2fy2 where fyo = —Ccp,2 + ¢p,172 + 027()%2 — C1,0TZ, We
obtain
[(P,OF /X NOF/OY) =2 + I(P, fx1 0 fy).

If cg2 = 0, we have

1 if ¢o1 #0,
I(P, fx1 M fy2) =93 if co1 =0, c11 #0,
4 if Co,1 = 0, 6171 =0.

On the other hand, if cp2 # 0, we have I(P, fx1 N fyz) = 0. Hence we obtain

if co2 # 0,
if Cp2 = 0, 0071 7é 0,

I(P,0F/0X NOF/0Y) = if oo =0, co1 =0, c11#0

S Ot W

if 0072 = 0, 6071 = 0, 0171 =0.
Similarly we have
if C20 # 07

if c20=0, c10#0,

1(Q,0F/0X NOF/0Y) =
(@ / / ) if c20=0, c10=0, c1,1 #0,

S Ot W N

if 0= 0, C10 = 0, C1,1 = 0.

Bézout’s theorem says I(P,0F/0X NOF/0Y) + I(Q,0F/0X NJF/0Y) =9,
so we see that ca9 = co2 = c1,1 = 0, and either c19 # 0 and ¢y = 0, or
c10=0and co; # 0. Thus f is either ¢1 0z + c307% + co 39> + 22y* (c10 # 0)
or o1y + 302> + co3y> + 2?y? (coq #0).

Case 2. Suppose that c31 # 0 and ¢; 3 = 0. First note that V(0F/0X) N
V(OF/0Y) = {P}. Set

1 OF
fx1:= Y3 ax = 61,023 + 262,01322 + 01,122 + 2z,
1 OF
le = W((?T = 60’12’3 + 61,13722 + 260722’2 + 0371$3 + 2$2,

where = X/Y and z = Z/Y. Then, since I(P, fx1 N fy1) = I(P,0F/0X N
OF/0Y) =9, we have cp2 = 0 and so fy1 —xfx1 = 0371x3 + 007123 - cLOxz?’ +
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027033222. Hence cg1 = 0, because I(P, fx1N(fy1—xfx1)) =I(P, fx1iNfy1) =
9. It follows that c19 # 0 and fy1 — xfx1 = fys where fys = cz12? —
c102° + eo0zz?. Clearly I(P, fx1 Nx) < 3. Since fys + csixfx1 = 22 fys
where fys = (c20 + c1,1¢3,1)% — ¢1,02 + €1,063122 — 02,00371m2, we have

I(P, fx1 N fy2) = I(P, fx1 N (fy2 + ec3p2fx1)) =2+ I(P, fx1N fys) =3,

and so I(P, fx1 N fy1) = I(P, fx1 Nz) + I(P, fx1 N fy2) < 6. This is a
contradiction. Hence this case never occurs.

Case 3. Suppose that c31 = 0 and ¢ 3 # 0. By the change of x and y, this
case is reduced to the previous case. Thus this case does not occur.

Case 4. Suppose that c31 # 0 and c13 # 0. Since Hx = Y?(—=X + ¢13Y),
Hy = X%*(c31X —Y) and V(Hx) NV (Hy) N Loo # 0,we have c31c13 = 1.
Hence F' is written as

o 1 2
> XY 4 XY (e X - v)
1<it)<3 Vel

Setting X' := /e31 X — (1/,/¢31) Y, the polynomial F' is given by

L o 1 1
F' = ¢ (XNYIZA& T 4 ——(X)3Y + —(X') 2y
1<§<3 1.5 (X) o (X7 . (X7)

Hence this case is reduced to Case 2 so that it never occurs.

We conclude that f is either ci gz + 03701'3 + 0073y3 + 2292 (c10 # 0) or
coy1y+03,0x3 +coy3y3 +22y? (co,1 # 0). This implies that there exists a system
u and v of variables of R such that R’ = RP[u + u?v?]. When f = u + u?v?,
RP[f] is non-factorial by Lemma 2.4 and (9f/0u)? = 1+ fv?> ¢ Q(R)®Q(R v
by Lemma 2.3. According to Lemma 2.2 the later fact implies that R has no
p-basis over R'. O

Lemma 4.2. Assume thatp = 3. Let f € R be such that R' = RP|f] is reqular
and deg f = 4. If the monomial x%y? does not appear in f, then there exists
a system u and v of variables of R such that one of the following conditions

holds:
(1) R’ is equal to the polynomial ring K[u,v®];

(2) R'is a non-factorial ring, and is equal to RP[u+u?v], or RP[u+cu?+uv]
for some c € K.

Moreover, R has a p-basis over R’ in all cases.
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Proof. Case A. Suppose that c40 = co4 = 0. If c31 # 0 and ¢1 3 # 0, we have
V(Hx )NV (Hy) = 0. Hence either ¢3; = 0 or ¢; 3 = 0. So we may assume that
c3,1 = 1 and c¢1 3 = 0. Moreover we may assume that cp; = 0 with a suitable
affine change of the system x and y of variables of R, and so c;1o # 0. Put
Fx = CLOZ2 -+ QCQVOXZ + 0171YZ + 26271XY + CLQYQ. Then 8F/8X =ZFx.
Since I(P,ZNOF/0Y) = 3, we have V(Fx)NV(0F/0Y) = {P} and ¢; 2 = 0.
Set

1

le = WFX = 01702’2 + 20270.%2’ +cra1z+ 2627133,
1 9F

fyi:= Wa? = 01,13622 + 200,222 + cz,lxzz + x3,

where x = X/Y and z = Z/Y.

Now we claim that co; = 0. To show this, assume that cp1 # 0. Since
I(P, fx1 N fy1) = 6, we see that cpo = 0 and fy; = :1:(01,122 + c2122 + z?).
Moreover we get I(P, fx1 N (c112? + co12z + 2?)) > 4. This implies that
fx1 and 017122 + c2112 + z? have a tangent line in common at P. Hence
61,1(0171 — C%,l) =0. If 1,1 = 0, we have I(P, fx1N (62,11‘2 + .%'2)) = I(P, fx1N
x) + I(P, fx1 N (cg,12 + ) = 3. This is contradictory to the fact I(P, fxi N
(c2nz2 + z?)) > 4. Hence 11 = cgyl, it follows that 6 = I(P, fx1 N fy1) =
I(P, fx1N ZE) + I(P, fx1N (017122 +co1r2+ .132)) =1+ QI(P, fx1N (62712 - 9:)),
which is a contradiction. Thus cp1 = 0.

From the claim we obtain I(P, fx1 N fy1) = I(P,zN fy1) + I(P, (c10z —
€20 + 61’1) N fy1) =3+ I(P, (01,02 — C20T + 61,1) N fy1), and so I(P, (01,02 —
c20r +c11) N fy1) = 3. Hence ¢17 = 0. If ¢go = 0, we see that R’ =
RP[c 0z + CQ,()[L'2 + :L‘?’y] is regular and non-factorial by Lemma 2.4, and R has
a p-basis over R’ by Lemmas 2.2 and 2.3. On the other hand, if cp2 # 0, we
obtain ¢z 0 = 0 and so

f=cior+ 00,2112 + 03,0353 + Co,3y3 + 2%y

1 2 1
= C1,0T + Co2 (y — C—x?’) + 03,0953 + 0073y3 S —e

Setting y' := y — (1/cp.2)23, the polynomial f — 3023 — co 39> + (1/co2)x® is
given by f' = c10z+co2(y')%. Thus R’ = RP[f'] = K[f', (v')P] is a polynomial
ring.

Case B. From now on suppose that c; 0 # 0. By a suitable K-linear change
of the system x and y of variables of R, we may assume that c40 =1, co4 = 0.
Moreover, we shall divide this case into three subcases.

Case B1. Suppose that c31 = ¢13 = 0. Then 0F/0Y = ZFy where
Fy = 607122 + CLlXZ + QCO’QYZ + 0271X2 + 20172XY. Clearly V((‘?F/@X) N
V(Fy) = {P}. Set

1 OF
fxt:

3 2 2 3
= = C1.0% +262 0Tz +C]_ 1% "‘202 ]_l‘Z‘i_c]_ 22"‘1’
j/‘,?, a)( ’ ) ) ) ) ?
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1
2 2
fri: Fy =cp12° + 1122 + 2c022 + c2.12° + 2¢1 2,

=73
where x = X/Y and z = Z/Y. Since I(P, fx1 N fy1) = 6, we get ¢12 = 0.
First we consider the case where ca1 # 0. Then, by a suitable affine change of
the system = and y of variables of R, we may assume that cog = c11 = 0. If
€0,2 7é O, we obtain C()gf)(l — 6271.%'fy1 = 0170007223 — 007102,11’22 + (6072 — c%l)x?’,
and so cp2 = c%jl and cp1 = 0. Hence

2 2 2 4
f=ciox+ 1Y+ 63,0:U3 + o127y + co,3y3 +z
2\2 3 3
= C1,0T + (62,1y — X ) + C3.0T + 6073y .

Setting y' := 21y — x2, the polynomial f — c302% — co 3y is given by f/ =
c10+(y')% Hence, if co o # 0, then R’ = RP[f'] = K[f’, (y/)P] is a polynomial

ring. On the other hand, if ¢p2 = 0, we obtain cg 1 = 0, so that

f=c10z + e300 + ca12%y + co 3y’ + 2t
Setting y' := c21y + x2, the polynomial f — c302% — co 3y is given by f/ =
c107 + 2%y’. Thus R’ = RP[f'] is regular and non-factorial, and R has a p-

basis over R’ (see (B) in §1). Next we consider the case where ¢ = 0. Since
I(P, fx1 N z) =3, we have cp2 = ¢11 =0 and ¢p 1 # 0, so that

2 4
f=croz+ co1y + 202 + e300 + co3y° + 2.

Thus R’ is the polynomial ring K[f’, (y)P] where f' = f — c302° — co3y> and
y' = coay+ 02,0902 + 2.
Case B2. Suppose that c31 # 0. Then Hx = X3+c1’3Y3 and Hx = 03,1X3.
Hence ¢1 3 = 0. Setting Y’ := X + ¢3,Y, the polynomial F is given by
Fr= Y ¢, X'(Y)yz"7 7+ X3
1<i+5<3

Hence this case is reduced to Case A.
Case B3. Suppose that c31 =0 and ¢1,3 # 0. Then F' is written as

Y XY 2V 4 X(X + YersY)?.
1<i+5<3

Setting X' := X + @/c13Y and Y’ := X, the polynomial F is given by
Fr= Y X (Yyz5 - + (XY,
1<i+;j<3

Hence this case is reduced to Case A. O
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Lemma 4.1 and Lemma 4.2 are made up into the following statement:

Theorem 4.3. Assume that p = 3. Let f € R be such that R’ = RP[f] is
reqular and deg f = 4. Then, there exists a system u and v of variables of R
such that one of the following conditions holds:

(1) R’ is equal to the polynomial ring K[u,v3];
(2) R is a non-factorial ring, and is equal to RP[u + u?v?] or RP[u + u®v],
or RP[u + cu® + u3v] for some c € K.

Moreover, R has no p-basis over R’ in the case of R’ = RP[u + u?v?], while R
has a p-basis over R’ in the other case.

Corollary 4.4. Assume that p = 3. Let f € R be such that R’ = RP[f] is
reqular and deg f < 4. If R’ is factorial, then it is a polynomial ring in two
variables over K.

Proof. This assertion immediately follows from Theorem 4.3 and (B) in §1. [

85. Questions

Finally we present three questions under the condition that K has a prime
characteristic p greater than 3.

Question 1. For each d € N with d > p+ 2 and d # 0 (modp), does
there exist a polynomial f € R with deg f = d such that RP[f] is regular and
factorial, but is not a polynomial ring in two variables over K, and R has a
p-basis over RP[f]?

Question 2. For each d € N with d > p+ 2 and d # 0 (modp), does
there exist a polynomial f € R with deg f = d such that RP[f] is regular and
factorial, but is not a polynomial ring in two variables over K, and R has no
p-basis over RP[f]?

Question 3. Let f be a polynomial of R — RP such that deg f < p+1 and
RP[f] is regular and factorial. Does it follow that RP[f] is a polynomial ring
in two variables over K7
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