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Abstract. We construct a nested row-column design with split units for a two-
factor experiment. We use a balanced incomplete block design with nested rows
and columns (BIBRC for short) repeatedly for the whole plot treatments and
we use a proper block design for the subplot treatments. We give the stratum
efficiency factors for such a nested row-column design with split units, which
has the general balance property.
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§1. Introduction

We consider a two-factor experiment of split-plot type with b blocks, in which
the first factor A occurs at v1 levels A1, A2, · · · , Av1 and the second factor B
occurs at v2 levels B1, B2, · · · , Bv2 . Each block is divided into k1 rows and k2
columns and these k1k2 units are treated as whole plots. Additionally, each
whole plot is divided into k3 subplots. The levels of A are arranged on the
whole plots (called whole plot treatments), while the levels of B are arranged
on the subplots (called subplot treatments). Such a design is called a nested
row-column design with split units.

The nested row-column designs with split units are often used in biological,
agricultural and environmental sciences. For the nested row-column design
with split units, a mixed linear model with fixed treatment effects and random
block, row, column, whole plot and subplot effects was considered by [4]. The
hth factorial treatment combination effect τh is defined by

τh = µ+ αi + βj + (αβ)ij
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for h = (i−1)v2+j, i = 1, 2, · · · , v1 and j = 1, 2, · · · , v2, where µ is the general
mean, αi denotes the main effect of the ith whole plot treatment Ai, βj denotes
the main effect of the jth subplot treatment Bj and (αβ)ij denotes the inter-
action effect of Ai and Bj . Here

∑v1
i=1 αi = 0,

∑v2
j=1 βj = 0,

∑v1
i=1(αβ)ij = 0

for j = 1, 2, · · · , v2 and
∑v2

j=1(αβ)ij = 0 for i = 1, 2, · · · , v1. The mixed
linear model results from a four-step randomization, i.e., the randomization
of blocks, the randomization of rows within each block, the randomization
of columns within each block and the randomization of subplots within each
whole plot. This kind of randomization leads us to an experiment with orthog-
onal block structure as defined by [9] and [10] and the multistratum analysis
proposed by [2], [9] and [10] can be applied to the analysis of data in the exper-
iment. In this case, we have five strata, except zero stratum connected with
the general mean only, (I) inter-block stratum, (II) inter-row stratum, (III)
inter-column stratum, (IV) inter-whole plot stratum and (V) inter-subplot
stratum. The statistical properties of the nested row-column design with split
units are strictly connected with the eigenvalues and the eigenvectors of the
stratum information matrices for the treatment combinations. The stratum
information matrices A1, A2, A3, A4 and A5 are given by

A1 =
1

k1k2k3
N0N

′
0 −

1

n
rr′, A2 =

1

k2k3
N1N

′
1 −

1

k1k2k3
N0N

′
0,

A3 =
1

k1k3
N2N

′
2 −

1

k1k2k3
N0N

′
0,

(1.1)

A4 =
1

k3
N3N

′
3 −

1

k1k3
N2N

′
2 −

1

k2k3
N1N

′
1 +

1

k1k2k3
N0N

′
0,

A5 = rδ − 1

k3
N3N

′
3,

where n = bk1k2k3, v = v1v2, r is the v × 1 vector of replications of the
treatment combinations, rδ is the diagonal matrix with the diagonal elements
equal to these replications and N0, N1, N2 and N3 are the incidence matrices
for the treatment combinations vs. blocks, rows, columns and whole plots,
respectively. Here we assume that the treatment combinations AiBj (i =
1, 2, · · · , v1, j = 1, 2, · · · , v2) are ordered lexicographically.

A generally balanced design was firstly introduced by [9] and [10], for which
the stratum information matrices are spanned by a common set of eigenvectors.
Let ξfh be an eigenvalue of the stratum information matrix Af corresponding
to an eigenvector sh with respect to rδ, i.e.,

Afsh = ξfhr
δsh
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for f = 1, 2, 3, 4, 5 and h = 0, 1, · · · , v − 1, where

(1.2) s′hr
δsh′ =

{
1, h = h′,
0, h ̸= h′.

If (1.2) is satisfied, we say that s0, s1, · · · , sv−1 are mutually rδ-orthonormal.
Since Af1v = 0 for f = 1, 2, 3, 4, 5, 1√

n
1v may be chosen as the first eigenvector

s0, where 1v is the v × 1 vector of unit elements. Then, a basic contrast in
the treatment effects (see [11]) is defined by c′hτ for h = 1, 2, · · · , v− 1, where
ch = rδsh and τ is the v × 1 vector of the treatment effects. The eigenvalue
ξfh can be identified as a stratum efficiency factor of the design concerning
estimation of the hth basic contrast in the fth stratum for f = 1, 2, 3, 4, 5 and
h = 1, 2, · · · , v − 1 (see [2]).

[5] and [6] constructed nested row-column designs with split units, using a
Youden square repeatedly for the whole plot treatments, and they gave the
stratum efficiency factors for such nested row-column designs. In this paper,
we use a BIBRC in stead of a Youden square to construct a nested row-column
design with split units and we give the stratum efficiency factors for such a
nested row-column design, which has the general balance property. These
designs constructed here are useful in practice, since they have smaller block
sizes than the designs constructed by a Youden square.

§2. A BIBRC

Let V be a set of v treatments and let B be a collection of b subsets (called
blocks) of V . A design (V,B) is called a balanced incomplete block design and
it is denoted by BIBD(v, b, r, k, λ), if each block contains k treatments, every
treatment occurs in precisely r blocks and every pair of distinct treatments
occurs in precisely λ blocks.

A BIBRC was firstly introduced by [12] and many authors (for example,
[1], [3] and [8]) gave the construction methods of BIBRCs. Let (V,B) be a
design with v treatments and b blocks, where each block is divided into p rows
and q columns. Further define λR(i, j) to be the number of rows in blocks
in which a pair of distinct treatments i and j occurs together. Also λC(i, j)
and λB(i, j) are defined similarly for columns and blocks. The design (V,B)
is called a BIBRC if the following conditions are satisfied:

(i) every treatment occurs at most once in each block (said to be binary),
(ii) every treatment occurs in precisely r blocks,
(iii) for any pair of distinct treatments i and j,

λ = pλR(i, j) + qλC(i, j)− λB(i, j)

is a constant independent of the treatments i and j.
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Furthermore if the following condition (iv) is satisfied, the BIBRC is said to
be completely balanced (see [7]).

(iv) for any pair of distinct treatments i and j, λR(i, j), λC(i, j) and λB(i, j)

are constants independent of the treatments i and j, simply denoted by λR,

λC and λB, respectively.

The condition (iv) implies that (V,B) is a BIBD(v, b, r, pq, λB), (V,BR) is a
BIBD(v, bp, r, q, λR) and (V,BC) is a BIBD(v, bq, r, p, λC), where BR and BC

denote the collections of bp rows and bq columns of B. Hereafter we consider a
completely balanced BIBRC and we denote it by BIBRC(v, b, r, p, q, λB, λR, λC).

Example 2.1. Let V = {1, 2, 3, 4, 5, 6, 7} and let B be a collection of the
following blocks:

1 2 4

6 5 3

2 3 5

7 6 4

3 4 6

1 7 5

4 5 7

2 1 6

5 6 1

3 2 7

6 7 2

4 3 1

7 1 3

5 4 2

Then (V,B) is a BIBRC(7,7,6,2,3,5,2,1). �

§3. A nested row-column design with split units constructed by a
BIBRC

Now we construct a nested row-column design with split units. The whole
plot treatments occur in a BIBRC(vA, bA, rA, p, q, λB, λR, λC) (V,B) and the
subplot treatments occur in a block design DB with vB treatments, bB blocks,
kB treatments in each block and the vector of replications of the treatments
rB, where DB may not be binary. We construct a nested row-column design
D with split units using the BIBRC repeatedly embedding each block of DB

in all whole plots of the BIBRC. The parameters of D are v1 = vA, v2 = vB,
b = bAbB, k1 = p, k2 = q and k3 = kB. Then, the concurrence matrices
N0N

′
0, N1N

′
1, N2N

′
2, N3N

′
3 and the vector of replications of the treatment

combinations r of D are expressed as

(3.1) N0N
′
0 = NAB

N′
AB

⊗ NBN′
B, N1N

′
1 = NAR

N′
AR

⊗ NBN′
B,

(3.2) N2N
′
2 = NAC

N′
AC

⊗ NBN′
B, N3N

′
3 = rAIvA ⊗ NBN′

B

and

(3.3) r = rA1vA ⊗ rB,
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where NAB
, NAR

and NAC
are the incidence matrices of (V,B), (V,BR) and

(V,BC) of the BIBRC, NB is the incidence matrix of DB, IvA is the identity
matrix of order vA and ⊗ denotes the Kronecker product of two matrices.

Example 3.1. Let DB = (VB,BB), where VB = {1, 2, 3} and BB = {{1, 2, 3},
{1, 2, 3}, {1, 3, 3}, {2, 3, 3}}. Using the BIBRC given in Example 2.1 and DB,
we construct a nested row-column design D with split units, which has 28
blocks. The following four blocks of D are obtained by embedding four blocks
of DB in all whole plots of the first block of the BIBRC.

A1 A2 A4

B1 B2 B3 B1 B2 B3 B1 B2 B3

A6 A5 A3

B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 A2 A4

B1 B2 B3 B1 B2 B3 B1 B2 B3

A6 A5 A3

B1 B2 B3 B1 B2 B3 B1 B2 B3

A1 A2 A4

B1 B3 B3 B1 B3 B3 B1 B3 B3

A6 A5 A3

B1 B3 B3 B1 B3 B3 B1 B3 B3

A1 A2 A4

B2 B3 B3 B2 B3 B3 B2 B3 B3

A6 A5 A3

B2 B3 B3 B2 B3 B3 B2 B3 B3

Similarly, the remaining blocks of D are obtained from the remaining blocks
of the BIBRC. �

In order to find the stratum efficiency factors for D, it is necessary to find
the common eigenvectors of the stratum information matrices A1, A2, A3, A4

and A5 given in (1.1) with respect to rδ, i.e., the common eigenvectors of the
concurrence matrices N0N

′
0, N1N

′
1, N2N

′
2 and N3N

′
3 given in (3.1) and (3.2)

with respect to rδ, where r is given in (3.3). To find the common eigenvectors
of N0N

′
0, N1N

′
1, N2N

′
2 and N3N

′
3, we consider the eigenvectors of NAB

N′
AB

,
NAR

N′
AR

and NAC
N′

AC
of the BIBRC and the eigenvectors of NBN′

B of DB.

By the definition of the BIBRC,

(3.4) NAB
N′

AB
= (rA−λB)IvA+λBJvA , NAR

N′
AR

= (rA−λR)IvA+λRJvA
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and

(3.5) NAC
N′

AC
= (rA − λC)IvA + λCJvA

hold, where JvA is the vA×vA matrix with every element unity. From (3.4) and
(3.5), it is well known that NAB

N′
AB

, NAR
N′

AR
and NAC

N′
AC

have common
mutually orthonormal eigenvectors, which are denoted by x0,x1, · · · ,xvA−1

with x0 = 1√
vA

1vA . The eigenvalues of NAB
N′

AB
, NAR

N′
AR

and NAC
N′

AC

corresponding to x0 are rApq, rAq and rAp, and corresponding to xi (i =
1, 2, · · · , vA − 1) are rA − λB, rA − λR and rA − λC , respectively. These
eigenvalues and eigenvectors are summarized in the following table:

Table 3.1. Eigenvalues and common eigenvectors
of NAB

N′
AB

, NAR
N′

AR
and NAC

N′
AC

Eigenvalues
Common eigenvectors

NAB
N′

AB
NAR

N′
AR

NAC
N′

AC

rApq rAq rAp x0 =
1√
vA

1vA

rA − λB rA − λR rA − λC xi (i = 1, 2, · · · , vA − 1)

Furthermore, the eigenvalue and the corresponding eigenvector of NBN′
B with

respect to rδB are denoted by ωj and yj for j = 0, 1, · · · , vB − 1 with ω0 = kB
and y0 =

1√
nB

1vB , where y0,y1, · · · ,yvB−1 are mutually rδB-orthonormal and

nB = 1′
vB

rB.
Combining the above eigenvectors, we consider four sets of vectors as fol-

lows:

(1)
1

√
vA

1vA ⊗ 1
√
nB

1vB , (2) xi ⊗
1

√
nB

1vB ,

(3)
1

√
vA

1vA ⊗ yj , (4) xi ⊗ yj

for i = 1, 2, · · · , vA − 1 and j = 1, 2, · · · , vB − 1. It is easily checked that
the vectors of (1)-(4) are mutually rδ-orthonormal and the total number of
the vectors is vAvB. We show that the vectors of (1)-(4) are the common
eigenvectors of N0N

′
0, N1N

′
1, N2N

′
2 and N3N

′
3 with respect to rδ and we

find the corresponding eigenvalues of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3.

Firstly, we take into account the matrix N0N
′
0. For (1), we have, from (3.1),

N0N
′
0

(
1

√
vA

1vA ⊗ 1
√
nB

1vB

)
=

(
NAB

N′
AB

1
√
vA

1vA

)
⊗

(
NBN′

B

1
√
nB

1vB

)
= rApq

1
√
vA

1vA ⊗ kB
1

√
nB

rB

= pqkB

(
rAIvA ⊗ rδB

)(
1

√
vA

1vA ⊗ 1
√
nB

1vB

)
.
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The corresponding eigenvalue is pqkB.
For (2), we have

N0N
′
0

(
xi ⊗

1
√
nB

1vB

)
=
(
NAB

N′
AB

xi

)
⊗

(
NBN′

B

1
√
nB

1vB

)
=((rA − λB)xi)⊗ kB

1
√
nB

rB

=
(rA − λB)kB

rA

(
rAIvA ⊗ rδB

)(
xi ⊗

1
√
nB

1vB

)
.

The corresponding eigenvalue is (rA − λB)kB/rA.
For (3), we have

N0N
′
0

(
1

√
vA

1vA ⊗ yj

)
=

(
NAB

N′
AB

1
√
vA

1vA

)
⊗

(
NBN′

Byj

)
= rApq

1
√
vA

1vA ⊗ ωjr
δ
Byj = pqωj

(
rAIvA ⊗ rδB

)(
1

√
vA

1vA ⊗ yj

)
.

The corresponding eigenvalue is pqωj .
For (4), we have

N0N
′
0

(
xi ⊗ yj

)
=

(
NAB

N′
AB

xi

)
⊗

(
NBN′

Byj

)
= ((rA − λB)xi)⊗ ωjr

δ
Byj =

(rA − λB)ωj

rA

(
rAIvA ⊗ rδB

) (
xi ⊗ yj

)
.

The corresponding eigenvalue is (rA − λB)ωj/rA.
Similarly, from (3.1) and (3.2), we can show that the vectors of (1)-(4) are
also the eigenvectors of N1N

′
1, N2N

′
2 and N3N

′
3 with respect to rδ and we

summarize the corresponding eigenvalues of N0N
′
0, N1N

′
1, N2N

′
2 and N3N

′
3

in the following:

Table 3.2. Eigenvalues and common eigenvectors of N0N
′
0, N1N

′
1, N2N

′
2

and N3N
′
3

Eigenvalues Common
N0N

′
0 N1N

′
1 N2N

′
2 N3N

′
3 eigenvectors

pqkB qkB pkB kB (1)
(rA − λB)kB/rA (rA − λR)kB/rA (rA − λC)kB/rA kB (2)

pqωj qωj pωj ωj (3)
(rA − λB)ωj/rA (rA − λR)ωj/rA (rA − λC)ωj/rA ωj (4)

The vectors of (1)-(4) are also the common eigenvectors of the stratum
information matrices A1, A2, A3, A4 and A5 with respect to rδ, which means
D has the general balance property, and the eigenvectors of (2), (3) and (4)
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define the basic contrasts among the main effects of the whole plot treatments,
the main effects of the subplot treatments and the interaction effects of the
whole plot treatments and the subplot treatments, respectively. By use of (1.1)
and Table 3.2, we give the stratum efficiency factors for D in the following
table:

Table 3.3. Stratum efficiency factors for D

Type of Number of Strata
contrasts contrasts I II III IV V

A vA − 1 QB0 pQR0 −QB0 qQC0 −QB0 Q 0
B 1 ωj/kB 0 0 0 1− ωj/kB

A×B (vA − 1)× 1 QBj pQRj −QBj qQCj −QBj Qj 1− ωj/kB

for j = 1, 2, · · · , vB − 1, where

QB0 =
rA − λB

rApq
, QR0 =

rA − λR

rApq
, QC0 =

rA − λC

rApq
,

QBj =
ωj

kB
QB0 , QRj =

ωj

kB
QR0 , QCj =

ωj

kB
QC0 ,

Q = 1− pQR0 − qQC0 +QB0 , Qj =
ωj

kB
Q.

In Table 3.3, we see that, for example, the basic contrasts among the inter-
action effects of the whole plot treatments and the subplot treatments are
estimated from the strata I, II, III, IV and V with respective efficiency factors
QBj , pQRj −QBj , qQCj −QBj , Qj and 1− ωj/kB for i = 1, 2, · · · , vA − 1 and
j = 1, 2, · · · , vB − 1. Table 3.3 is used in order to improve the estimators for
the basic contrasts in the treatment effects combining the estimators obtained
from the strata I, II, III, IV and V. This procedure was proposed by [2], [9]
and [10].

Example 3.2. For the nested row-column design D with split units con-
structed in Example 3.1 with vA = 7, rA = 6, p = 2, q = 3, λB = 5, λR = 2,
λC = 1, vB = 3, kB = 3 and ω1 = ω2 = 1/3, using Table 3.3, we have the
stratum efficiency factors as follows:

Type of Number of Strata
contrasts contrasts I II III IV V

A 6 1/36 7/36 14/36 14/36 0

B 2 1/9 0 0 0 8/9

A×B 12 1/324 7/324 14/324 14/324 8/9

�
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