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Abstract. For analyzing square contingency tables, Bowker [14] proposed the
symmetry model. Caussinus [16] proposed the quasi-symmetry model and gave
a decomposition of model such that the symmetry model holds if and only if
both the quasi-symmetry and the marginal homogeneity models hold. Bhapkar
and Darroch [13] gave the similar theorem for multi-way contingency tables. For
square tables and for multi-way tables, the present paper (1) reviews various
models of symmetry and asymmetry, (2) reviews the decompositions of models,
(3) gives some figures which indicate the relationships among various models,
and (4) gives a new decomposition of symmetry model.
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§1. Introduction

For the analysis of two-way contingency tables, we are usually interested in
whether or not the independence between the row and column classifications
holds. However, for the analysis of square contingency tables with the same
row and column classifications, we are interested in whether or not the row
classification is symmetric with the column classification, instead of the inde-
pendence, and how the row classification is symmetric or asymmetric with the
column classification, because in square contingency tables there is a strong as-
sociation between two classifications and there is not statistical independence
between them.

Consider an r × r square (i.e., two-way) contingency table with the same
row and column classifications. Let X1 and X2 denote the row and column
variables, respectively. Let pij denote the probability that an observation will
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fall in the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). Note
that {pij} are unknown. We are interested in various models which indicate
the structure of {pij}. As one of models of various kinds of symmetry, Bowker
[14] considered the symmetry model, which indicates the structure of sym-
metry for cell probabilities {pij}. Stuart [42] gave the marginal homogeneity
model for the marginal probabilities of X1 and X2. Caussinus [16] considered
the quasi-symmetry model for {pij}. Also many models, which describe the
structures of various asymmetry, are proposed; for instance, McCullagh’s [35]
conditional symmetry model, Goodman’s [18] diagonals-parameter symme-
try model, Agresti’s [1] linear diagonals-parameter symmetry model, Agresti’s
[5, p.429] ordinal quasi-symmetry model, Tomizawa’s [62] extended quasi-
symmetry model and extended marginal homogeneity model, Tomizawa’s [74]
cumulative diagonals-parameter symmetry model, and Tahata and Tomizawa’s
[50] generalized marginal homogeneity model, etc.

Caussinus [16] gave the decomposition of the symmetry model such that
the symmetry model holds if and only if both the quasi-symmetry and the
marginal homogeneity models hold. Tomizawa [62] gave the decomposition
of the conditional symmetry model into the extended quasi-symmetry, the
extended marginal homogeneity, and the other models. The decompositions
of some symmetry and asymmetry models are given (see Section 3).

Next consider the multi-way contingency tables. For these tables, the sym-
metry, the quasi-symmetry and the marginal symmetry models are also con-
sidered. For example, see Bishop, Fienberg and Holland [15, pp.299-309],
Bhapkar and Darroch [13], Agresti [5, p.440], and Tomizawa and Tahata [89].
For multi-way contingency tables, some asymmetry models are proposed; for
example, see Yamamoto, Iwashita and Tomizawa [93], Tahata, Yamamoto and
Tomizawa [60, 61], and Tahata and Tomizawa [54] (see Section 6). In these
articles, the decompositions of the symmetry and asymmetry models in the
multi-way tables are given (see Section 7).

The purpose of the present paper is (1) to review various models of sym-
metry and asymmetry for square contingency tables (Section 2), (2) to review
the decompositions of models for square tables (Section 3), (3) to give the fig-
ures which indicate the relationships among various models for square tables
(Section 4), (4) to give a new decomposition of symmetry model (Section 5),
(5) to review models of symmetry for multi-way contingency tables (Section
6), (6) to review the decompositions of models for multi-way tables (Section
7), and (7) to give the figure which indicates the relationships among various
quasi-symmetry models for multi-way tables (Section 8).
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§2. Models for square contingency tables

This section reviews various models of symmetry and asymmetry. Consider an
r× r square contingency tables with the same row and column classifications.

2.1. Symmetry models

The symmetry (S) model, which was given by Bowker [14], is defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji. This model indicates that the probability that an observation
will fall in row category i and column category j is equal to the probability that
the observation falls in row category j and column category i. Namely, this
describes a structure of symmetry of the cell probabilities {pij} with respect
to the main diagonal of the table. For the S model see also Bishop et al. [15,
p.282], Caussinus [16], McCullagh [34], Goodman [18, 20], Bhapkar [12], van
der Heijden, Falguerolles and Leeuw [90], van der Heijden and Mooijaart [91],
Agresti and Natarajan [7], Agresti [5, p.424], Andersen [9, p.320], Tomizawa
and Tahata [89], and Tomizawa [79], etc.

When we express {pij} as the log-linear model,

(2.1) log pij = λ+ λ1(i) + λ2(j) + λ12(ij) (i = 1, . . . , r; j = 1, . . . , r),

the S model can be expressed as equation (2.1) with {λ1(i) = λ2(i)} and
{λ12(ij) = λ12(ji)}; see Bishop et al. [15, p.282].

Caussinus [16] considered the quasi-symmetry (QS) model defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji. A special case of this model obtained by putting {αi = βi}
is the S model. By putting {γj = βj/αj} and {ϕij = αiαjψij}, the QS model
may be expressed as

pij = γjϕij (i = 1, . . . , r; j = 1, . . . , r),

where ϕij = ϕji. Thus this indicates

pij
pji

=
γj
γi

(i ̸= j).

Note that we may set γ1 = 1 without loss of generality. The QS model can
be expressed as equation (2.1) with {λ12(ij) = λ12(ji)}. Denote the odds
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ratio for rows i and j (> i), and columns s and t (> s) by θij;st, where
θij;st = (pispjt)/(pjspit). The QS model is expressed as

θij;st = θst;ij (i < j; s < t).

Thus the QS model has characterization in terms of symmetry of odds ratios.
The QS model also may be expressed as

pijpjkpki = pjipkjpik (1 ≤ i < j < k ≤ r).

For the QS model, see also, e.g., Agresti [1, 4], Agresti and Lang [6], Bishop
et al. [15, p.286], Goodman [18], Bhapkar [12], Bhapkar and Darroch [13],
Becker [10], McCullagh [36], Haberman [21, p.490], Plackett [39, p.78], and
Tomizawa and Tahata [89], etc.

The marginal homogeneity (MH) model is defined by

pi· = p·i (i = 1, . . . , r),

where

pi· =

r∑
t=1

pit, p·i =

r∑
s=1

psi.

See, e.g., Stuart [42], Bhapkar [11], Bishop et al. [15, p.294], and Agresti [2].
The MH model indicates that the row marginal distribution is identical to the
column marginal distribution. Note that the S model implies the MH model.

Kateri and Papaioannou [28] introduced the generalized quasi-symmetry
model (denoted by QS[f]). The QS[f] model is defined by

pij = pSijF
−1(αi + γij) (i = 1, . . . , r; j = 1, . . . , r),

where γij = γji, 2p
S
ij = pij + pji, F (u) = f ′(u), and f is a twice-differentiable

and strictly convex function on (0,+∞) with f(1) = 0, f(0) = limµ→0 f(µ),
0 · f(0/0) = 0, 0 · f(µ/0) = µf∞ with f∞ = limµ→∞[f(µ)/µ]. When f(u) =
u log u (u > 0) (i.e., F−1(x) = ex−1), the QS[f] model can be expressed as

pij = pSij
2ai

ai + aj

where ai = exp(αi − 1). This is identical to the QS model. Note that Kateri
and Agresti [27] introduced the simple QS[f] model with {αi} replaced by
{αui} using the known scores u1 ≤ u2 ≤ · · · ≤ ur (with u1 < ur).

Goodman [19] and Agresti [3] considered various association models. Espe-
cially for analyzing square contingency tables with the same row and column
classifications, it may be useful to use the quasi-association models which are
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defined only off the main diagonal cells. Goodman [19] gave the quasi-uniform
association (QU) model defined by

pij =

{
αiβjθ

ij (i ̸= j),
ψii (i = j).

A special case of the QU model obtained by putting θ = 1 is the quasi-
independence (quasi null association) model. The QU model is a special case of
QS model. Using the known scores u1 < u2 < · · · < ur, Agresti [3] introduced
the quasi linear-by-linear association (QLL) model defined by

pij =

{
αiβjθ

uiuj (i ̸= j),
ψii (i = j).

This is also a special case of QS model.
Goodman [20] introduced the symmetry plus quasi-independence (SQI)

model defined by

pij =

{
αiαj (i ̸= j),
ψii (i = j).

This model is a special case of the S model obtained by putting {ψij = αiαj},
i ̸= j. Goodman [20] also introduced various generalized independence models
and generalized symmetry plus independence models: for example, the triangle
non-symmetry plus independence (T) model is defined by

pij =


αiαjτ1 (i < j),
αiαjτ2 (i > j),

ψii (i = j).

Note that the T model is a special case of the conditional symmetry model in
Section 2.2, and the SQI model is a special case of the T model.

Yamamoto and Tomizawa [101] proposed the symmetry plus quasi-uniform
association (SQU) model defined by

pij =

{
αiαjθ

ij (i ̸= j),
ψii (i = j).

This model is an extension of the SQI model. The SQU model is a special
case of the S model, and a special case of the QU model.

2.2. Asymmetry models for cell probabilities

This section describes some models which indicate the structure of asymmetry
although each model in Section 2.1 indicates the structure of symmetry.
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The conditional symmetry (CS) model, which was given by McCullagh [35],
is defined by

pij =

{
δψij (i < j),
ψij (i ≥ j),

where ψij = ψji. A special case of this model obtained by putting δ = 1 is
the S model. Note that the CS model is equivalent to Read’s [40] proportional
symmetry model and to a log-linear model by Bishop et al. [15, pp.285-286].
The CS model may be expressed as

P (X1 = i,X2 = j|X1 < X2) = P (X1 = j,X2 = i|X1 > X2) (i < j);

see McCullagh [35].
Goodman [18] proposed the diagonals-parameter symmetry (DPS) model

defined by

pij =

{
δj−iψij (i < j),

ψij (i ≥ j),

where ψij = ψji. A special case of this model obtained by putting {δj−i = δ}
is the CS model.

Tomizawa [73] proposed the diagonal uniform association symmetry (DUS)
model defined by

pij =

{
δj−iϕ

i−1
j−iψij (i < j),

ψij (i ≥ j),

where ψij = ψji (also see Tomizawa and Miyamoto [81]). A special case of
this model obtained by putting ϕ1 = · · · = ϕr−2 = 1 is the DPS model.

The linear diagonals-parameter symmetry (LDPS) model, which was given
by Agresti [1], is defined by

pij =

{
δj−iψij (i < j),

ψij (i ≥ j),

where ψij = ψji. A special case of this model obtained by putting δ = 1 is
the S model. Also the LDPS model is a special case of QS model, which may
be expressed as equation (2.1) with {λ1(i) = iλ1} and {λ2(j) = jλ2}. When
we assign known scores u1 < · · · < ur to the categories, the LDPS model with
δj−i replaced by δuj−ui is the ordinal quasi-symmetry (OQS) model (Agresti
[5, p.429]).

Tomizawa [68] proposed the two-ratios-parameter symmetry (2RPS) model,
defined by

pij =

{
γδj−iψij (i < j),

ψij (i ≥ j),

where ψij = ψji (also see Tahata and Tomizawa [52]). Special cases of this
model obtained by putting δ = 1 and γ = 1 are the CS and LDPS models,
respectively.
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Tomizawa [71] proposed the polynomial diagonals-parameter symmetry
(PDPS) model defined by

pij =

{ (∏r−2
k=0 θ

(j−i)k

k

)
ψij (i < j),

ψij (i ≥ j),

where ψij = ψji. Special cases of this model obtained by putting θ0 = θ1 =
· · · = θr−2 = 1, θ1 = · · · = θr−2 = 1, θ0 = θ2 = · · · = θr−2 = 1, and
θ2 = · · · = θr−2 = 1 are the S, CS, LDPS and 2RPS models, respectively.
Note that the PDPS model is another expression of the DPS model.

Tahata and Tomizawa [54] considered the generalized linear asymmetry
model (denoted by LSm) for a fixed m (m = 1, . . . , r − 1), as follows:

pij =

{
w

(m)
ij ψij (i < j),

ψij (i ≥ j),

where ψij = ψji and

w
(m)
ij =

m∏
t=1

θj
t−it

t .

When m = 1 (i.e., w
(1)
ij = θj−i

1 ), this model is the LDPS model. When

m = 2 (i.e., w
(2)
ij = θj−i

1 θj
2−i2

2 ), this model is Tomizawa’s [72] extended LDPS
(denoted by ELDPS) model.

Tomizawa [62, 63, 66] proposed the extended quasi-symmetry (EQS) model
defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = γψji (i < j); see also Tomizawa and Tahata [89]. A special case
of this model obtained by putting γ = 1 is the QS model. The EQS model
also may be expressed as

pijpjkpki = γpjipkjpik (1 ≤ i < j < k ≤ r).

Tomizawa [62, 63, 66] also considered the extended marginal homogeneity
(EMH) model defined by

p
(δ)
i· = p

(δ)
·i (i = 1, . . . , r),

where δ is unspecified and

p
(δ)
i· = δp−i· + pii + p+i· , p

(δ)
·i = p+·i + pii + δp−·i ,

p−i· =

i−1∑
k=1

pik, p+i· =

r∑
k=i+1

pik, p+·i =

i−1∑
k=1

pki, p−·i =

r∑
k=i+1

pki.
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A special case of this model obtained by putting δ = 1 is the MH model. The
EMH model indicates that the row marginal totals summed by multiplying
the probabilities pij for the lower left triangle cells below main diagonal in the
table by the weight δ (> 0) are equal to the column marginal totals summed
by the same way.

Yamamoto, Shinoda and Tomizawa [99] proposed the weighted marginal
homogeneity model I (WMH-I) using the scores u1 < · · · < ur, as follows:

p−i· (δ) + pii + p+i· = p+·i + pii + p−·i (δ) (i = 1, . . . , r),

where δ is unspecified and

p−i· (δ) =
i−1∑
k=1

δui−ukpik, p−·i (δ) =
r∑

k=i+1

δuk−uipki.

This indicates that the row marginal totals summed by multiplying the proba-
bilities pij for cell with a distance i− j (> 0) below main diagonal in the table
by the weight δui−uj (> 0) are equal to the column marginal totals summed
by the same way. A special case of this model obtained by putting δ = 1 is the
MH model. Yamamoto et al. [99] also proposed the WMH-II model, by using
the weight δuj−ui for cells with a distance j − i (> 0) above main diagonal in
the table; although the details are omitted. Especially, when the scores {ui}
are the equal-interval scores {u0+ id}, the WMH-t (t=I, II) model is identical
to Tomizawa’s [69] diagonals weighted marginal homogeneity model (DWM-t
(t=I, II)).

2.3. Asymmetry model for cumulative probabilities

Let

Gij =
i∑

s=1

r∑
t=j

pst = P (X1 ≤ i,X2 ≥ j) (i < j),

and

Gij =

r∑
s=i

j∑
t=1

pst = P (X1 ≥ i,X2 ≤ j) (i > j).

As Tomizawa [74] and Tomizawa and Tahata [89] pointed out, the multiplica-
tive forms of the S and CS models for {pij} can also be expressed similarly as
multiplicative forms for {Gij}, i ̸= j. Namely, the S model can be expressed
as

Gij = Ψij (i ̸= j), pii = Ψii,
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where Ψij = Ψji. The CS model can be expressed as

Gij =

{
δΨij (i < j),
Ψij (i > j),

pii = Ψii,

where Ψij = Ψji. However, the DPS model cannot be expressed as a similar
multiplicative form for {Gij}, i ̸= j. So, we are also interested in the structure
of {Gij} instead of {pij}. Tomizawa [74] proposed the cumulative diagonals-
parameter symmetry (CDPS) model defined by

Gij =

{
∆j−iΨij (i < j),

Ψij (i > j),
pii = Ψii,

where Ψij = Ψji. This model indicates that the cumulative probability that
an observation will fall in row category i or below and column category j
(> i) or above, is ∆j−i times higher than the cumulative probability that
the observation falls in column category i or below and row category j or
above. Special cases of the CDPS model obtained by putting {∆j−i = 1} and
{∆j−i = ∆} are the S and CS models, respectively.

Tomizawa and Miyamoto [81] proposed the cumulative diagonal uniform
association symmetry (CDUS) model defined by

Gij =

{
∆j−iΦ

i−1
j−iΨij (i < j),

Ψij (i > j),
pii = Ψii,

where Ψij = Ψji. A special case of this model obtained by putting Φ1 = · · · =
Φr−2 = 1 is the CDPS model.

Miyamoto, Ohtsuka and Tomizawa [37] proposed the cumulative linear
diagonals-parameter symmetry (CLDPS) model defined by

Gij =

{
Θj−iΨij (i < j),

Ψij (i > j),
pii = Ψii,

where Ψij = Ψji. A special case of this model obtained by putting Θ = 1 is the
S model. Miyamoto et al. [37] also proposed the cumulative quasi-symmetry
(CQS) model defined by

Gij = αiβjΨij (i ̸= j), pii = Ψii,

where Ψij = Ψji. This model is different from the QS model. The CLDPS
model is a special case of CQS model.

Tomizawa, Miyamoto, Yamamoto and Sugiyama [87] proposed the cumu-
lative two-ratios-parameter symmetry (C2RPS) model defined by

Gij =

{
ΓΘj−iΨij (i < j),

Ψij (i > j),
pii = Ψii,
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where Ψij = Ψji. A special case of this model obtained by putting Γ = 1 is
the CLDPS model.

Tomizawa, Miyamoto and Yamamoto [86] proposed the cumulative poly-
nomial diagonals-parameter symmetry (CPDPS) model defined by

Gij =

{ (∏r−2
k=0Θ

(j−i)k

k

)
Ψij (i < j),

Ψij (i > j),
pii = Ψii,

where Ψij = Ψji. Special cases of this model obtained by putting Θ0 = Θ1 =
· · · = Θr−2 = 1, Θ1 = · · · = Θr−2 = 1, Θ0 = Θ2 = · · · = Θr−2 = 1, and
Θ2 = · · · = Θr−2 = 1 are the S, CS, CLDPS and C2RPS models, respectively.
Note that the CPDPS model is another expression of the CDPS model.

The cumulative extended quasi-symmetry (CEQS) model, which was given
by Tomizawa et al. [87], is defined by

Gij = αiβjΨij (i ̸= j), pii = Ψii,

where Ψij = γΨji (i < j). A special case of this model obtained by putting
γ = 1 is the CQS model. The C2RPS model is a special case of CEQS model.

Yamamoto, Tahata and Tomizawa [107] considered a generalization of the
C2RPS model as follows: for a fixed m (m = 1, . . . , r − 1),

Gij =

{
ΓΩ

(m)
ij Ψij (i < j),

Ψij (i > j),
pii = Ψii,

where Ψij = Ψji and

Ω
(m)
ij =

m∏
t=1

Θjt−it

t .

Yamamoto et al. [107] denoted this model by C2RPS(m). When m = 1 (i.e.,

Ω
(1)
ij = Θj−i

1 ), this is the C2RPS model. Yamamoto et al. [107] also denoted
the C2RPS(m) with Γ = 1 by CLDPS(m). When m = 1, the CLDPS(1)
model is the CLDPS model. Note that the C2RPS(m) (CLDPS(m)) model
is a special case of CEQS (CQS) model. We point out that when m = r −
1, the C2RPS(r − 1) model is equivalent to the CEQS model, and also the
CLDPS(r − 1) model is equivalent to the CQS model. Note that Yamamoto
and Tomizawa [102] and Yamamoto, Ohama and Tomizawa [98] introduced the
generalized LDPS model and the other generalized CLDPS model although
the details are omitted.

McCullagh [35] considered the palindromic symmetry (PS) model defined
by

Gij =

{
∆αiΨij (i < j),
αi−1Ψij (i > j),

pii = Ψii,
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where Ψij = Ψji, and α1 = 1 without loss of generality. Special cases of this
model by setting ∆ = 1 and α1 = · · · = αr−1 and by setting α1 = · · · = αr−1

are the S and CS models, respectively (also see Tomizawa [70]). The PS model
with ∆ replaced by ∆i is McCullagh’s [35] generalized palindromic symmetry
(GPS) model.

Saigusa, Tahata and Tomizawa [41] considered the extension of PS model
(called the m-additional parameters palindromic symmetry (PS(m)) model).
For a given m (m = 1, . . . , r − 1), the PS(m) model is given by

Gij =

{
∆

(m)
i αiΨij (i < j),
αi−1Ψij (i > j),

pii = Ψii,

where Ψij = Ψji and

∆
(m)
i =

m−1∏
k=0

∆ik

k .

Especially, whenm = 1, the PS(1) model is the PS model, and whenm = r−1,
the PS(r − 1) model is identical to the GPS model.

Iki, Oda and Tomizawa [24] proposed the modified palindromic symmetry
(MPS) model defined by

Gij =


βiΨij (i < j; j ̸= i+ 1),

ΓβiΨij (j = i+ 1),
βi−1Ψij (i > j),

pii = Ψii,

where Ψij = Ψji. The MPS model is different from the PS model. A special
case of MPS model obtained by putting Γ = 1 and {βi = 1} is the S model.

We shall consider the models which indicate the structure of asymmetry
for row and column marginal distributions. The MH model may be expressed
as

Gi,i+1 = Gi+1,i (i = 1, . . . , r − 1).

The EMH model may be expressed as

Gi,i+1 = δGi+1,i (i = 1, . . . , r − 1).

Tomizawa [77] proposed the generalized marginal homogeneity (GMH) model
as follows:

Gi,i+1 = δγi−1Gi+1,i (i = 1, . . . , r − 1).

Special cases of this model obtained by putting γ = 1 and γ = δ = 1 are the
EMH and MH models, respectively.

Tahata and Tomizawa [50] proposed the m-additional parameters marginal
homogeneity (MH(m)) model for a fixed m (m = 1, . . . , r − 1), as follows:

Gi,i+1 = ∆
(m)
i Gi+1,i (i = 1, . . . , r − 1),
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where

∆
(m)
i =

m−1∏
k=0

ψik

k .

When m = 1 (i.e., ∆
(1)
i = ψ0), this is the EMH model. When m = 2 (i.e.,

∆
(2)
i = ψ0ψ

i
1), this is the GMH model. Note that when m = r − 1, this is the

saturated model.

Denote the marginal cumulative logit of Xt (t = 1, 2) by L
(t)
i (i = 1, . . . , r−

1). Thus

L
(t)
i = logit(F

(t)
i ) = log

(
F

(t)
i

1− F
(t)
i

)
,

where

F
(t)
i = P (Xt ≤ i).

Agresti [5, p.442] considered the marginal cumulative logistic (L) model as
follows:

L
(1)
i = L

(2)
i +∆ (i = 1, . . . , r − 1).

A special case of this model obtained by putting ∆ = 0 is the MH model.

Miyamoto, Niibe and Tomizawa [38] proposed the conditional marginal

cumulative logistic (CL) model which is the L model with {L(t)
i } replaced by

{Lc(t)
i }, where for t = 1, 2; i = 1, . . . , r − 1,

L
c(t)
i = logit(F

c(t)
i ),

F
c(t)
i = P (Xt ≤ i|(X1, X2) ̸= (s, s), s = 1, . . . , r).

Kurakami, Tahata and Tomizawa [29, 30] proposed the mth generalized
marginal cumulative logistic models (denoted by L(m) and CL(m)) for m =
1, . . . , r − 1. The L(m) model is defined by

L
(1)
i = L

(2)
i +∆

(m)
i (i = 1, . . . , r − 1),

where

∆
(m)
i =

m−1∑
k=0

ikδk.

This model indicates that the difference between two marginal cumulative
logits is the (m − 1)th order polynomial function of cut-point i of categories
(i = 1, . . . , r−1). A special case of this model obtained by putting {δk = 0} is

the MH model. When m = 1 (i.e., ∆
(1)
i = δ0), this model is the L model. The

CL(m) model is the extension of the CL model although the detail is omitted.
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2.4. Point-symmetry and double symmetry models

Wall and Lienert [92] considered the point-symmetry (P) model defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ , i
∗ = r + 1 − i and j∗ = r + 1 − j. This model indicates

the structure of point-symmetry of cell probabilities with respect to the center
cell (when r is odd) or center point (when r is even) in the table. Also see
Tomizawa [64, 67].

Tomizawa [64] proposed the quasi point-symmetry (QP) model defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ (also see Tahata and Tomizawa [51]). A special case of
this model obtained by putting {αi = αi∗} and {βj = βj∗} is the P model.
Tomizawa [64] also considered the marginal point-symmetry (MP) model de-
fined by

pi· = pi∗· and p·i = p·i∗ (i = 1, . . . , r).

Tomizawa [65] proposed the double symmetry (DS) model, which has the
structure of both S and P, and also proposed the quasi double symmetry (QDS)
and the marginal double symmetry (MDS) models, although the details are
omitted (also see Yamamoto, Takahashi and Tomizawa [105]).

Tahata and Tomizawa [53] proposed the double linear diagonals-parameter
symmetry (D-LDPS) model defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji = ψi∗j∗ = ψj∗i∗ . Note that the D-LDPS model implies the
LDPS model, and the D-LDPS model implies the QDS model.

2.5. The other symmetry models

Agresti [1] described the relationship between the LDPS model and the joint
bivariate normal distribution. The LDPS model, the D-LDPS model, and
Tahata, Yamamoto and Tomizawa’s [56] model may be appropriate for a
square ordinal table if it is reasonable to assume an underlying bivariate nor-
mal distribution with equal marginal variances.

Similarly, the ELDPS model may be appropriate for a square ordinal table
if it is reasonable to assume an underlying bivariate normal distribution with
any marginal variances (also see Yamamoto et al. [93]; Tahata, Yamamoto
and Tomizawa [61]).
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Iki, Ishihara and Tomizawa [23] proposed a model which may be useful if
it is reasonable to assume an underlying bivariate t-distribution with equal
marginal variances.

Yamamoto and Murakami [96] proposed a model which may be useful if
it is reasonable to assume an underlying bivariate skew normal distribution,
although the detail is omitted.

For square contingency tables with ordered categories, there may be some
cases that one wants to analyze them by considering collapsed tables with
some adjacent categories combined in the original table. For some models
of symmetry for collapsed tables, see, e.g., Tahata, Takazawa and Tomizawa
[55], Yamamoto, Tahata and Tomizawa [106], and Yamamoto, Murakami and
Tomizawa [97].

§3. Decompositions of models for square tables

3.1. Decomposition

This section reviews the decompositions of models. Caussinus [16] gave the
decomposition of the symmetry model as follows.

Theorem 1. The S model holds if and only if both the QS and MH models
hold.

For this decomposition, also see Bishop et al. [15, p.287], Agresti [5, p.429],
and Tomizawa and Tahata [89]. We see from Theorem 1 that assuming that
the QS model holds true, the hypothesis that the S model holds is equivalent
to the hypothesis that the MH model holds.

Tomizawa [62] and Tomizawa and Tahata [89] introduced the balance (BA)
model which indicates that the parameter γ in the EQS model is equal to the
parameter δ in the EMH model when both models hold, e.g., as follows:∑r−1

i=1 Gi,i+1∑r−1
i=1 Gi+1,i

=

∑
i<j<k pijpjkpki∑
i<j<k pjipkjpik

.

Tomizawa [62] and Tomizawa and Tahata [89] gave the following theorem.

Theorem 2. The CS model holds if and only if all the EQS, EMH and BA
models hold.

Consider the marginal mean equality (ME) model which indicates E(X1) =
E(X2), where E(X1) =

∑r
i=1 ipi· and E(X2) =

∑r
j=1 jp·j . The ME model can

be expressed as
r−1∑
i=1

Gi,i+1 =
r−1∑
i=1

Gi+1,i.
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Yamamoto et al. [93] and Tahata, Yamamoto and Tomizawa [60] gave the
following theorem.

Theorem 3. The S model holds if and only if both the LDPS and ME models
hold.

Tomizawa [69] gave the following theorem.

Theorem 4. For t=I and II, the LDPS model holds if and only if both the
QS and DWM-t models hold.

Consider the global symmetry (GS) model defined by P (X1 < X2) =
P (X1 > X2), i.e.,

∑
i<j pij =

∑
i>j pij . Read [40] gave the following theo-

rem.

Theorem 5. The S model holds if and only if both the CS and GS models
hold.

Tahata and Tomizawa [52] gave the following theorem.

Theorem 6. The S model holds if and only if all the 2RPS, GS and ME
models hold.

For a fixed k (k = 1, . . . , r−1), consider the marginal kth moment equality
(MMEk) model defined by

E(X l
1) = E(X l

2) (l = 1, . . . , k).

When k = 1, this is the ME model. Tahata and Tomizawa [54] gave the
following theorem.

Theorem 7. For a fixed k (k = 1, . . . , r− 1), the S model holds if and only if
both the LSk and MMEk models hold.

Note that when k = 1, Theorem 7 is identical to Theorem 3.
Tomizawa [62, 66, 70] introduced three kinds of modified marginal homo-

geneity models (denoted by MM-t (t=1, 2, 3)). The MM-1 model is defined
by

p+i· = ϕp−·i (i = 1, . . . , r − 1).

The MM-2 model is defined by

p+·i = ψp−i· (i = 2, 3, . . . , r).

The MM-3 model is defined by

p+i· = ξp−·i and p+·i+1 = ξp−i+1· (i = 1, . . . , r − 1).

Denote the MM-1 model with ϕ = 1 and the MM-2 model with ψ = 1 by MM0-
1 and MM0-2, respectively. Tomizawa [62, 66] gave the following theorem.
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Theorem 8. For t=1 and 2, the S model holds if and only if both the QS and
MM0-t models hold.

Tomizawa [70] gave the following Theorems 9, 10 and 11.

Theorem 9. For t=1 and 2, the CS model holds if and only if both the PS
and MM-t models hold.

Theorem 10. The PS model holds if and only if both the GPS and EMH
models hold.

Theorem 11. The CS model holds if and only if both the GPS and MM-3
models hold.

Kateri and Papaioannou [28] described the following theorem.

Theorem 12. The S model holds if and only if both the QS[f ] and MH models
hold.

Yamamoto, Ando and Tomizawa [94] gave the following Theorems 13, 14
and 15.

Theorem 13. The S model holds if and only if both the CQS and MH models
hold.

Theorem 14. The CLDPS model holds if and only if both the CQS and EMH
models hold.

Theorem 15. The C2RPS model holds if and only if both the CEQS and
EMH models hold.

Yamamoto et al. [107] gave the following Theorems 16 and 17.

Theorem 16. For a fixed m (m = 1, . . . , r − 1), the CLDPS(m) model holds
if and only if both the CQS and MH(m) models hold.

Theorem 17. For a fixed m (m = 1, . . . , r − 1), the C2RPS(m) model holds
if and only if both the CEQS and MH(m) models hold.

Note that when m = 1, Theorems 16 and 17 are identical to Theorems 14
and 15, respectively.

Yamamoto and Tomizawa [103] gave the following theorem.

Theorem 18. The S model holds if and only if both the CLDPS and ME
models hold.

Tahata, Yamamoto and Tomizawa [58] gave the following theorem.
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Theorem 19. The S model holds if and only if all the C2RPS, GS and ME
models hold.

Tomizawa, Miyamoto and Ouchi [84] proposed the cumulative subsymme-
try (CSS) model as follows:

Gi,i+2 = Gi+2,i (i = 1, . . . , r − 2).

Tahata, Yamamoto and Tomizawa [57] gave the following Theorems 20 and
21.

Theorem 20. The S model holds if and only if all the PS, ME and CSS
models hold.

Theorem 21. The S model holds if and only if all the GPS, EMH, ME and
CSS models hold.

Iki et al. [24] gave the following theorem.

Theorem 22. The S model holds if and only if all the MPS, ME and CSS
models hold.

Tomizawa [78] gave the following theorem.

Theorem 23. The MH model holds if and only if both the EMH and ME
models hold.

Denote the marginal variance equality model, V ar(X1) = V ar(X2), by
MV. Tomizawa [78] also gave the following theorem.

Theorem 24. The MH model holds if and only if all the GMH, ME and MV
models hold.

Tahata and Tomizawa [50] gave the following theorem.

Theorem 25. For a given m (m = 1, . . . , r − 1), the MH model holds if and
only if both the MH(m) and MMEm models hold.

Note that this theorem with m = 1 and 2 are Theorems 23 and 24, respec-
tively.

Miyamoto et al. [38] gave the following theorem.

Theorem 26. The MH model holds if and only if both the L (or CL) and ME
models hold.

Kurakami et al. [30] gave the following theorem.

Theorem 27. For a given m (m = 1, . . . , r − 1), the MH model holds if and
only if both the L(m) (or CL(m)) and MMEm models hold.
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Note that this theorem with m = 1 is Theorem 26.
Tomizawa [64] gave the following theorem (also see Tahata and Tomizawa

[51]).

Theorem 28. The P model holds if and only if both the QP and MP models
hold.

Tomizawa [65] gave the following theorem (also see Yamamoto et al. [105]).

Theorem 29. The DS model holds if and only if both the QDS and MDS
models hold.

Tahata and Tomizawa [53] considered the double mean equalities (DME)
model defined by

E(X1) = E(X2) = E(X∗
1 ) = E(X∗

2 ),

where E(X∗
t ) = E(r + 1 − Xt) for t = 1 and 2. Thus the DME model is

expressed as

E(X1) = E(X2) =
r + 1

2
.

Tahata and Tomizawa [53] gave the following theorem.

Theorem 30. The DS model holds if and only if both the D-LDPS and DME
models hold.

Yamamoto and Tomizawa [101] gave the following theorem.

Theorem 31. The SQU model holds if and only if both the QU and MH
models hold.

3.2. Orthogonality of test statistic

Let nij denote the observed frequency in the (i, j)th cell of the r × r table
(i = 1, . . . , r; j = 1, . . . , r). Assume that a multinomial distribution is applied
to the r × r table. Each model (say M) can be tested for goodness-of-fit by
e.g., the likelihood ratio chi-squared statistic with the corresponding degrees
of freedom (df). The likelihood ratio statistic for testing goodness-of-fit of
model M is given by

G2(M) = 2
r∑

i=1

r∑
j=1

nij log

(
nij
m̂ij

)
,

where m̂ij is the maximum likelihood estimate of expected frequencymij under
model M.
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We point out that for each theorem in Section 3.1, for example, when model
M0 is decomposed into models M1, M2 and M3, the number of df for M0 is
equal to the sum of numbers of df for M1, M2 and M3 (although the details
are omitted).

Lang and Agresti [32] and Lang [31] considered the simultaneous modeling
of the joint distribution and the marginal distribution. Aitchison [8] discussed
the asymptotic separability, which is equivalent to the orthogonality in Read
[40] and the independence in Darroch and Silvey [17], of test statistic for
the goodness-of-fit of two models (also see Land and Agresti [32]; Lang [31];
Tomizawa and Tahata [89]; Tahata and Tomizawa [51]).

As described in Tomizawa and Tahata [89], for Theorem 1 the orthogonal-
ity of test statistic holds; namely, the test statistic G2(S) is asymptotically
equivalent to the sum of G2(QS) and G2(MH). In addition, we point out
that the orthogonality of test statistic holds for Theorems 3, 5, 7, 28, 29, 30
and 31 (for details, see the corresponding articles).

§4. Relationships among models for square tables

As described in Section 3, many models of symmetry and asymmetry are
considered. Therefore it would be meaningful to show the relationships among
models. In Figures 1, 2, 3 and 4, we shall show them. In Figure, A→B
indicates that model A implies model B.

SQI LDPS LSm

EQS2RPS

ELDPSS

CST DPS

SQU QS

QU

DUS

Figure 1: Relationships among models (I).

§5. New decomposition of symmetry model

From Theorems 8 and 13, we are interested in whether we can decompose the
S model into the CQS model and MM0-t (t=1, 2) model. We now obtain the
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S

L(m)L

GMHEMH

CL CL(m)

MH MH(m)

DWM-t

Figure 2: Relationships among models (II).

S
GPSPS

CDPS

C2RPS

MPS EMH

CS

CEQS

CLDPS(m)CLDPS CQS

PS(m)

C2RPS(m)

CDUS

Figure 3: Relationships among models (III).

DS

QS
QDS

MP

MDS

LDPS MH

S

QP

P

D-LDPS

Figure 4: Relationships among models (IV).
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following theorem.

Theorem 32. For t=1 and 2, the S model holds if and only if both the CQS
and MM0-t models hold.

Proof. If the S model holds, both the CQS and MM0-t models hold. Assume
that the CQS and MM0-t models hold, and then we shall show that the S
model holds. We consider the case of t=1. The CQS model can be expressed
as

Gij

Gji
=
γj
γi

(i < j),

where γ1 = 1 without loss of generality (see Yamamoto et al. [94]). We see

p+i· = Gi,i+1 −Gi−1,i+1

and
p−·i = Gi+1,i −Gi+1,i−1 (i = 1, . . . , r − 1),

where G02 = G20 = 0. From the CQS model, we see

p+i· =
γi+1

γi
Gi+1,i −

γi+1

γi−1
Gi+1,i−1 (i = 1, . . . , r − 1).

Also p+1· = G12 and p−·1 = G21. Since the CQS model holds, we obtain

G12

G21
=
γ2
γ1
.

Since the MM0-1 model holds, p+1· = p−·1. Noting γ1 = 1, we see γ2 = 1. Also
we see

p+2· =
γ3
γ2
G32 −

γ3
γ1
G31

and
p−·2 = G32 −G31.

From γ1 = γ2 = 1 and p+2· = p−·2, we obtain γ3 = 1. By similar way, we obtain
γ1 = γ2 = · · · = γr. Therefore we see Gij = Gji (i < j). Namely the S model
holds. The case of t=2 can be proved in a similar way to the case of t=1. The
proof is completed.

§6. Models of multi-way tables

This section reviews briefly various models of symmetry or asymmetry. Con-
sider the rT contingency table (T ≥ 2). Let Xk be the kth random variable
(k = 1, . . . , T ). Let pi denote the probability that an observation will fall in
the i = (i1, . . . , iT )th cell of the table (ik = 1, . . . , r; k = 1, . . . , T ).
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6.1. Symmetry models

The symmetry (ST ) model is defined by

pi = pj for any i,

where j = (j1, . . . , jT ) is any permutation of i = (i1, . . . , iT ); see Bhapkar [12],
Bhapkar and Darroch [13], Lovison [33], and Agresti [5, p.440].

For a fixed h (h = 1, . . . , T −1), the hth-order quasi-symmetry (QT
h ) model

is defined by

log pi = λ+

T∑
k=1

λk(ik) +
∑∑

1≤k1<k2≤T

λk1k2(ik1 , ik2)

+ · · ·+
∑

· · ·
∑

1≤k1<···<kh≤T

λk1...kh(ik1 , . . . , ikh) + λ(i),

for any i, where λ(i) = λ(j) for any permutation j = (j1, . . . , jT ) of i =
(i1, . . . , iT ); see Bhapkar and Darroch [13]. Note that the ST model implies
the QT

h model.
Denote the hth-order (1 ≤ h < T ) marginal probability by psi , i.e., p

s
i =

P (Xs1 = i1, . . . , Xsh = ih), where s = (s1, . . . , sh) and i = (i1, . . . , ih) with
1 ≤ s1 < · · · < sh ≤ T and ik = 1, . . . , r (k = 1, . . . , h). The hth-order
marginal symmetry (MT

h ) model is defined by

psi = psj = pti

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any s =
(s1, . . . , sh) and t = (t1, . . . , th); see Bhapkar and Darroch [13] and Agresti
[5, p.440].

6.2. Asymmetry models

For the rT contingency table (T ≥ 2), Tahata and Tomizawa [54] proposed
the kth-order linear asymmetry (denoted by LST

k ) model (k = 1, . . . , r − 1),
defined by

pi = µ

(
T∏

s=1

αis
1(s)

)(
T∏

s=1

α
i2s
2(s)

)
. . .

(
T∏

s=1

α
iks
k(s)

)
ψi,

where ψi = ψj for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). Espe-
cially when k = 1 and 2, the LST

1 and LST
2 models are the linear diagonals-

parameter symmetry model and the extended linear diagonals-parameter sym-
metry model, respectively, for rT table, which are considered by Tahata et al.
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[60]. As described in Tahata and Tomizawa [54], the QT
1 model is equivalent

to the LST
r−1 model. Therefore the LST

k (k < r− 1) model is a special case of
the QT

1 model.

Tahata et al. [61] proposed the hth-order linear ordinal quasi-symmetry
(LQT

h ) model (h = 1, . . . , T − 1), defined by

log pi = λ+

T∑
k=1

ikλk +
∑∑

1≤k1<k2≤T

ik1ik2λk1k2

+ · · ·+
∑

· · ·
∑

1≤k1<···<kh≤T

ik1 . . . ikhλk1...kh + λ(i),

where λ(i) = λ(j) for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). The
LQT

h model can be expressed in a multiplicative form

pi = µ

(
T∏

k=1

αik
k

) ∏∏
1≤k1<k2≤T

α
ik1 ik2
k1k2

 . . .

 ∏
· · ·
∏

1≤k1<···<kh≤T

α
ik1 ...ikh
k1...kh

 γ(i),

where γ(i) = γ(j) for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ).
Especially, when h = 1, the LQT

1 model is the LST
1 model. Note that Agresti

[5, p.440] refers to the LQT
1 (LST

1 ) model (with the score) as the ordinal
quasi-symmetry model. The LQT

h model is a special case of the QT
h model.

Yamamoto et al. [93] and Tahata et al. [60] considered the generalized
LST

1 (denoted by GLST ) model defined by

pi =

(
T∏

s=1

αis
s

)(
T∏
t=1

β
i2t
t

)(
T−1∏
s=1

T∏
t=s+1

γisitst

)
ψi,

where ψi = ψj for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). Note
that the LST

2 model implies the GLST model, and the GLST model implies
the QT

2 model.

For the rT contingency table, Agresti [5, p.442] considered the marginal
cumulative logistic (LT ) model. Tahata, Katakura and Tomizawa [46] consid-
ered the conditional marginal cumulative logistic (CLT ) model, although the
details are omitted. Kurakami et al. [30] considered the kth-order generalized
cumulative logistic (LT (k)) model and the kth-order generalized conditional
marginal cumulative logistic (CLT (k)) model (k = 1, . . . , r− 1), although the
details are omitted.



154 K. TAHATA AND S. TOMIZAWA

6.3. Point-symmetry model

Consider the rT contingency table. The point-symmetry (P T ) model is defined
by

pi = pi∗ for any i = (i1, . . . , iT ),

where i∗ = (i∗1, . . . , i
∗
T ) and i

∗
k = r + 1− ik (Wall and Lienert [92]).

Although the details are omitted, Tahata and Tomizawa [51] proposed the
hth-order quasi point-symmetry (QP T

h ) model and the hth-order marginal
point-symmetry (MP T

h ) model (h = 1, . . . , T − 1).
Yamamoto et al. [105] proposed the double symmetry (DST ) model defined

by
pi = pj = pi∗ = pj∗ ,

where j = (j1, . . . , jT ) is any permutation of i = (i1, . . . , iT ). Yamamoto et al.
[105] also proposed the hth-order quasi double symmetry (QDST

h ) model and
the hth-order marginal double symmetry (MDST

h ) model (h = 1, . . . , T − 1),
although the details are omitted.

§7. Decompositions of models for multi-way tables

This section reviews briefly the decompositions of models for multi-way rT

contingency tables. Bhapkar and Darroch [13] gave the following theorem.

Theorem 33. For a fixed h (h = 1, . . . , T − 1), the ST model holds if and
only if both the QT

h and MT
h models hold.

For a fixed k (k = 1, . . . , r−1), consider the marginal kth moment equality
(MMET

k ) model defined by

E(X l
1) = · · · = E(X l

T ) (l = 1, . . . , k).

Tahata and Tomizawa [54] gave the following theorem.

Theorem 34. For a fixed k (k = 1, . . . , r−1), the ST model holds if and only
if both the LST

k and MMET
k models hold.

For a fixed h (h = 1, . . . , T − 1), consider the hth moment equality (MET
h )

model defined by

E(Xk1 · · ·Xkl) = E(X1 · · ·Xl) (l = 1, . . . , h; 1 ≤ k1 < · · · < kl ≤ T ).

Tahata et al. [61] gave the following theorem.

Theorem 35. For a fixed h (h = 1, . . . , T − 1), the ST model holds if and
only if both the LQT

h and MET
h models hold.
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Consider the mean, variance and correlation equality (MVCT ) model de-
fined by

E(X1) = · · · = E(XT ), V ar(X1) = · · · = V ar(XT ),

and

Corr(Xi, Xj) = c (i < j),

where Corr(Xi, Xj) is the correlation ofXi andXj and c is a constant. Tahata
et al. [60] gave the following theorem.

Theorem 36. The ST model holds if and only if both the GLST and MVCT

models hold.

Kurakami et al. [30] gave the following theorem.

Theorem 37. For a fixed k (k = 1, . . . , r − 1), the MT
1 model holds if and

only if both the LT (k) and MMET
k models hold.

Note that when k = r− 1, the LT (r− 1) model is saturated model and the
MMET

r−1 model is equivalent to the MT
1 model (see Kurakami et al. [30]).

Tahata and Tomizawa [51] gave the following theorem.

Theorem 38. For a fixed h (h = 1, . . . , T − 1), the P T model holds if and
only if both the QP T

h and MP T
h models hold.

Yamamoto et al. [105] gave the following theorem.

Theorem 39. For a fixed h (h = 1, . . . , T − 1), the DST model holds if and
only if both the QDST

h and MDST
h models hold.

We point out that in Section 7, the orthogonality of test statistic hold for
Theorems 33, 34, 35, 36, 38 and 39 (for details, see the corresponding articles).

§8. Relationships among models for multi-way tables

For the multi-way rT contingency table, there are many models of symmetry
and asymmetry. For example, for the QT

h model there are (T − 1) kinds of
quasi-symmetry models, as QT

1 , Q
T
2 , . . . , Q

T
T−1. Also, the LQT

h , LS
T
k and

GLST models are special quasi-symmetry models. Therefore, it would be
meaningful to give the figure which indicates the relationships among various
quasi-symmetry models for the rT table. In Figure 5 we shall show them.
Since the relationships among the other models are similar to Figures 2 and
4, we omit their figures.
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LQT
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Figure 5: Relationships among models (V).

§9. Concluding remarks

In Sections 2 and 3, we have reviewed various models of symmetry and asym-
metry for the r × r contingency table and the decompositions of models. In
Section 4, we have given the figures which indicate the relationships among
various models for the r × r table. Since there are many models of symmetry
or asymmetry, it would be meaningful to give these figures. In Section 5, we
have given a new decomposition of symmetry model. The CQS model for
cumulative probabilities is similar to the structure of QS model for cell prob-
abilities. Therefore, many readers would be interested in whether Theorem 8
with the QS model replaced by the CQS model holds. The new decomposition
(Theorem 32) indicates that it holds.

In Sections 6 and 7, we have reviewed various models of symmetry and
asymmetry and the decompositions of models for the multi-way rT contin-
gency table. In Section 8, we have given the figure which indicates the rela-
tionships among various quasi-symmetry models for the rT tables. It would
be meaningful to give the figure (Figure 5) for the rT tables since there are
many models.

§10. Discussion

For analyzing the data of square contingency tables, one applies various models
of symmetry. If the symmetry model does not hold, the extended model, e.g.,
the asymmetry model, is applied. Also we are interested in measuring the de-
gree of departure from the symmetry when the symmetry model does not hold.
Various measures are proposed to represent the degree of departure from the
model. For the measures of the S model, see, e.g., Tomizawa [75], Tomizawa,
Seo and Yamamoto [88], Tomizawa, Miyamoto and Hatanaka [83], Tahata,
Yamamoto, Nagatani and Tomizawa [59], Tahata, Miyazawa and Tomizawa
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[49], and Tahata, Akinaga and Tomizawa [43], etc. For the measures of the QS
model, see, e.g., Tahata, Miyamoto and Tomizawa [48], and Tahata, Kozai and
Tomizawa [47], etc. For the measures of the MH model, see, e.g., Tomizawa
[76], Tomizawa and Makii [80], Tomizawa, Miyamoto and Ashihara [82], and
Tahata, Iwashita and Tomizawa [44], etc. For the measures of some symmetry
or asymmetry models, see, e.g., Tomizawa, Miyamoto and Yamane [85], Ya-
mamoto and Tomizawa [100], Yamamoto, Furuya and Tomizawa [95], Tahata,
Iwashita and Tomizawa [45], Iki, Tahata and Tomizawa [25], and Yamamoto,
Tahata, Suzuki and Tomizawa [104], etc.

By the way, some decompositions of models of symmetry for the discrete
multivariate distribution may be considered for the continuous multivariate
distribution (i.e., the multivariate probability density function). Iki, Tahata
and Tomizawa [26], and Iki and Tomizawa [22] gave the decompositions of
symmetric multivariate probability density function.
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29, 77-182.

[17] Darroch, J. N. and Silvey, S. D. (1963). On testing more than one hypothesis.
Annals of Mathematical Statistics, 34, 555-567.

[18] Goodman, L. A. (1979). Multiplicative models for square contingency tables
with ordered categories. Biometrika, 66, 413-418.

[19] Goodman, L. A. (1979). Simple models for the analysis of association in cross-
classifications having ordered categories. Journal of the American Statistical
Association, 74 537-552.

[20] Goodman, L. A. (1985). The analysis of cross-classified data having ordered
and/or unordered categories: association models, correlation models, and
asymmetry models for contingency tables with or without missing entries.
Annals of Statistics, 13, 10-69.

[21] Haberman, S. J. (1979). Analysis of Qualitative Data, Volume 2. Academic
Press, New York.

[22] Iki, K. and Tomizawa, S. (2014). Point-symmetric multivariate density func-
tion and its decomposition. Journal of Probability and Statistics, 2014, 1-6.

[23] Iki, K., Ishihara, T. and Tomizawa, S. (2013). Bivariate t-distribution type
symmetry model for square contingency tables with ordered categories. Model
Assisted Statistics and Applications, 8, 315-319.



SYMMETRY AND ASYMMETRY MODELS AND DECOMPOSITIONS 159

[24] Iki, K., Oda, T. and Tomizawa, S. (2014). A modified palindromic symme-
try model for square contingency tables with ordered categories. Journal of
Statistics Applications and Probability, 3, 109-115.

[25] Iki, K., Tahata, K. and Tomizawa, S. (2012). Measure of departure from
marginal homogeneity using marginal odds for multi-way tables with ordered
categories. Journal of Applied Statistics, 39, 279-295.

[26] Iki, K., Tahata, K. and Tomizawa, S. (2012). Decomposition of symmetric
multivariate density function. SUT Journal of Mathematics, 48, 199-211.

[27] Kateri, M. and Agresti, A. (2007). A class of ordinal quasi-symmetry models
for square contingency tables. Statistics and Probability Letters, 77, 598-603.

[28] Kateri, M. and Papaioannou, T. (1997). Asymmetry models for contingency
tables. Journal of the American Statistical Association, 92, 1124-1131.

[29] Kurakami, H., Tahata, K. and Tomizawa, S. (2010). Extension of the marginal
cumulative logistic model and decompositions of marginal homogeneity for
multi-way tables. Journal of Statistics: Advances in Theory and Applications,
3, 135-152.

[30] Kurakami, H., Tahata, K. and Tomizawa, S. (2013). Generalized marginal
cumulative logistic model for multi-way contingency tables. SUT Journal of
Mathematics, 49, 19-32.

[31] Lang, J. B. (1996). On the partitioning of goodness-of-fit statistics for multi-
variate categorical response models. Journal of the American Statistical As-
sociation, 91, 1017-1023.

[32] Lang, J. B. and Agresti, A. (1994). Simultaneously modeling joint and
marginal distributions of multivariate categorical responses. Journal of the
American Statistical Association, 89, 625-632.

[33] Lovison, G. (2000). Generalized symmetry models for hypercubic concordance
tables. International Statistical Review, 68, 323-338.

[34] McCullagh, P. (1977). A logistic model for paired comparisons with ordered
categorical data. Biometrika, 64, 449-453.

[35] McCullagh, P. (1978). A class of parametric models for the analysis of square
contingency tables with ordered categories. Biometrika, 65, 413-418.

[36] McCullagh, P. (1982). Some applications of quasisymmetry. Biometrika, 69,
303-308.

[37] Miyamoto, N., Ohtsuka, W. and Tomizawa, S. (2004). Linear diagonals-
parameter symmetry and quasi-symmetry models for cumulative probabilities
in square contingency tables with ordered categories. Biometrical Journal, 46,
664-674.



160 K. TAHATA AND S. TOMIZAWA

[38] Miyamoto, N., Niibe, K. and Tomizawa, S. (2005). Decompositions of
marginal homogeneity model using cumulative logistic models for square con-
tingency tables with ordered categories. Austrian Journal of Statistics, 34,
361-373.

[39] Plackett, R. L. (1981). The Analysis of Categorical Data, 2nd edition. Charles
Griffin, London.

[40] Read, C. B. (1977). Partitioning chi-square in contingency tables: A teaching
approach. Communications in Statistics-Theory and Methods, 6, 553-562.

[41] Saigusa, Y., Tahata, K. and Tomizawa, S. (2014). An extended asymmetry
model for square contingency tables with ordered categories. Model Assisted
Statistics and Applications, 9, 151-157.

[42] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a
two-way classification. Biometrika, 42, 412-416.

[43] Tahata, K., Akinaga, S. and Tomizawa, S. (2013). Measure of departure from
symmetry based on entropy for square contingency tables with nominal cate-
gories. International Journal of Applied Mathematics and Statistics, 42, 1-9.

[44] Tahata, K., Iwashita, T. and Tomizawa, S. (2006). Measure of departure from
symmetry of cumulative marginal probabilities for square contingency tables
with ordered categories. SUT Journal of Mathematics, 42, 7-29.

[45] Tahata, K., Iwashita, T. and Tomizawa, S. (2008). Measure of departure from
conditional marginal homogeneity for square contingency tables with ordered
categories. Statistics, 42, 453-466.

[46] Tahata, K., Katakura, S. and Tomizawa, S. (2007). Decompositions of
marginal homogeneity model using cumulative logistic models for multi-way
contingency tables. Revstat: Statistical Journal, 5, 163-176.

[47] Tahata, K., Kozai, K. and Tomizawa, S. (2014). Partitioning measure of
quasi-symmetry for square contingency tables. Brazilian Journal of Probabil-
ity and Statistics, 28, 353-366.

[48] Tahata, K., Miyamoto, N. and Tomizawa, S. (2004). Measure of departure
from quasi-symmetry and Bradley-Terry models for square contingency tables
with nominal categories. Journal of the Korean Statistical Society, 33, 129-
147.

[49] Tahata, K., Miyazawa, K. and Tomizawa, S. (2010). Measure of departure
from average cumulative symmetry for square contingency tables with ordered
categories. American Journal of Biostatistics, 1, 62-66.

[50] Tahata, K. and Tomizawa, S. (2008). Generalized marginal homogeneity
model and its relation to marginal equimoments for square contingency ta-
bles with ordered categories. Advances in Data Analysis and Classification,
2, 295-311.



SYMMETRY AND ASYMMETRY MODELS AND DECOMPOSITIONS 161

[51] Tahata, K. and Tomizawa, S. (2008). Orthogonal decomposition of point-
symmetry for multiway tables. Advances in Statistical Analysis, 92, 255-269.

[52] Tahata, K. and Tomizawa, S. (2009). Decomposition of symmetry using two-
ratios-parameter symmetry model and orthogonality for square contingency
tables. Journal of Statistics: Advances in Theory and Applications, 1, 19-33.

[53] Tahata, K. and Tomizawa, S. (2010). Double linear diagonals-parameter sym-
metry and decomposition of double symmetry for square tables. Statistical
Methods and Applications, 19, 307-318.

[54] Tahata, K. and Tomizawa, S. (2011). Generalized linear asymmetry model
and decomposition of symmetry for multiway contingency tables. Journal of
Biometrics and Biostatistics, 2, 1-6.

[55] Tahata, K., Takazawa, A. and Tomizawa, S. (2008). Collapsed symmetry
model and its decomposition for multi-way tables with ordered categories.
Journal of the Japan Statistical Society, 38, 325-334.

[56] Tahata, K., Yamamoto, K. and Tomizawa, S. (2009). Normal distribution
type symmetry model for square contingency tables with ordered categories.
The Open Statistics and Probability Journal, 1, 32-37.

[57] Tahata, K., Yamamoto, K. and Tomizawa, S. (2012). Decomposition of sym-
metry using palindromic symmetry model in a two-way classification. Journal
of Statistics Applications and Probability, 1, 175-178.

[58] Tahata, K., Yamamoto, K. and Tomizawa, S. (2013). Decomposition of sym-
metry model into three models for cumulative probabilities in square contin-
gency tables. European Journal of Pure and Applied Mathematics, 6, 299-306.

[59] Tahata, K., Yamamoto, K., Nagatani, N. and Tomizawa, S. (2009). A mea-
sure of departure from average symmetry for square contingency tables with
ordered categories. Austrian Journal of Statistics, 38, 101-108.

[60] Tahata, K., Yamamoto, H. and Tomizawa, S. (2008). Orthogonality of decom-
positions of symmetry into extended symmetry and marginal equimoment for
multi-way tables with ordered categories. Austrian Journal of Statistics, 37,
185-194.

[61] Tahata, K., Yamamoto, H. and Tomizawa, S. (2011). Linear ordinal quasi-
symmetry model and decomposition of symmetry for multi-way tables. Math-
ematical Methods of Statistics, 20, 158-164.

[62] Tomizawa, S. (1984). Three kinds of decompositions for the conditional sym-
metry model in a square contingency table. Journal of the Japan Statistical
Society, 14, 35-42.

[63] Tomizawa, S. (1985). Decompositions for odds-symmetry models in a square
contingency table with ordered categories. Journal of the Japan Statistical
Society, 15, 151-159.



162 K. TAHATA AND S. TOMIZAWA

[64] Tomizawa, S. (1985). The decompositions for point-symmetry models in two-
way contingency tables. Biometrical Journal, 27, 895-905.

[65] Tomizawa, S. (1985). Double symmetry model and its decomposition in a
square contingency table. Journal of the Japan Statistical Society, 15, 17-23.

[66] Tomizawa, S. (1985). Analysis of data in square contingency tables with or-
dered categories using the conditional symmetry model and its decomposed
models. Environmental Health Perspectives, 63, 235-239.

[67] Tomizawa, S. (1986). A decomposition for the inclined point-symmetry model
in a square contingency table. Biometrical Journal, 28, 371-380.

[68] Tomizawa, S. (1987). Decompositions for 2-ratios-parameter symmetry model
in square contingency tables with ordered categories. Biometrical Journal, 29,
45-55.

[69] Tomizawa, S. (1987). Diagonal weighted marginal homogeneity models and
decompositions for linear diagonals-parameter symmetry model. Communi-
cations in Statistics-Theory and Methods, 16, 477-488.

[70] Tomizawa, S. (1989). Decompositions for conditional symmetry model into
palindromic symmetry and modified marginal homogeneity models. Aus-
tralian Journal of Statistics, 31, 287-296.

[71] Tomizawa, S. (1990). Polynomial diagonals-parameter symmetry model for
square contingency tables with ordered categories. Statistica, 50, 171-178.

[72] Tomizawa, S. (1991). An extended linear diagonals-parameter symmetry
model for square contingency tables with ordered categories. Metron, 49,
401-409.

[73] Tomizawa, S. (1991). Diagonal uniform association symmetry model for
square contingency tables with ordered categories. The New Zealand Statis-
tician, 26, 10-17.

[74] Tomizawa, S. (1993). Diagonals-parameter symmetry model for cumulative
probabilities in square contingency tables with ordered categories. Biometrics,
49, 883-887.

[75] Tomizawa, S. (1994). Two kinds of measures of departure from symmetry
in square contingency tables having nominal categories. Statistica Sinica, 4,
325-334.

[76] Tomizawa, S. (1995). Measures of departure from marginal homogeneity for
contingency tables with nominal categories. Journal of the Royal Statistical
Society, Ser.D; The Statistician, 44, 425-439.

[77] Tomizawa, S. (1995). A generalization of the marginal homogeneity model
for square contingency tables with ordered categories. Journal of Educational
and Behavioral Statistics, 20, 349-360.



SYMMETRY AND ASYMMETRY MODELS AND DECOMPOSITIONS 163

[78] Tomizawa, S. (1998). A decomposition of the marginal homogeneity model
into three models for square contingency tables with ordered categories.
Sankhya: The Indian Journal of Statistics, Ser.B, 60, 293-300.

[79] Tomizawa, S. (2009). Analysis of square contingency tables in statistics.
American Mathematical Society Translations, Series. 2, 227, 147-174.

[80] Tomizawa, S. and Makii, T. (2001). Generalized measures of departure from
marginal homogeneity for contingency tables with nominal categories. Journal
of Statistical Research, 35, 1-24.

[81] Tomizawa, S. and Miyamoto, N. (2007). Diagonal uniform association sym-
metry models for cumulative probabilities in square tables. Advances in Sta-
tistical Analysis, 91, 269-278.

[82] Tomizawa, S., Miyamoto, N. and Ashihara, N. (2003). Measure of departure
from marginal homogeneity for square contingency tables having ordered cat-
egories. Behaviormetrika, 30, 173-193.

[83] Tomizawa, S., Miyamoto, N. and Hatanaka, Y. (2001). Measure of asymmetry
for square contingency tables having ordered categories. The Australian and
New Zealand Journal of Statistics, 43, 335-349.

[84] Tomizawa, S., Miyamoto, N. and Ouchi, M. (2006). Decompositions of sym-
metry model into marginal homogeneity and distance subsymmetry in square
contingency tables with ordered categories. Revstat: Statistical Journal, 4,
153-161.

[85] Tomizawa, S., Miyamoto, N. and Yamane, S. (2005). Power-divergence-type
measure of departure from diagonals-parameter symmetry for square contin-
gency tables with ordered categories. Statistics, 39, 107-115.

[86] Tomizawa, S., Miyamoto, N. and Yamamoto, K. (2006). Decomposition for
polynomial cumulative symmetry model in square contingency tables with
ordered categories. Metron, 64, 303-314.

[87] Tomizawa, S., Miyamoto, N., Yamamoto, K. and Sugiyama, A. (2007). Exten-
sions of linear diagonal-parameter symmetry and quasi-symmetry models for
cumulative probabilities in square contingency tables. Statistica Neerlandica,
61, 273-283.

[88] Tomizawa, S., Seo, T. and Yamamoto, H. (1998). Power-divergence-type mea-
sure of departure from symmetry for square contingency tables that have
nominal categories. Journal of Applied Statistics, 25, 387-398.

[89] Tomizawa, S. and Tahata, K. (2007). The analysis of symmetry and asymme-
try: Orthogonality of decomposition of symmetry into quasi-symmetry and
marginal symmetry for multi-way tables. Journal de la Société Française de
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