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Abstract. We propose a new approach for constructing a survival tree which
is used to analysis of time to event data. The construction of survival tree is
performed by the classification and regression tree (CART) algorithm, which
constructs a tree model by recursively dividing the data. In the traditional ap-
proach, internal-node data are divided by a splitting rule which consider only
one covariate for each node. In the proposed approach, two or more com-
binations of covariates are considered for dividing the internal-node data in
the algorithm. We show that the proposed method is more suitable than the
traditional approach in some situations through the comparative research by
simulations. We also present the result of an actual analysis based on proposed
approach.
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§1. Introduction

Prediction of time to event like death or recurrence based on patient infor-
mation is one of an important subject in medical research. To achieve this
purpose, a regression model is constructed based on learning samples. Then,
we can predict time to event of a new patient based on covariates of the pa-
tient. However in survival analysis, the construction of the predict model
cannot be considered as a simple regression problem owing to the presence of
censored data. Censored data has no exact information about time to event
but has only information about time to a point that is confirmed the event
has not occurred. Therefore, we cannot treat this information as a response
value directly.

In this situation, several modeling methods which are dealt with the prob-
lem are proposed in parametric, semi-parametric, and non-parametric frame-
works. One of a most famous and widely used model is the Cox proportional
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hazard model (Cox [4]). This semiparametric model has advantages in that
it is easy to estimate the coefficients in model and easy to understand the
covariate effects. However, this model has a disadvantage that is difficult to
detect interaction terms when there are many covariates. As the other choice
of the regression model in survival analysis, there is the survival tree which is
constructed in non-parametric framework. This model has an advantage that
the relationship between covariates and hazards can be easily determined, and
moreover, it can detect interaction terms from the hierarchical structure of the
model.

Tree-based methods were introduced by Morgan and Sonquist [13]. In
Breiman et al. [2], the classification and regression tree (CART) algorithm,
which is used extensively for constructing tree models, is confirmed. The
CART is composed by splitting, pruning, and selection steps. In the splitting
step, all data for learning are recursively dichotomized and a large tree is
constructed. The splitting rule of a node in tree is determined as Zj ≤ c,
where Zj is a numerical covariate and c is a cutting point of it (j = 1, · · · , p).
The data which satisfy the criterion are assigned to the left child node, and
the others are assigned to the right child node. To determine the splitting rule
from several possibility of the choice of covariates and splitting points in each
node, we need to determine an evaluation criterion for each split preliminarily.
Criteria for this purpose have been proposed by various authors (Gordon [7],
Davis and Anderson [5], Segal [16], Therneau et al. [18], Zhang [19], and
Keles and Segal [9]). Comparative research of these criteria were performed
by Radespiel-Tröger et al. [14] and Shimokawa et al. [17]. Since there is a
possibility of the overfitting (or over learning), we can not use the large tree
model obtained by splitting step as the predictive model directly. Therefore,
an optimal tree size is searched and a prediction model is constructed through
the pruning and selection steps.

As described in above, the splitting rule of a node in traditional CART
algorithm is restricted by only one covariate, that is Zj ≤ c or not. Al-
though constructing the tree model under this restriction has several merits
like short learning time and inhibition of over learning, there is some difficult
problem to learn like exclusive OR (XOR) problem. That is, if true model is
linearly-inseparable then the tree becomes prohibitively large and sometimes
it becomes cause to lower prediction accuracy of the obtained model. As other
example, consider the case that the true model has high probability of event
in a small partial space in p-dimensional covariates space. Then, if we con-
struct the tree model based on traditional CART algorithm 2 × p splits are
needed in the model. Since the data in each node are divided repeatedly, the
number of sample which are used to evaluate a split in a node becomes small
by splitting. Therefore, the estimation of an optimal splitting point becomes
bad by splitting in generally.
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To handle these situations, we propose a new approach that two or more
combinations of covariates are considered for dividing the data in each node.
That is, the splitting rule of a node is defined as Zj ≤ c ∩ Zk > d∩, · · ·
or not (j ̸= k ̸= · · · ). Although this approach has disadvantage that it re-
quires a long learning time, there is possibility to construct a more suitable
model in some situations like XOR problem because the size of model is con-
stricted. We show that through the comparative research by simulations. As
the simulation-based evaluation method, we use the integrated Brier score
(Graf et al. [8]) , which is widely used for evaluation of the predict model in
survival analysis. Moreover, we present the result of an actual analysis based
on proposed approach in the end of this paper.

The remainder of this paper is organized as follows. In Section 2, we define
the notations and constructing method of survival tree. Further, the method
of proposed approach are described. The simulation methods and results are
given in Section 3. The result of an actual analysis is shown in Section 4.
Finally, the conclusion of this paper is given in Section 5.

§2. Methods

2.1. Notation and Survival model

Let Y and C be the true survival and censoring time, respectively. Then, we
can observe the time X = min(Y,C). Let δ = I(Y ≤ C) be the censoring indi-
cator, which is 1 if the observation experiences an event and 0 if the observation
is censored. Let Z = (Z1, · · · , Zp) denote a p-dimentional covariate vector. An
observed learning sample set is represented by L = {(xi, δi, zi); i = 1, · · · , N}.

We define the tree model as T , and a node in the tree is defined as t. If the
node is exist in the bottom layer of the tree, we call it terminal node. The set
of terminal nodes in the tree T is represented as T̃ . The node which is not a
terminal node is called internal node.

If we consider the survival function at each node of T as non-parametric
framework, then the estimation of survival function at each node is given by
Kaplan-Meier method. Let Lt = {(xi, δi, zi); i = 1, · · · , Nt} be the set of
learning samples in the node t, then the Kaplan-Meier estimation of t is given
by

Ŝt(x) =


1 (x < y(1))∏
i(xi≤x)

(
1− di

ni

)
(y(1) ≤ x) ,(2.1)

where y(1) represents the earliest event occurrence time in Lt. di and ni rep-
resent the number of events and risk at time xi(i = 1, 2, · · · , Nt), respectively.
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As one of a merit of tree structure, once a tree model is composed and
survival function for each terminal node in the model is estimated by using
L , it is easy to apply a new patient to the model. That is, the survival function
for the new patient is estimated as the Kaplan-Meier survival function of the
terminal node t which the patient is assigned.

2.2. Construction method of survival tree

The CART algorithm, which is widely used to construct a tree model, is com-
posed three steps. In the first step, which is called as splitting step, all learning
samples L are recursively dichotomized and a large tree is constructed. For
the set of samples Lt in an arbitrary node t, the data which satisfy the fol-
lowing rule are assigned to the left child node and the others are assigned to
the right child node:

Zj ≤ c,(2.2)

where Zj is a numerical variable in Z and c is a cutting point of it (j =
1, 2, · · · , p). If Zj is the categorical variable and its possible values are s1, · · · , sl,
then the data which satisfy the following rule are assigned to the left child
node:

Zj ∈ {s1, · · · , sm},(2.3)

and the others are assigned to the right child node (m < l). For the set of Lt,
let LtL and LtR be the set of samples in left and right child nodes, respectively.
Then, all possible splits are evaluated using LtL and LtR to select an optimal
splitting rule of t.

The evaluation criteria are proposed by various authors. In this paper,
we use the criterion that using the exponential log-likelihood loss (Davis, and
Anderson [5]). The assumption of exponential survival time is widely studied
and used in many situations. As an example, this assumption is used in the
decision of sample size (Lachin [11], Schoenfeld and Richter [15]). Because our
proposed approach needs to evaluate a lot of splits for constructing a model,
this criterion is suitable from simplicity of calculation. Moreover, this criterion
has been shown a good performance in the comparative study of the splitting
criteria by using simulations as previous research (Shimokawa et al. [17]).

Let the hazard of a node t be a constant:

λ(x|t) = λt,

where λt represents a constant parameter. Then the maximum log-likelihood
estimator of λt is defined as

λ̂t =

∑
i∈Lt

δi∑
i∈Lt

xi
.
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Using λ̂t, the exponential log-likelihood loss of t is given by

R(t) =
∑
i∈Lt

δi −
∑
i∈Lt

δi log(λ̂t).(2.4)

For all possible splits, the sum of the exponential log-likelihood loss of the
child nodes are evaluated by using (2.4). Then, the splitting point and the
kind of covariate that has a minimum value of it are determined as the splitting
rule. By recursively application of evaluation and splitting, the maximum size
tree T0 is constructed. As the stopping criterion of splitting, we can use the
number of samples or events of the terminal node.

In second step, the set of subtree is constructed by recursively removing
the splits in T0 by using the cost-complexity measure (Breiman et al. [2]).
This measure is defined by

Rα(T ) =
∑
t∈T̃

R(t) + α|T̃ |,(2.5)

where R(t) is the exponential log-likelihood loss of t, which is obtained by
(2.4) in splitting step, and |T̃ | is the number of terminal nodes of T , which is a
complexity measure of the tree. α represents the penalty of |T̃ |. This measure
returns a small value when the values of the risk in each terminal node of T
are small and the model is simple. For an arbitrary α, the subtree Tk which
minimizes the (2.5) is obtained (k = 1, · · · ,M). If the value of α is 0, then
the optimal subtree is the maximum size tree T0. On the other hand, if α is
∞, then the tree TM which has a root node only minimizes the measure. The
optimal subtrees T0, T1, · · · , TM are given by gradually increasing α from 0.
The subtrees which are constructed by this method have a nested structure.
That is, Tk, · · · , TM are the subtree of Tk−1.

In the final step, the optimal subtree as prediction model is selected from
T0, T1, · · · , TM . Because each subtree is specified for an arbitrary α in pruning
step, this problem is equivalent to search the optimal penalty α in (2.5). There
is some possible methods for this like test sample method, bootstrap, and we
used V -fold cross validation method in this study.

2.3. Splitting method based on combination of covariates

In traditional CART algorithm for constructing a tree structured model, which
is described in previous section, the splitting rule of the node is restricted by
only one covariate as (2.2) or (2.3). As described in Section 1, this restriction
has the possibility of overlooking a more suitable model in some situations.
To handle these situations, we consider the splitting rule that two or more
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combinations of covariates are considered for dividing the data in each node.
For example, consider the case of combination of two covariates. If the covari-
ate vector is defined as Z = (Z1, Z2, Z3), where Zj is the numerical variable
(j = 1, 2, 3), then the splitting rule in each node for traditional approach is
one of the following structures:

{Z1 ≤ c}, {Z2 ≤ c}, {Z3 ≤ c}.(2.6)

On the other hand in our approach, the splitting rule in each node is one of
the (2.6) or following structures:

{Z1 ≤ c ∩ Z2 ≤ d}, {Z1 ≤ c ∩ Z2 > d}, {Z1 > c ∩ Z2 ≤ d}, {Z1 > c ∩ Z2 > d},
{Z2 ≤ c ∩ Z3 ≤ d}, {Z2 ≤ c ∩ Z3 > d}, {Z2 > c ∩ Z3 ≤ d}, {Z2 > c ∩ Z3 > d},
{Z1 ≤ c ∩ Z3 ≤ d}, {Z1 ≤ c ∩ Z3 > d}, {Z1 > c ∩ Z3 ≤ d}, {Z1 > c ∩ Z3 > d}.

In this example we considered the case that the variables included in covariate
vector are numeric only, but if categorical variables are included in the vector
we can consider as the same.

In traditional approach, as can be seen from this example, each splitting rule
is practiced along a covariate axes. In proposed approach, it is practiced by
whether data are included in a hyper-rectangle or not in some covariate spaces.
The proposed approach has disadvantage that it requires a long learning time
because it need to evaluate the large number of combinations of covariates.
Specifically, the number of structures of splitting rule which are considered
in this approach is

(
p
k

)
2k when the case of k combination of covariates is

considered, while the number of it is p in traditional approach. However, PC
technology in recent years may be able to resolves this disadvantage. As one
merit of this approach, the pruning and selection steps in traditional CART
algorithm can use as the same. Moreover, the processing time of these steps
is not increased compared to the traditional approach.

§3. Simulation

3.1. Model and Setting

To compare the proposed and traditional approaches through simulations, we
use the true tree model which are shown in Figure 1. The circles in the
figures represent internal nodes. This model shows a typical XOR problem.
The covariates used in this simulations are Z1, Z2 and Z3. These are random
values created from two patterns: one is a discrete uniform distribution with
{1/50, · · · , 1/50}, and the other is a Bernoulli distribution with parameter 0.5.
This model assumes that the variables Z1 and Z2 are used in the true tree
model and Z3 is a nuisance.
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Z1 ≤ 0.5

Z2 ≤ 0.5

λt = 0.2 λt = 1 λt = 1

Z2 ≤ 0.5

λt = 0.2

Figure 1: True tree structure used in simulation

We suppose exponential survival model, which has constant hazard to the
change of time, for the simulations. This survival function is given by

S(y;λt) = P (Y > y;λt) = exp(−λtx),

where the λt represents the constant hazard of node t. Based on the trees
which are shown in Figure 1, we suppose λt as follows:

λt =


0.2 (Z1 ≤ 0.5 ∩ Z2 ≤ 0.5)
1 (Z1 ≤ 0.5 ∩ Z2 > 0.5)
1 (Z1 > 0.5 ∩ Z2 ≤ 0.5)
0.2 (Z1 > 0.5 ∩ Z2 > 0.5)

(3.1)

This model is difficult to detect in traditional approach, because the evalua-
tions obtained by splitting in first node are nearly the same in each case that
the covariate Z1, Z2, or Z3 is used as splitting criterion.

By using uniform random numbers, the censoring rates are set as 0% and
approximately 25% and 50%. The number of learning samplesN are set to 200.
The 5-fold cross validation is used in the selection step. We set 30 minimum
number of events in nodes as the stop condition of splitting. Simulations
are repeated 100 times in every setting. The number of covariates which are
considered to construct a combination for splitting in proposed approach is
restricted to two.

3.2. Evaluation methods

The integrated Brier score for censored data, which are proposed by Graf et
al. [8], is used to evaluate the proposed approach. This score is calculated
based on the test samples Ltest = {(xi, δi, zi); i = 1, 2, · · · , Ntest}. For each
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simulations, this Ltest is obtained from the simulated population of the same
setting. Let Ŝ(x|z, T ) be the estimated survival function. Then the integrated
Brier score for Ŝ(x|z, T ) is defined as

IBST =
1

max(xi)

∫ max(xi)

0
BST (x)dx,

where BST (x) is the Brier score of T , which are defined as

BST (x) =
1

Ntest

∑
i∈Ltest

{(0− Ŝ(x|zi, T ))2I(xi ≤ x, δi = 1)(1/Ĝ(xi))

+(1− Ŝ(x|zi, T ))2I(xi > x)(1/Ĝ(xi))},

where Ĝ(x) is the Kaplan-Meier estimate of the censoring distribution of C,
which are obtained by using (2.1) based on {xi, 1 − δi; i = 1, 2, · · · , Ntest}.
The Brier score is construted as the mean square error between the Ŝ(x|z, T )
and the test data, which are weighted based on the loss of information due to
censoring. We use the up to median time in learning sample to evaluate this
score. The number of test samples Ntest is set to 200 for every setting.

Moreover, we use the following criterion as the measure of the explained
residual variation:

R2 = 1− IBST
IBSTM

,

where IBSTM
is the integrated Brier score evaluated from the TM , which has

a root node only. Based on the IBST , R
2, number of terminal nodes, and the

proportion of covariates which are used in the final tree model, we evaluate
the each approaches.

3.3. Results

Table 1 shows the results of the simulations for traditional and proposed ap-
proach. The values in tables are average of each measure obtained through
simulations. In each case of simulations, the proposed approach shows the
good results than the traditional approach about the values of IBST , R

2 and
the proportion of covariates which are used in the final tree model. Especially
about the selected covariates in the final model, the proposed approach did
not choose the nuisance covariate almost. When censoring rate is increased,
the traditional approach make it difficult to detecting the Z1 and Z2 which is
the variables used in true tree model. This will cause the results of explained
residual variation of the traditional approach be negative when the censoring
rate is 50%.
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Table 1: The results obtained by simulations.
covariate censor rate approach IBST R2 |T̃ | prop. Z1 Z2 Z3

quantitative 0% traditional 17.3 3.1 4.3 1.4 1.3 0.6
proposed 15.2 14.8 3.2 2.2 2.1 0.1

25% traditional 16.1 0.6 3.3 0.9 0.9 0.4
proposed 14.3 11.8 3.0 2.0 2.0 0.0

50% traditional 13.8 -0.8 2.5 0.5 0.6 0.4
proposed 12.9 6.0 2.6 1.6 1.6 0.0

binary 0% traditional 17.1 9.6 3.7 1.2 1.2 0.3
proposed 16.1 14.8 3.1 2.1 2.0 0.0

25% traditional 17.5 0.3 3.0 0.7 0.5 0.7
proposed 15.3 12.7 3.0 2.0 2.0 0.0

50% traditional 14.8 -0.9 2.0 0.4 0.2 0.4
proposed 14.1 3.6 2.1 1.1 1.1 0.0

IBST : the integrated brier score evaluated from the selected tree ×100, R2: the explained residual

variation ×100, |T̃ |: the number of terminal nodes about selected tree, prop.: the proportion of the

covariates which are used in the final tree model.

As a natural outcome, the proposed approach tends to construct the small
size tree compared to the traditional approach since more than one covariate is
considered in each node at a time. In the present case, the optimal sizes of tree
are 4 and 3 in traditional and proposed approach, respectively. If censoring is
not occurred, both approach have almost correct number of terminal nodes.
However, if censoring rate will be increased, the traditional approach rapidly
decreases the number of nodes than the proposed approach. As a result, we
conclude that the proposed approach give a more suitable model than the
traditional approach when the true model includes the XOR problem.

§4. Example

We show the application of the proposed approach using leukemia patients
bone marrow transplantation data. This data was collected from 1984 to
1989 at one of four hospitals. The data are composed of 137 patients. The
observation period is defined from the data of transplant surgery to the date
of relapse, death or last survival verified. The observation is considered as an
event occurred if it was determined by death or relapse. The 54 patients are
censored (the censoring rate is about 39%). We used five covariates: Z1 is the
indicator of Acute Myelocytic Leukemia (AML) low risk group or not, Z2 is
the indicator of AML high risk group or not, Z3 is the indicator of French-
American-British Classification (FAB) grade is 4 or 5 and the disease group
is AML or not, Z4 is the donor age, and Z5 is the patient age. The patients
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which are not included in AML group are included in Acute Lymphoblastic
Leukemia (ALL) group. The details of this research are given in Copelan et
al. [3]. The data used in this example are available from the Web site offered
by Klein and Moeschberger [10].

We set 10 minimum number of events in nodes as the stop condition of
splitting step. The number of cross validation is set to 10. The tree obtained
by proposed approach is shown in Figure 2. The circle and square shapes in
the figure represent the internal and terminal nodes, respectively. The values
in the shapes represent the number of samples included in the node, and
the values in parentheses represent the number of events. The tree has two
splitting points and three terminal nodes (t1 − t3). As the result, the patients
are divided to three groups:

group t1 : { 41 or younger donor ∩ 12 or older patient

∩ AML high risk or ALL ∩ FAB grade is 4 or 5}
group t2 : { 41 or older donor ∪ 12 or younger patient }
group t3 : { 41 or younger donor ∩ 12 or older patient

∩ { AML low risk ∪ FAB grade is 1, 2 or 3 }}.

The graphical representation of the covariate space which is separated by
the obtained tree model is shown in Figure 3. Although the model obtained
by the proposed approach seems difficult to understand than the classical
approach, each terminal node is disjoint. The Kaplan-Meier survival curves
for each group are shown in Figure 4. From the survival curves, we can
understand that the group t1 has the highest risk of death or recurrence and
the group t3 has the lowest risk of it. The group t2 has the risk of death
or recurrence between t1 and t3. The Kaplan-Meier survival curves are well
separated from each other, and we conclude that the proposed approach give
the reasonable result.

§5. Conclusion

In this paper, we proposed a new approach for constructing a survival tree
based on CART algorithm. The proposed approach considers two or more
combinations of covariates for dividing a node. As the motivation of proposing
this approach, we have considered that the proposed approach is more suitable
than the traditional approach to some problems like XOR.

Through the simulation study, we have been shown the performance of the
proposed approach. As the result, the proposed approach is considered that
has a potential to construct a more suitable tree model than the traditional
approach in some situations. The utility of the proposed method has been
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Z4 ≤ 41 ∩ Z5 > 12

137
(83)

121
(67)

101(50)
t3t1

20(17)

Z1 = {0} ∩ Z3 = {1}

t2
16(16)

Figure 2: Tree constructed from bone marrow transplant patients data. The
values in the shapes represent the number of samples included in the node,
and the values in parentheses represent the number of events. The terminal
nodes are represented as t1 - t3.

Z1 , Z3

Z5

Z4

Z1 = {1} ∪ Z3 = {0}

41

12

node t2

node t3

node t1

Z1 = {0} ∩ Z3 = {1}

Figure 3: The covariate space represented by tree model in Figure 2.

shown by using an actual medical data. The tree constructed from the data
divided the patients to three groups. From the Kaplan-Meier survival curves
of each group, we conclude that the obtained results are considered to be
reasonable.

Tree structure model has an advantage that the relationship between the
covariates and hazards is easy to show. Moreover, there is another advantage
that is easy to insert a new data to the model. The proposed approach has
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Figure 4: The Kaplan-Meier survival curves for each terminal node of Fig.2.

the possibility to construct an optimal model, while holding this advantages.
However, from the aspect of ”fragmentation” (Friedman and Fisher [6]), the
proposed approach has a risk of building a low performance model than the
model obtained by classical approach. That is, in a covering algorithm the low
number of splitting step becomes a cause of a high value of bias and variance
in the model. Further studies are needed in order to address this problem.
As an another disadvantage, it requires a long learning time, but we consider
that PC technology in recent years may be able to resolve this problem.
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