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Abstract. We survey recent progress on the case of the Cauchy problem for
the generalized reduced Ostrovsky equation uy = S (9z) u+ (f (u))s, where the
operator S (9;) is defined through the Fourier transform as S (9;) = F* %]-',

and the nonlinear interaction is given by f(u) = |u|’ " u if p > 1 is not an
integer and f (u) = u” if p > 1 is an integer.
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81. Introduction

We survey our recent results on the Cauchy problem for the generalized re-
duced Ostrovsky equation

(1.1) {ut:S O )u+0,f (u), x€R, t>0,
' T

U(? ):Uﬂ(z)’ ze€R,

where the operator S (0;) is defined through the Fourier transform as F _1%}"

, and the nonlinear interaction is given by f (u) = |u|’"* u if p > 1 is not an
integer and f (u) = u” if p > 1 is an integer. The Ostrovsky equation (1.1)
with S (0,) = F~! (—z’a§3 - %) F and f (u) = u? was introduced in [33] for
modelling the small-amplitude long waves in a rotating fluid of finite depth.
It was studied by many authors (see, e.g., [28], [39], [40] and references cited
therein). When a = 0, and f (u) = u?, equation (1.1) is called the reduced
Ostrovsky equation.

In order to survey the previous works on the Ostrovsky equations we in-
troduce Notation and Function Spaces. We denote the Lebesgue space by

L7 = {6 € 8 [¢lly, < oo}, where the norm [é]ly, = (fy | (@) do)? for
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68 N. HAYASHI AND P.I.NAUMKIN
1 <p < ooand ||¢]pe = sup,er |¢ (z)| for p = co. The weighted Sobolev
space is

H* = {0 €S ¢l = 2 (i0.)™ dllgs < oo},

m,s € R,1 < p < o0, () = V1+22,(i0,) = /1 —02. We also use the
notations H™® = Hy»*, H™ = H™Y, H) = H,"" shortly, if it does not cause

any confusion. We denote the homogeneous Sobolev space by

<oo),
1.2

where P denotes the set of all polynomials. We also use the notation D' =

. m

H — {¢ € S'/P;||[lygm = H(—aﬁ)% ¢‘

(—62) 2 for simplicity.

Local well-posedness for the Ostrovsky equation was shown in paper [40]
in the case of the initial data

-1 3
uweH NH | s> 3
by using the parabolic regularization technique and limiting arguments. Their
method works also for the case of the generalized nonlinearity f (u) = |u|’™ "
and also generalized reduced Ostrovsky equation (1.1), since the dispersive
effects were not used in the proof. Thanks to the high frequency part wz..,
the solutions to the linear equation (u¢ — Buzes), = yu obtain smoothing
property. By using this property, in [28], the local well-posedness for the
Ostrovsky equation was shown under the condition
-1 3
u € H'NH s>1.

The method on [28] depends on the linear part of the equation and also works
for the nonlinearities of a general order. In [11], [25], [26], [39] the local well-
posedness for the Ostrovsky equation was treated by the Fourier restriction
norm method of [2] and in [39], the H~ 1" local well-posedness was shown. We
note here that the Sobolev space H~ it is considered as a critical regularity
compared to the work on Korteweg-de Vries. However, the Fourier restriction
norm method does not work in the case of the fractional order nonlinearity.

Global well-posedness in the energy class was obtained for the Ostrovsky
equation in [28] through the energy conservation law, when the initial data

. —1
uoEHlﬁH ,

and ab > 0. After their work, the global well-posedness in

. —S
L’NH ,0<s<1,
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was proved in [11], [39] due to the L? - conservation law. The global well-
posedness in the negative order Sobolev space Hfl%Jr, was shown in [26] by
using the I method of [7].

We now turn to the reduced Ostrovsky equation (1.1). The local well-
posedness was shown in the space H? in [35] and after that in H:t in [36].
Their methods work also in the case of the general nonlinear dispersive equa-
tions with different nonlinearities. We also refer [29] and [30] for the local
well-posedness in the class

. —1
wweH"NH m>2.

However there are few works on the global well-posedness for the reduced
Ostrovsky equation (1.1) due to the lack of the smoothing property. The
global well-posedness for the reduced Ostrovsky equation (1.1) with cubic
nonlinearity f (u) = u? (which is called the short pulse equation) was obtained
in the paper [34], when the initial data

ug € H27 HaxuOHI_p < 1,

whereas for the quadratic nonlinearity f (u) = u? (which is called the reduced
Ostrovsky equation or the Ostrovsky-Hunter equation, see [3], [24]), it was
shown in [10] when the initial data

ug € H3,1 — 30%ug (z) < 0

for all x € R. The time decay properties of solutions to the corresponding
linear problem can be studied if we assume that the initial data decay rapidly
at infinity. So the global existence was shown in [36], for the nonlinearity
f (u) = u” with integer p > 4, when the initial data are small and sufficiently
regular

ug € H> N H3.

The rest of this review article is based on our papers [19], [21], [22] and is
organized as follows. In Section 2, we consider the super critical nonlinearity in
the sense of the scattering problem. Section 3 is devoted to the nonexistence of
the usual scattering states in the case of sub critical or critical nonlinearities.
We consider the critical case in the last section.

82. Super Critical Case
Our first result is related to the work [36]. Denote by

U(t)=F texp <—?> F
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the free evolution group for the reduced Ostrovsky equation. We introduce
the following operator J = U(t)zU(—t) = z — td, 2, where the anti-derivative
0,1 is defined by

T o0

(0719) (1) = FL(i6) " d =1 </ ¢ (a') da —/ ¢ (') dx') :
2 —00 X

It is known that the operator J is a useful tool for obtaining the L - time
decay estimates of solutions. However, the operator J does not work well
on the nonlinear terms. Then, instead of using the operator J we apply the
following operator P = J0, — tL = 20, — td;, where L = 9; — 9;! is a
linear part of the reduced Ostrovsky equation. Note that P acts well on the
nonlinear terms as the first order differential operator. To state the results,

we introduce the function spaces

7= {u®) e C(0.T) ™) fulxy < oo},

7= {6 L% ollxy < oo},

where

[ullxm = sup lu(®)llgm + sup [[TOeu(t)lly2 + sup [u(@)]] .-
t€[0,7] t€[0,7] t€[0,717] H

and

1@llxm = ¢llgm + [[0:@llgon + ”¢HH*1 :

We consider the real-valued solutions, since one of the main tools to treat
the so-called derivative loss of the nonlinear term is the energy method, which
does not work in the case of quasi-linear nonlinearities if the solution is a
complex-valued function.

Theorem 2.1. Let the order p of the nonlinearity satisfy
2
p > max 3—|—§,m+1

or be an integer satisfying p > 4. Assume that the initial data vy € Xg', with
m > 2. Then there exists a positive constant € such that (1.1) has a unique
global solution u € X7} with the time decay

lu (#) | < C ()72
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for any ug satisfying ||u0HX6n < €. Moreover for any uy € Xi* such that
-1
HUOHXS”“ <, there exists a unique scattering state uy € H"°NH | dyuy €

HO1=9 satisfying

(2.1) 64 (=0).0) = s lggmea + A (=) 0 (0) = ]
U () By () — Byt goas — 0

as t — oo, where § > 0 is small.

Next result states an almost global existence of small solutions to (1.1) with
p = 3. We define a maximal existence time 7™ by

T = sup {T > 0; ullxps < oo} .

Theorem 2.2. Let p = 3. Assume the initial data uo € X{' with m > 4 and
||u0HX6n = . Then there exist positive constants 9 and B such that

B
T > exp (~2>
5

Remark. The proof of Theorem 2.2 works also for the Cauchy problem

{ Uy = u+ a(t) (ud)zs
u (0) = ug ’

for all 0 < € < gg.

(2.2)

if the coefficient a(t) € C! (R) satisfies the following time decay estimate
a(t)| < € (1+1t) 7 (log 2+ ¢])) ™

for j = 0,1 and t > 0, where v > 0. We have the following result.

Theorem 2.3. Let the initial data ug € X{)*, where m > 4. Then there exists
a positive constant € such that (2.2) has a unique global solution u € X7 with
the time decay
_1
lu(®)llgee < C(E) 2
for any ug satisfying ||u0HX6n < €. Moreover for any ug € Xg' such that
. =1
||u0HX6n < &, there exists a unique scattering state u, € H" ' NH ,0,u, €

H%1=0 satisfying (2.1) with a small § > 0.

Remark. We improve the result of Theorem 2.2 in Section 4 below thanks to
our recent work [19].



72 N. HAYASHI AND P.I.NAUMKIN

As it was stated before, the local well-posedness in the function space H™ N
-1

H was treated in [29], [30]. However the local well-posedness for (1.1) in
weighted Sobolev spaces is not known. For the convenience of the readers, we
give a local existence result for (1.1) in the following Proposition 2.4, where
we also justify the formal computation concerning the estimates of Pu, which
was made in [19], [21].

Proposition 2.4. Let the initial data ug € Xg* with m > 2, and the order p
of the nonlinearity satisfy p > m+1, or be an integer p > 1. Then there exist
a time T (up) > 0 and a unique solution

-1
u € C([O,T];HmﬁH >OC1([0,T];L2),

Pu € C([0,7];L?)
to the Cauchy problem (1.1). Furthermore the estimate

e @l + 1P Oz + llu @)l -

<0 [ 1Ol (1@l + 1Pu)ls + @] ) ds

is true fort € [0,T].

Proof. We use the parabolic regularization method to treat the derivative loss
coming from the nonlinearity. We introduce the function spaces

Y = {u(t) € C(0.7):H"): Jullyy < oo},

i = {0 € L% |lly;. < oo},

where the norms

T 1
ullym = llullxm + S(%P t5 || Dz %u (8)|| g + sup ¢35 [z ()
te k)

)

and
16llys = [I6llgm + HD;lchLg + |29l g1 5

with D¢ = F~1[¢|* F for a € R. Define a sequence ug; € Y§* such that

I — =0
Jim luo.j = uollxy

and consider the local existence of solutions to the Cauchy problem

{ Uty — U — VUgze = (f (1)), £ €R, 1 >0,

(2:3) uw(0,2) =ug;(x), z € R,
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in Y7, where v € (0,1]. The linearized integral equation associated with (2.3)
is written as

(2.4) u(t) =U, (t) up + /0 Uy, (t—s)0zf (v(s))ds,

where
it
U, (t) = FLexp <—2 - yt§2> F
and ||vHX7Tn < M. Next we use the time decay estimate for the free evolution
group F ! exp (—%) F (see paper [36] for the proof in the case 1 < p < co
] f

:oo)

and paper [21

_p_
Lp—1

<t H]—" €50-3) 7,

|7 om () 7

for t > 0. Also we use the estimate

LP

H]—"_lfj exp (—l/t§2) HLI < CV_%t_%

for j = 0,1, which can be obtained by an explicit computation

vt

2
2 F L exp (—vte? :/ eimf_”t§2d£ VI i,
” =)= Je vz

Therefore by the Young inequality we find the following estimate

(2.5)
Uy, (t) uolly, = Hf_l exp (—?) FF1 exp (—1/2552) Fug
Lr
3(1_2
< Ctié(li) Flexp (—vt€?) FD, ( p)uo
LT
3(1_2
< Ctié(k%) D; <1 p)uo H]: exp (—utf )HL1
LioT
< ot pitd),,
LT
for 2 < p < 0o and similarly
3(1_2
26) |t (8) Dauolly, < O3 (78) =3 | p (-3).,
p
Lp-T




74 N. HAYASHI AND P.I.NAUMKIN

By virtue of (2.6), (2.6) with p = 2 we obtain from (2.4)

_1 t _ 1
@7 lullge < lollgge +Cv /0 (t— )% o)}y ds
p
1 1
< Juollgn +Cv3T ( sup Hv(t)HHm>
te[0,T
< HUOHHm‘i‘Cl/_%T%Mp
and
t
(2.8) lull .-+ < ol -1 +C / 0l ds
H H 0
p
< HU0||~1+CT< sup ||v<t>r|H1>
H t€[0,T]
<

luol . -1 + CTMP.
H

Multiplying both sides of (2.4) by D;2 = F~1|¢|72 F, taking the LS - norm
and using (2.6) with p = 6, we obtain

ID2u ()], < Hu,,(t)D;QUOHL6+/O Ithy (¢ — ) D320, f (v(s))|] o ds

IN

t
L B R N e

IN

1 t 1
0t} | D5 uo | g +C /0 (t—s)3 If (0 ()] g ds,

where we have used the fact that the Hilbert transformation D_ 10, is a
bounded operator in LP, 1 < p < co. Hence

(2.9)

5 || D7 %u (t)]|

IN
Q
-
8
I
=
o
+
Q
~
wl—
O\ﬁ
e
|
N
|
=
=
—
N
o
o
i)
QL
V2l

IN
)
IS]
g)—‘
- G
+
Q
~
=
o

Next by a direct calculation we find

a2k, () S|l < Ct|| DUy (2) 6|y, + Ctv Uy (£) Dol + Clledy (2) 2l -
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Therefore by (2.6), we obtain from (2.4)

1 4
t3 |lau(t)ge < Ct3 || DUy () uol| e
FCt3 v || 0ulhy (£) o]l s + CE3 [ty (£) muo]| Lo

b /Ot (t— 8) [ty (t — 5) D320, f (v (5)]| 0 ds
b /Ot (t— ) v [ty (t — ) 2F (0 (5))]| o ds
#i [ty 0= 92007 0 6D s s

Applying (2.6) we have

(2.10) 13 [lzu (t) | < Ct || D7 ol g + CvEt2 [ Dyuol| g + C o]

t
+Cts _
Cts / (HU (S)Hpgp + lv (s)|542 + |20z (5)||y,2 [Jv (s)||f{21> ds
0 L5

< CT||D; uol| g + CT? 1Dzuo| g + C l|zuo ]| + CTM?,

Multiplying both sides of (2.4) by z0, and using the commutator
(200, Uy, (8)] = —Uy (t) (t (9, —2002))
we get
Ou(t) = Uy, (t) (20, —t (8;1 - 21/3§)) uo
—i—/otbly (t—s) (202 — (t—s) (1 —20v92)) f (v (s))ds.
Then taking the L? - norm, using the estimate
[ty (8) Do o < CE 0T 02 oo
for j > m >0, we get

l2dzullyz < lz0uofle + CT Jluoll . -1 + C'lluollce

+Cv 2 /T (t — s)_% (HM”_l 200
0

T
o
<0 [ (Tl + ) ds.

o le ) ds

]~ 9w

75
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Hence
(2.11) [[20pullg < [l20puol|r2 JrCH’Hw)HI-{1 + C[luo||g2

p—1
LoV 2T? sup [20xvly2 | sup [[v ()l
te[0,T] t€[0,7]

+C (T*+ 1) < sup Hv(t)Hm)

te[0,T]
lasuollys + CT lfuoll -1 + C fluo]l»

IA

+C (f%T% YT 4 T) MP.
Next by the definition of the operator J we have J0, = x0; — t0, 1 Hence
by (2.9) and (2.12) we find

(2.12) |TOullg2 < Cllzdyullge +Ct H@;luHLZ
< ll#dsuoflge + CT JJuoll . -1 + C'lluoll e

_l’_

C(vATE + T4 7) M.
As in the proof of (2.8) we obtain

_1 t _ 1
w00 2ul), < luollgpe + Cv /0 (t— 5) [ollZym ds
< uollgm + Cv ™2 T2 M,

therefore we also can estimate P = 20, —t0; = JO0, — t (8t -0, 1) as follows

[Pull: < ClT0ullre + Ctv ||Juaeallp2 + CE|0xf ()l
< Joduollg: + CT uoll

+ Clluglge +C (féT% L T2 4 T) Me.

By virtue of (2.8)- (2.13) we find that there exists a time 7}, such that (2.3)
has a unique solution v = u(®) such that

u(”)GY%.

We next prove that the existence time 7, can be taken independent of v. We
note that the estimates of ||u|gm, ||z0zu|l2 and || T Oru|y2 obtained above

depend on v. On the other hand, the estimates of ||ul| . -1, t3 HD;QU (t)HL6
H

and t3 |zw (t)||g6 do not depend on v. We need to prove that the estimates
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for ||ullgm, ||z0zully2 and || JOyullp2 also do not depend on v. We consider
equation (2.3)

(2.13) up — 0y u = vitgy = (f (u)),

where 9,1 = .7-"*1%]:. By (2.9), (2.10) and (2.11) we have
210) st feu (@)l +sup (] + sup 0% (6) g < €.

therefore lim,|_ o0 07 %u = lim 500 07 'u = 0. Now we can apply the usual
energy method to (2.13) for an integer m

1d

2 2 —2 2
(2.15) 573 1 Ol + v l[u @)llgmes < Clullge |10sullge [luflen -

By Lemma 1 from [36] we find (2.15) also for the fractional order m > 1. We
next consider the a-priori estimate of ||Pu|y.. We apply P = x0, — td; to
equation (1.1). In view of the commutation relations [P, L] = L, [P,0;] =
—0,, we get

LPu=v (Pu)m + P (f (U))m — 3VUgy + (f (u))

T

The applying the energy method we obtain

d
—|[Pullf. = / (ax (071Pu)” + 200, (Pu), Pu)) da
dt o
+2(P(f (u))e + (f (w))a, Pu) = 20 | (Pu),[If2 — 6V (uze, Pu) .
Since 9; 1P = 9,1 (20, — t0;) = x — 9,1 — td; 10, we have by equation (1.1)
O Pu = (x—(?;l)u—tﬁx_Qu—l—l/ur + (f (u)).

Therefore by (2.14), we know that lim|y|_,o 01 Pu = lim| ;|00 Pu = 0 which
implies the estimate

d
(216) - |Pullgs + v [[(Pu),[1L.
< C g 10sullyee (1Pule + llullge) 1Pulge + Cv fulliy: -

By (2.15) and (2.17) we get

d
prl
< Ollullg 10sullyee (ullgn + [Pullg2)-

(2.17) [ullgrm + [Pullp2)
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Integrating (2.18) we prove that the estimates for ||u|lgm and ||Pu||y. are also
independent of v. From (2.18), (2.10), (2.11) and the estimate

-1
[T Owully2 < [[Pully: +tllullfe [[0pully: -

we find that the existence time 7' does not depends on v. Therefore we obtain
the local in time existence of solutions to (2.3) in the space Y/'. To complete
the proof of Proposition 2.4, we let v — 0, and then j — co. O

We now explain our strategy of the proofs of Theorems 2.1-2.3. The opera-
tor J = U(t)al(—t) was introduced in [8] first to study the scattering problem
for the nonlinear Schrédinger equations and was used by many authors, see,
e.g., [4]. However, the operator J does not work well on the nonlinear terms.
To overcome this difficulty, we introduce the operator P, which was used in
[12] for studying the global existence of small solutions to quadratic nonlin-
ear Schrodinger equations in three space dimensions. After that the operator
P was used often for various equations appeared in fluid mechanics such as
the modified Korteweg-de Vries equation [15], [16], the generalized Benjamin-
Ono equation [17], and the generalized Kadomtsev-Petviashvili equation [20].
We use the set of operators (P, 0, 1) to get desired time decay estimates of
solutions.

By the general theory of quasilinear hyperbolic equations we know that
H® - space with s > 3 is necessary for the local well-posedness (see [36]).
Hence it is reasonable to define our function space through the operators
(772,39%,77890,73,890,1 ) However the operator P? is not acceptable for our
equation since P = xd, — td; ' — t£ and P? ~ (J8,)* = (20, — t8;1)2 is
equivalent to the use of 9, 2. But we can not apply 9,2 to the nonlinear term in
our equation u; = d; lu+ (u”),. To avoid this difficulty, we use the fractional
order operator |J|* = U(t) |x|*U(—t) (see [20]). A desired time decay of
solutions is obtained by a-priori estimate of the norm |0, (—t)uHH 1.1 (see
Lemma 2.5 with ¢ = U(—t)u and ||¢| < C ||¢||H°’%+E’ below). By Lemma
2.7 with ¢ = U(—t)u and [ = 0, the norm ||0,U(—t)
by

u||..1 1, can be estimated
H227¢

C (1 T0bllre + [|dllgz+e0) -

m+te
Thus we use the set of operators (77, (—8%) 2

of the solutions. Here we encounter another difficulty. When we apply the

m+e

energy method to estimate H (—8:%) 2 u

i ) to show a-priori estimates

L2 we need a time decay estimate of

the norm ||u||gx , which requires the estimate of the norm ||Pul|gr. Whereas
the application of the energy method for estimating the norm ||Pu||g. leads
to the estimate of the norm HP“HH§+1 < CZ?:O HPJ'UHH§H . So the higher
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order operator P? appears. Thanks to Lemma 2.7, we can overcome this
difficulty and consider the set <73 ( 82) ) where the operators P and

1
(—8%) 2 have different orders.

Next we state the L - time decay estimate for the free evolution group
U(t).

Lemma 2.5. The estimate

3
U (t) Gl < Ct™3 || D2

L1
is true for t > 0, where D, = F~1|¢| Fo.
The proof of Lemma 2.5 given in [21] is valid if we replace the right-hand
3

3
side of the above estimate by the norm of the homogeneous Besov space By ;.

3
However the norm [|¢|| 3 can not be estimated by D;,?QSH (see also [6]).
B, L!

Here we give a different proof of Lemma 2.5, which does not use the norm of

the homogeneous Besov space By ;.

Proof. We have

il 1 e _itl 3. 3
Utyp = FleeF =/ @€~ 16172 (€] 2 Fopd
OF TEFe = [ et e el Fode
1

= =l [T g g2 Fode.
21 320 Jjg|>s

Hence changing the order of integration we get

1 . 1 3 . 3

— : ix€ ,~itg ¢ — 5 —iy [ 92\ 12

U6 = o lm We e [ e (03) ot due

— 2 Z(.Z’ y)E g

f%(yg}) RD Jo(y)d /|>5 Y ¢ 72 dg
3

= lim/ Gs (t Dﬁqf)( )dy:/ lim G5 (t,z —y) Dg ¢ (y) dy

6—0 R 0—0

= /Go (t,x—y ¢()dy7

where Gy (¢, ) = lims_,0 Gs (t,x) and the kernel

1 o
Gs(t,xz) = / cinéite \5!_5 d¢ = Re/ P ’tég—%dg_
21 Jyg|=s 5
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Also changing ¢! = 1 we get

1 0oL
Go(t,z) = %im Gs (t,z) = lim Re/ K2 ztgé._%dé_
—0 6—0 T 5
1
Lo 7 i1 1
= —lim Re/(S e thnﬁ*%dn = —WRe/ et 1*ltnn*%d77.
0 0

6—0 T

(this also justifies that the limit 6 — 0 exists). We need to prove the estimate

|Go (t,2)] = C

> ; —1 it 1 1
/ e n "n—zdn‘ <Ct 2.
0
We change v = £, 1 =y /|v[, A = ty/|v], 0 = signz, then
S o}
0 0

The main advantage of the Littlewood-Paley decomposition is that they reduce

1
the integral over R to the domain (3,2) . However the tails [,;~ and [iZ can be
easily estimated by rotating the contour of integration and the integral [ f can

2

be estimated by using the Van der Corput Lemma [37]: If p is a real-valued
function, smooth in (a,b), such that ‘,u(k) (y)| = 1 for some k > 1, then

/ " et (y) dy' <ot (w [ " ) dy) |

Thus we get

2
/ ei’\("y_lfy)y_%dy < O3,
1

2

In the integral fzoo ei’\(ayil_y)y_%dy we rotate the contour of integration y =
ly| €7 to show that it decays

o o0
/ e’“("y‘l%‘%dy‘ </ e (W= g7y
2 2

/ ez')\(cryfl—y)yf%dy

Cy

The second integral is estimated in the same manner as in the Van der Corput

Moy ~v) =3 dy by the change y = 2~ can

+ <CON2.

1
Lemma. Finally the integral [ e
be transformed to

L o0
0 2
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and Ehen we can rotate the contour of integration to show that it decays as
CA™ 2. So we get the estimate

Go (t,z)| = C

. —-1_. 1 1
/ et _’t"n_Zdn‘ <Ctz.
0
Therefore by the Young inequality

Uyol < A‘Go<t,m—y>D§¢<y>\dy

Ct—2 /
R

This completes the proof of Lemma 2.5. O

3

Dw(y)] dy = Ct2

3

Dj¢

IN

Ll

The following lemma, is necessary for considering the problem in the func-
mte
tion space defined by the set of operators <73, (—8%) 2 ,I) .

Lemma 2.6. Let 4 > 2,0 < a < 8 < 1. Then the estimate

1Dz ellpoe < ClON u=g + Cll2020 L2

is true, provided that the right-hand side is finite.
From this lemma, we obtain

Lemma 2.7. Let € € (O, %) and l > 0. Then the estimate

| Lo

_1
| SO (6] 2gzze + 1702052 )

is true, provided that the right-hand side is finite.

The following estimate was shown in [36] which is needed to consider the
fractional order Sobolev spaces.

Lemma 2.8. Let u be a smooth solution of
Uty = U+ F (t,2) ugs + G (t,2) .

Then for any s > 1, there exists a constant Cs ~ 1/ (s — 1), and a positive
constant C such that

d S S
5 D3 D)Lz < CallonF (1)l | D3 (]2
+2[| D3u (0l (|D271C (1)]|gz + Cl10wu (@)l IDIF (1))



82 N. HAYASHI AND P.I.NAUMKIN

2.1. Proof of Theorem 2.1 (Global Existence)

We prove that for any 7' > 0
lullgzre < VE

by the contradiction argument. We assume that there exists a time 7' such
that

luall 2= = Ve

We take in Lemma 2.8 s =2 +¢, F = pu~, G = p(p— 1) uP"2u?2 if p is an
integer and F = plul’™', G = p(p— 1) |u|’"? uu if p is not integer and use
the Sobolev inequality

142¢ _2
3+2¢ 3+2¢
(2.18) e < € ulfE ..
to find that
(2. 19)
Cleaiuw], < ClumInE T u@IEE v
dt L2 .

14-2¢

< C <t>*%<p*2+s%> (lulggs + 1T Ozullya)? 2 5520
X flu(t )||3+2€ () 1o
thanks to Lemma 2.8. Therefore

__p+l

t
(220) [lu (@) < 22+ CE% /<T> (24 58) gr < 2 4 025 < 92

0

since p > 3 + % and € > 0 is small. By the estimate of Proposition 2.4
1Pu @)l + flu (O -
< 0 [l 1oty (IPu(slgs + lulls + ()] ) ds
Then by (2.18)
(2.21) 1Pu®)llez + lu O - < V2e.
By the identity

(P—=J0)u=—t (ut 8_1u) - (’u‘p 1 )fB
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we obtain
(2.22)
-1
|T0sullpe < [Pullge + tlullf < |8zully
1/, _
< |Pullpe +C B2 (|fullgge + 1T 0ptt]|p2)” ™ |00tz

< V2E 4+ 05 <97

By (2.21) and (2.23)
ul|xs < 68 < VE.
T

This is the desired contradiction. Hence we have a global in time existence of
the solution satisfying the estimate

lullxs, < VE
This completes the proof of the first part of Theorem 2.1.

Remark. For the proofs of Theorem 2.2 and Theorem 2.3, see [21].

83. Sub Critical Case

To prove the nonexistence of the usual scattering states we need a lower bound
for the time decay of solutions w (t) = U (t) ¢ to the linear problem

(3.1) { W =w, t >0,z €R,

w(0,z) =¢ (), v €R,
which is given by

Theorem 3.1. Let ¢ € H! be such that x0,¢ € H'. Then the estimate

el (o

_cari-h0-2)

U () By >

19

)

is true for allt > T > 1, where 2 <r < oo, a € (()7 %) and

A= [l + 2020l -

Remark. The regularity assumptions on the data seems to be relaxed. The-
orem 3.1 is related to Lemma 2.5 in which the assumption on the data is

3
Di¢ < 0.
HO.1
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Next we state the nonexistence of the usual scattering states for the Cauchy
problem (1.1) as an application of Theorem 3.1.

Theorem 3.2. Assume that there exists a solution
.1
ueC (R;H N L2>

of the Cauchy problem (1.1) with 1 < p < 3. Furthermore, we assume that the
time decay estimate

lu ()| < C (t)"2

holds in the case of 2 < p < 3. Then, there does not exist any free solution
w (t) of the linear Cauchy problem (3.1) with the initial data

. —1
beH’NH | 20,6 € H!

and R R

L [ L
for some T > 1, such that

Jmflu(t) —w @ -+ =0,

where w (t) =U (t) ¢.

o1
Remark. Since the local existence of solutions holds in H N H?® with s > %,
global solutions exist in H? for p = 3 (see [34]) and in H? for p = 2 (see [10]),
-1

so it is natural to expect the existence of the global solutionsin H NH" with
some n > 2. A formal computation implies that there are conserved quantities

EO:/ u?dx
R

_ —1,N\2 2 p+1
E_l—/R<(8x u) ] |u >dx.

. -1
Therefore the function space C <R;H N L2> for the solutions in Theorem

and

3.2 is reasonable. However we have
d d
Y =2 (\/1—1—6%25—1) dz =0
dt dt Jr

only for p = 3. Therefore for the case of fractional order nonlinearity, we do
not have any result on the global existence and time decay of solutions to
(1.1), when p < 3+ 2 (see [20]).
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Remark. The nonexistence of the scattering states for the nonlinear Klein-
Gordon equations was studied by [9] for a real-valued solution and by [31] for
a complex-valued solution. After their works, the idea by Glassey was used
to prove the nonexistence of the scattering states for nonlinear Schrédinger
equations in [1], [13], [38]. In their proofs, the lower bound of solutions to the
linear problem was essential. Also note that for the case of the sub critical
nonlinear Schrodinger equation uy + %um = |ul? —L 4 with p < 3 the existence
of the modified scattering states was proved in [14], along with the optimal

1
time decay estimate ||u ()|l < C (t)” 2. Recently in [19] we considered the
cubic reduced Ostrovsky equation (the short-pulse equation) and proved the
existence of the modified scattering states. Therefore we expect that the

assumption on the time decay rate ||u(t)||p < C <t>_% in Theorem 3.2 is
natural.

3.1. Proof of Theorem 3.2

We prove Theorem 3.2 by contradiction. Suppose that there exists a free
solution w (t) = U (t) ¢ of the linear Cauchy problem (3.1) with initial data ¢
such that

(3.2) lim (|01 (u (t) = w ()| + llu(t) = w (t)]|g2) = 0.

Define the functional
H,(t)= / w(t,z) 0y u (t,z) d
R

as in [9] and [31]. In view of equations (1.1) and (3.1) we have OU (—t) w (t) =
0 and U (—t) 07 tu (t) = U (—t) <|u|p_1 u> . Also we can represent

Ho () = [ (@ (=)0 @) @ (00 u(0) da,
R
Then by a direct calculation we find
H,(t) = /R(atl/l(—t)w(t))(U(—t)@xlu(t))dx
+ [ 0w ) 0 ()0, u ) ds
R
_ /(L[(—t)w(t)) (u(-1) <|u|p_1u)>dm:/Rw|up_lud1:

R
= Jw|P T dx—i—/ (w|u!p71u— ]w|p+1> dzx.
R R

dt
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For the case of p > 2 we have

’/R (w|u|p71u— w |w|P™ w) dx

—2 —2
< Cllwlge (lullge + lwllge) (lIf=2 + lullf) - wilgs

A

-1
< CA+D 7 Ju—wlg,

where A = ||¢||g1 + ||20:¢||g:. Here we applied the estimate ||w]|f < Ct 2
from Lemma 2.5, also we have used that |lu|/;> does not depend on time and

[l e < Ct™z, when p > 2. For the case of 1 < p < 2 we use the Holder
inequality

‘/ (w lulPtu — w |w|P w) dx
R

-1 -1
Cllel 2 |[lul™ = ]

IN

L7
—1
Cllwll 2 (lullgz + lwllg2)"" [lu = wlg:

IN

-1
< CA+1 T Ju—wly.

Then by Theorem 3.1 we estimate

H, (t)

v

dt

v

/R\wlp“ dz —C(A+ 1) t7"F |ju—wly
p+1
LZ(—ﬁ7—1>>

g% ([smy 19

ORI O (A 1P fu wlge.

By the assumptions of Theorem 3.2, there exists T > 1 such that
() —w @)l <e

for all t > T and any € > 0, from which it follows that

C(A+1)e < 2p—1+1 <H$‘

L2(1,v7T) " qu) LQ(_‘/T’_l)> |

2T B _
(3.3) \H, (2T) — H, (T)| > C/ =" dt > 0T
T
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for large T. On the other hand, by the definition of H,, (t) and (3.2) we find

(3.4) H,(t)= /R wd, ! (u —w) dx

< Cllw (t)|lge |07 (u (t) —w ()] o
< Cluollge |05 (u(t) = w ()] — O

for t — oo. From (3.3) and (3.4) we obtain a desired contradiction. This
completes the proof of Theorem 3.2.

84. Critical Case

We consider the Cauchy problem for the reduced Ostrovsky equation

(41) Uty = U + (U3)x$, (t, Z‘) S R+XR,
U(O,ZL‘) = UU(:E)? T € R’

with real-valued initial data ug. Equation (4.1) is called the short-pulse equa-
tion [35]. The short-pulse equation is derived as approximate solutions of
Maxwell’s equations describing the propagation of ultra-short optical pulses
in nonlinear media, see [35], where the local well-posedness in H? and non-
existence of smooth traveling wave solutions were shown.

By changing the variables t = == (T — X)),z = = (T + X) we have

V2 V2
Or = —— (Bh+0,),0x = - (=01 +0,)
T — \/i t at;X—\/§ t x)
1 1
0 = —(0pr—0x),0,=—(0r+0

from which it follows that
(03— 0% + 1) u=(—0:9s + 1) u.

Therefore (4.1) is transformed to the quasi linear Klein-Gordon equations

(4.2) (02 — 0% +1)u=—= (3r + 9x)* (u?)

1
2
with the cubic nonlinear terms. Vector field method is a powerful tool to
study the large time existence of nonlinear evolution equations with critical
nonlinearities in this field since the work by Klainerman [27]. To study the
asymptotic behavior of solutions to the initial value problem for (4.2) with the
data

(4.3) u (0, X) = ug,u (0, X) =uy
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the vector I' = (Or, 0x, XOr + T0x) , hyperbolic coordinate and compact sup-
port conditions were used in [5]. However problem (4.1) differs from problem
(4.2) with (4.3) since the data are given on the line of the light cone, namely
the method of hyperbolic coordinate from [27] is not applicable. In this pa-
per we adopt the method of the factorization technique for the free evolution

group U (t) = Fltexp (—%) F which is similar to that developed in [18].

From the Kato theory, it is known that the Sobolev space H® with s > % is
needed for the initial data ug to get a local existence theorem. It is also known
that in order to obtain sharp L - time decay of Oxu, we need the condition
I'“Oxu € L? with |a| < 2. Therefore when we use the space generated by T, it
is natural to consider the problem in the space with a norm Z| a|<2 17w g1 -
Though problem (4.1) is different from the problem (4.2) with (4.3) since the
data are given on the line of the light cone, by the relation

XOr +T0x = 20, — to;

one can expect that the function space with the norm 3, oo [|A%ullg is
applicable to (4.1), where A = (0, 0y, 20, — t0;) . As was pointed out in our
previous work [21], it seems difficult to derive a priori estimates of solutions
in the norm 3, <o [A%ul|gg: . To overcome this difficulty, we use the function
space with the norm ||(x0, — t0;) u||p2 + ||v|/gm , where m > 4. This is the
reason why we encounter the regularity assumption m > 4.

We are now in a position to state our main result of this section. Denote

the dilation operator D,¢ = \w|_% 10} (xwfl) . Define the multiplication factor
M (t,x) = e~ 2*VI?| the Heaviside function 6 (x) = 1 for > 0 and 0 (z) = 0

for # <0, and (B™'¢) (z) = ﬁ (—x) |£C|7% o) <\/1|;> .
-1
Theorem 4.1. Assume that the initial data ug € H N H™, 20,uy € H,

m > 3+1,1> 3, and the norm HuOHHA o + || 0puo || s sufficiently small.
n m

. -1
Then there exists a unique global solution u € C <[0, o0);H N Hm> of the

Cauchy problem (4.1) such that

(g < C(L+1)72.

Moreover there exists a unique modified final state W € L°° such that the
asymptotics

(4.4) u(t) = 2ReD;MB™! <W+ exp <§z§ W, log t>> +0 (t_%_(s)

s valid for t — oo uniformly with respect to x € R, where § € (0, %) s a small
constant depending on m.
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Remark. After we have completed this work, we were informed by Dr. Niizato
o -1

that he has got a similar result with up € H N H™, zd,ug € H", m >
n+7,n > 3 by a different method (see [32]). His method strongly depends on
our previous papers [15], [17] in which the factorization method was not used.
This is the one of the reasons why undesirable additional regularity conditions
on the data are required. Our method of the proof of Theorem 4.1 is based
on the factorization technique (see [18]).

For the convenience of the readers we now state our strategy of the proof.
The factorization formula for the free Schrédinger evolution group is repre-
sented by the multiplication factor e 2t , the dilation operator D; and Fourier

. . ilz)? ilo|? .. .
transformation F such that e2% = i~2¢ 2 D,Fe 2, see [23]. Similarly, in

the present section we introduce the decomposition for the free Ostrovsky evo-
lution group U (t) F~* = F-le™¢. Define the multiplication factors M (t,x) =
e 2Vl B (t,¢) = e_%t, and introduce the operator Q (t) = MD; ' F~10E.
Denote @ = FU (—t)u(t), then for the real-valued function U (t) F~1@ we
find the factorization formula

(4.5) U ) F 1o =2ReF 1EP = 2ReD,M Q () {.

It is known from [22], that solutions of the linear equation uy, = u decay in
time rapidly for x > 0 comparing with the case of x < 0. Thus estimate of
the solutions for the positive line is considered as a remainder. We introduce

two operators
_ 0(—z), _3 1
B o) (z) = x| 4 —
(B79) (@) = = =" lal <z>< M)

and

- _3 1
Bo) () =vEB (@)l Fo (5.
We can easily see that the operator B is the inverse of B~! for the functions
defined on R . In the same manner, B~! is the inverse of B for the functions
defined on R_. By virtue of the stationary phase method it is well-known that

the main term of the large time asymptotics of solutions to the linear equation
is given by 2ReD;MB~1¢. By (4.5) we write

(4.6) U (t) o =2ReD,MB™ '@+ 2ReD,M (Q(t) — B ) ¢

for z < 0 and
U(t)p =2ReD:MQ ()
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for z > 0. In Lemma 4.2 below, we prove that [[U/ (¢) ¢[lper,) < Ct~! and in
Lemma 4.3 below we obtain the estimate

[2ReD: M (Q (1) — B™) < Cts.

Pl )

Thus we show that the main term of the large time asymptotics of the free
Ostrovsky evolution group U (t) F 1§ is represented by 2ReD; MB~1% in the
domain R_. By the identity u (t) = U (t) F~'$ we see that the L> - norm of
the solution u (¢) can be estimated as

_1
Ju(t)[[pom) < Ct2

3 2
sigﬁH +Ct73 +Ct L
€ Leo(R+)

Therefore it is sufficient to obtain the uniform estimate of @ = FU (—t) u (t)
to prove the optimal time decay estimate of the solution u (¢) in the L*> -
norm. We now define the operator R (t) = EFD;M, so that we have the
representation for the inverse evolution group

(4.7) FU(~t) = BF =R (t) MD:.

o+

Multiplying both sides of equation (4.1) by FU (—t), using identity (4.7) and
u=DMQ(t)p+ D:MQ(t) p with ¢ = U (—t) u, we obtain

B = iEFU (1) u® = i€R (1) MD; (DM (1) 6 + DML (1) @)3

We have four types of nonlinearities in the right-hand sides of the above iden-
tity. One of them is the resonance term given by

3i€R (t) MDy [DeMQ (1) §” DeMQ (1) 6 = it R (1) |Q (1) 917 Q () &.

By virtue of Lemmas 4.4 and 4.5 below, the right-hand side of the above
equality can be approximated by

3t IBIQ ()PP Q)

in the domain 0 < ¢ < %t% and by Lemma 4.3 below we find that

3ict 1 B|Q (1) B* Q (1) ¢ = 3ict BB 13" B715 = ;ws 2EF?©),
where the notation A ~ B means that A = B+ remainder terms. The esti-
mates of the remainder terms are given in Lemma 4.6 below. Then we intro-
duce the phase correction to remove the resonance term 3it~1¢* 13| 3. Also
we prove that the nonresonant terms in the nonlinearity have a better time
decay rate through the integration by parts with respect to the time variable
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t. Thus we obtain the desired uniform estimate of ¢ = FU (—t) u (¢) . In order
to minimize m, we divide the estimates of ¢ = FU (—t)u (t) into the high-
frequency part £ > (t)” and the low-frequency part 0 < & < (¢)” with some
v > 0. Lemma 4.6 is used for estimating FU (—t)u (¢) in the low-frequency
part 0 < & < (t)".

Next lemma is related to the estimate the operator Q (t) = MD; ' F~10F
in the domain R .

Lemma 4.2. Let 2 < p <00, 0 < a < min (%, 1- %) . Then the estimate

1Q () dllr(w,) < Ct 27

1
P

EN
SRS
is true for all t > 0, provided that the right-hand side is finite.
In the next lemma we estimate the difference Q (t) — B!,

Lemma 4.3. Let o € [O, %] , B € [O, i] be such that § + 8 < i. Then the
estimate

[l” (@) =B g _ <ot 3G gty

Le(R_)
1s true for all t > 1, provided that the right-hand side is finite.
We estimate the difference R (t) — B.
Lemma 4.4. Let ¢ be a real valued function. Then the estimate
IR (&) = B) 8ll oo o, w2,
()7 )
1 1
+ Ctz ||¢HL°°(R,) + Ct> ”¢HL1(R+)

is true for all t > 1, provided that the right-hand side is finite.

+ Ot 1 |||]f 0,0

< Ot 12
L2(R.)

L2(R_)

In the above lemma we do not need the assumption that ¢ is a real-valued
function. We only consider real-valued functions here because this makes the
proof shorter (see [19]) and suffices our purposes. Note that the local existence
of complex-valued solutions is still an open problem.

In the next lemma we estimate the derivative 0,Q (t) .

Lemma 4.5. Let 8 € (%, 1) . Then the estimate

1217 0.0.8) 6|

<cl@ref,. +Clite corl

L2(R_

18 true for all t > 1, provided that the right-hand side is finite.
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Next lemma is related to the asymptotic representation for Fif (—t)u?.

T (0 1
Denote b; = 21312 \wj\7573 aj,w; =2j—3,0<7<3,a0=a3 =1,
a]p = ag = 3.

Lemma 4.6. The asymptotic representation

L VY (7 e
Fu -t =13 et i (5 (1 £ ) (@ (r ))
— w; w;

J
+0 (t—ii

3
2

@a,.)+o(rBue i)

is true for allt > 1,0 < ¢ < %, where = FU (—t) u (t).

The following result is a consequence of Lemma 2.5. It says that the L*°

- norm of solutions in higher order Sobolev spaces can be estimated through
the L2 - norm of J0,u.

Lemma 4.7. Let p € (0, %) and l > 1. Then the estimate
0,)! -3 3+p 3P
o) e|| < ct b et (=) ol U (=) 612 o,
Lee HI-2p

_1
O U (D) 65

is true, provided that the right-hand side is finite.

4.1. The outline of the proof of Theorem 4.1.

Define the following norms

1
lullx, = sup ()2 [lu(@)llg
te(0,7)
lully, = sup ()~ (Hu(t)H»1+Hu(t)HHm+H8Ju(t)!Hz),
t€[0,7) H

where m > % + 1,1 > %, J = x — td; 2. First we estimate the norm Y by
supposing that the norm X7 is bounded.

Lemma 4.8. Let the norm
[ullx, < Ce.

Then the estimate
ully, < Ce

1S true.
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Proof. By the local existence theorem Proposition 2.4 we get

el + [Pullps + [l -

< c /0 Ju (3) 3., <||u<s>||Hm+||Pu<s>uLz+||u<s>||ﬁl)ds.

Hence we obtain

X
2

[ullggm + Pullpz + HUHH—l < 2¢ (t)

Then by the identity (P — J0,)u = —t (u3)x we get

X
2

2
||amk7u||L2 < HPUHL2 + HUHL2 +1 ||U||L°0 ||Um||L2 < 2e(t)

Next we consider 9, Pu. We have

d
Z0Pulls < Cllullge e (19:Puls + ule)
2
O 2 [Pl + ullgee sl [Pulge

By Lemma 4.7 we find

X
2

1
[tzzllpee < CE> ([Pullgz + [Jullgm) < 2e(8)2
since m > 4. Therefore ||0,Pully2 < 2¢(t)”. Then

107 T ul| 2 10z Pullpz + l[ullg +lullpe (lullye + uellpe) [l

<
< 2e(t)7.

Next we consider d, D;Pu, where D} = (—(9%)% ,0 < s < 1. We have

0. D3Pul

C lullye lotllgoe (10 D3Pl + el .)

O (el D30l + e | D3el) 0Pl
O (ftalloe D30l + Nl D500z l0) [Pl
O (el Tl + ol e o) D3P0l

IN

where %—F % = %,2 < p,q < oo. By Lemma 4.7 we find

1 2 3
| D3t e < Ct2 (HDi@%JuHEQ el iz + Hulle+5) '
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Since X
HD;@%juHLQ < ||D;0Pullp2 + Ce (t)*

we obtain
_1 2 1 k2 v
1Dt g < O3 (IIch@xPUHEQEB (t)% +s<t>4) .

We apply the Holder inequality to obtain

| D3t HLI’TO

1 X
< C HD;UMHLOO HD;uxfo,z

a2

s

< ot (s, pul{ ) (A0 o),

since m > % + s. Therefore

d S
T 10Dz Pully,2
Ce*t 1 |0xDEPul| gz

IN

2 2

+Ot ST 205 (157) ||D;8x77uHE§1_%) + O3 ()~

= C®t 10, DiPul| s
2

+Ot 3BT 8 (21| D2, Pl ) 3 4+ 08 (1)

< Ot 1|0, DiPulp. + Ce® (1)1
from which it follows that ||0,D5Pul|;2 < 2e(t)”. Then
10:D;Tulle < [10:D3Pullpe + llullgess

+ tlullps (lullpe + 1 Dgusllpeo) |2l g2+s
< 2e(t)7.

Lemma 4.8 is proved. ]
We next estimate the norm X7 by supposing that the norm Y7 is bounded.
Lemma 4.9. Let the norm
lully, < Ce.

Then the estimate
ullx, < Ce

1S true.
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Proof. We estimate (i0;) u (t) . By (4.6) and Lemma 4.2 we find for z > 0
. ~ _3
[(i0z) u (t)] = [2ReDy M Q (t) (§) B (t,6)] < Ct™ 177 |lully,, -
By (4.6) and Lemma 4.4 with 3 =0, « =1 — 3, we find for z < 0

(10z) u (t) = 2ReD, M Q (t) (€ )

t

.
= 2ReDMB ™" (§) §+2ReD, M (Q(1) - B ") () ¢
G )
+ o (e 0D ([l @], + 1610 %))

(=)

where [ — 2 > 3v. In the domain |£| > (t)" we get by the Sobolev embedding
theorem

+ 0 (i),

lielz @ @ e.¢
< <t>*(l*%)’/

)HLoo<\s|z<t>”>
I+1 ~
t,
el 5)‘L°<><|s|><t>”>

< o207 (0Bl + 106)™ Bllgz) < Ce )2 0=2)w+7,

if v > ﬁ, so we need to estimate the function ]{\% (€) ¢ (t,€) in the domain
2 2

€] < (t)”. Applying the operator FU (—t) to equation (4.1) Lu = (u?)
get

(S

i (t,€) = FU (=) (v*), = i€FU (—t) u®
By Lemma 4.6 we find

o\ 3—j
_ — -1 F(l-wj) 5 ! ~ i
FU(-t)u® = |t Zb €3 ( ( wj)) <<p<t,wj>>
+ O(sgt_%%’”)

forall t > 1, |¢] < <t>%, where b; = 271e=31-2) \wj|_%_3 aj, wj = 2j — 3,
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o : e
ap = ag =1, a; = ag = 3. Multiplying this formula by i |£]|2 (£) we get

i€ ]2 (€) FU (~t)u?

. VY (7 e
-1 'El—wj % o~ S ~ S
= i bet et @ (2 (v ) (*0(“%.))

j=0
+0 (i)

in the domain [¢| < (t)”,v < 3. Define the cut-off function y € C! (R), such
that x (z) = 1 for |z] < 1 and x (z) = 0 for |z| > 2, and define ¢ (¢,§) =

X (f (t)_”) ©(t,&) . Thus we get for the function ¢ (¢,€) = ]f\% €)1 (t,€)

3 it 9
G (t,6) = QTN by lwlZ et e felE (6 x (€0 7)

=0

(@) ()

R OED TN (EW T @ ()
+ O<£3t*1*ﬁ>
1

for all + > 1 with some 6 > 0 if v < 45. The second term is estimated by

Ce (t)_l_%(l_%)yﬂ. To exclude the resonant term with j = 2, we make a
change 1 (t, &) =y (£,§) ¥ (¢, &), where

3. b dr
v (.9 =ew (Sie [101oP L)
1 T
Then we get

v (8,6) = it byluyl? eF e () x (1)) T (L)
J#2

(e(-2)) (F(-5))”

+ O <53t_1_5> .
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Integrating by parts we obtain

y(1.6) - =037 by w3 €€ (8) / cE0Dy (e (™) T (7 6)

J#2
3]
X (@(T, £>>] <@<T,£>> dl+0(83)
on w]' T
b; 13 9 L P ——
= Zf'_“’ju"frawaes“ VW (7,¢)
J#2 J
o 3 T=t1
[~ EVY [~ 3 1
X X (f (T) ) <801 (7'7 w]>> (‘Pl <7'7 wj>> . .

N = Lol “elt o) [ 00, (i (etn) ) T

(e (L)) ( (- ;)) Nersoe -0,

Thus we get the estimate |y (t,£)| < |y (0,£)| + O (¢°) , and \5]% (€ 121 (9] <
Ce in the domain |¢] < (t)”. Therefore we find the desired estimate

. _1
1i0z) w (#)[|poe < Ce(t)"2 .
Lemma 4.9 is proved. O

By Lemma 4.8 we see that a priori estimate of [lufx,. implies a priori
estimate of |[ully,.. On the other hand by Lemma 4.9 a priori estimate of
|ully, yields a priori estimate of [lux,. Therefore the global existence of
solutions of the Cauchy problem (4.1) satisfying estimates

lullx,, <Ce ully, <Ce

follows by a standard continuation argument and the local existence theorem.
Thus we obtain the global in time existence of solutions to the Cauchy problem
(1.1). Then the asymptotics of solutions is proved in a standard way (see [19]).
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