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Abstract. In this article, we determine the wave front sets of solutions to time
dependent Schrödinger equations with a sub-quadratic potential by using the
representation of the Schrödinger evolution operator via wave packet transform
(short time Fourier transform).
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§1. Introduction

In this article, we consider the following initial value problem for the time
dependent Schrödinger equations,

(1.1)

{
i∂tu+ 1

2△u− V (t, x)u = 0, (t, x) ∈ R× Rn,

u(0, x) = u0(x), x ∈ Rn,

where i =
√
−1, u : R × Rn → C, △ =

∑n
j=1

∂2

∂x2
j
and V (t, x) is a real valued

function.

We shall determine the wave front sets of solutions to the Schrödinger equa-
tions (1.1) with a sub-quadratic potential V (t, x) by using the representation
of the Schrödinger evolution operator obtained by the authors in [12] and [13]
via the wave packet transform which is defined by A. Córdoba and C. Feffer-
man [1]. In particular, we determine the location of all the singularities of the
solutions from the information of the initial data.

We assume the following assumption on V (t, x).
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Assumption 1.1. V (t, x) is a real valued function in C∞(R×Rn) and there
exists a non-negative constant ρ satisfying 0 ≤ ρ < 2 such that for all multi-
indices α

|∂αxV (t, x)| ≤ Cα(1 + |x|)ρ−|α|

holds for some Cα > 0 and for all (t, x) ∈ R× Rn.

Let φ ∈ S(Rn)\{0} and f ∈ S ′(Rn). We define the wave packet transform
Wφf(x, ξ) of f with the wave packet generated by the function φ as follows:

Wφf(x, ξ) =

∫
Rn

φ(y − x)f(y)e−iyξdy, x, ξ ∈ Rn.

In the sequel, we call the function φ in the definition of wave packet trans-
form basic wave packet. Wave packet transform is called short time Fourier
transform by some authors([8]).

We write U0(t) = ei(t/2)△ for the evolution operator for the free Schrödinger
operator. In the previous paper [12], we proved that the wave packet transform
of the solution u(t, x) = U0(t)u0(x) to the free Schrödinger equation with the
basic wave packet φ(t)(x) = U0(t)φ0(x) may be expressed by using the wave
packet transform of u0 with φ0 as follows:

(1.2) Wφ(t)u(t, x, ξ) = e−
i
2
t|ξ|2Wφ0u0(x− ξt, ξ),

where φ0(x) ∈ S(Rn)\{0}. We often use this convention φ(t) = φ(t)(x) and
Wφ(t)u(t, x, ξ) =Wφ(t)(·)[u(t, ·)](x, ξ) for simplicity, if no confusion is feared.

In order to state our results precisely, we prepare several notations. Let
b be a real number with 0 < b < 1. For φ0(x) ∈ S(Rn), we put (φ0)λ(x) =

λnb/2φ0(λ
bx) and φ

(t)
λ (x) = U0(t) (φ0)λ (x) for λ ≥ 1. For (x0, ξ0) ∈ Rn ×

Rn\{0}, we call a subset V = K × Γ of R2n a conic neighborhood of (x0, ξ0)
if K is a neighborhood of x0 and Γ is a conic neighborhood of ξ0 (i.e. ξ ∈ Γ
and α > 0 implies αξ ∈ Γ). For λ ≥ 1 and (x, ξ) ∈ Rn × Rn, let x(s; t, x, λξ)
and ξ(s; t, x, λξ) be the solutions to

(1.3)

{
ẋ(s) = ξ(s), x(t) = x,

ξ̇(s) = −∇V (s, x(s)), ξ(t) = λξ.

The following theorem is our main result.

Theorem 1.2. Assume Assumption 1.1. Take b = min
(
2−ρ
4 , 14

)
. Let u0(x) ∈

L2(Rn) and u(t, x) be the solution of (1.1) in C(R;L2(Rn)). Then (x0, ξ0) /∈
WF (u(t, x)) if and only if there exists a conic neighborhood V = K × Γ of
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(x0, ξ0) such that for all N ∈ N, for all a ≥ 1 and for all φ0(x) ∈ S(Rn)\{0},
there exists a constant CN,a,φ0 > 0 satisfying

(1.4) |W
φ
(−t)
λ

u0(x(0; t, x, λξ), ξ(0; t, x, λξ))| ≤ CN,a,φ0λ
−N

for λ ≥ 1, a−1 ≤ |ξ| ≤ a and (x, ξ) ∈ V .

Remark 1.3. W
φ
(−t)
λ

u0(x, ξ) is the wave packet transform of u0(x) with a

basic wave packet φ
(−t)
λ (x). As previously stated, φ

(−t)
λ (x) depends on b.

Remark 1.4. In [13], the authors investigate the wave front sets of solutions
to Schrödinger equations of a free particle and a harmonic oscillator via the
wave packet transformation. In [16], the authors give a partial answer to the
problem which is discussed in this paper by the aid of characterization of wave
front set by G. B. Folland and T. Ōkaji. Characterization of wave front set is
discussed in Section 2.

Remark 1.5. In one space dimension, if V (t, x) = V (x) is super-quadratic in
the sense that V (x) ≥ C(1 + |x|)2+ϵ with some ϵ > 0, K. Yajima [24] shows
that the fundamental solution of (1.1) has singularities everywhere.

Corollary 1.6. Assume Assumption 1.1 with ρ < 1. Take b = min
(
1
4 , 1− ρ

)
.

Then (x0, ξ0) /∈ WF (u(t, x)) if and only if there exists a conic neighborhood
V = K × Γ of (x0, ξ0) such that for all N ∈ N, for all a ≥ 1 and for all
φ0(x) ∈ S(Rn)\{0}, there exists a constant CN,a,φ0 > 0 satisfying

|W
φ
(−t)
λ

u0(x− λtξ, λξ)| ≤ CN,a,φ0λ
−N

for λ ≥ 1, a−1 ≤ |ξ| ≤ a and (x, ξ) ∈ V .

The idea to classify the singularities of generalized functions “microlo-
cally” has been introduced firstly by M. Sato, J. Bros and D. Iagolnitzer and
L. Hörmander independently around 1970. Wave front set is introduced by
L. Hörmander in 1970 (see [10]). It is proved in [11] that the wave front set of
solutions to the linear hyperbolic equations of principal type propagates along
the null bicharacteristics.

For Schrödinger equations, R. Lascar [17] has treated singularities of solu-
tions microlocally first. He introduced quasi-homogeneous wave front set and
has shown that the quasi-homogeneous wave front set of solutions is invariant
under the Hamilton-flow of Schrödinger equation on each plane t = constant.
C. Parenti and F. Segala [22] and T. Sakurai [23] have treated the singularities
of solutions to Schrödinger equations in the same way.

Since the Schrödinger operator i∂t +
1
2△ commutes x+ it∇, the solutions

become smooth for t > 0 if the initial data decay at infinity. W. Craig,
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T. Kappeler and W. Strauss [2] have treated this type of smoothing property
microlocally. They have shown for a solution of (1.1) that for a point x0 ̸= 0
and a conic neighborhood Γ of x0, ⟨x⟩ru0(x) ∈ L2(Γ) implies ⟨ξ⟩rû(t, ξ) ∈
L2(Γ′) for a conic neighborhood of Γ′ of x0 and for t ̸= 0, though they have
considered more general operators. Several mathematicians have shown this
kind of results for Schrödinger operators [4], [5], [18], [20], [21].

A. Hassell and J. Wunsch [9] and S. Nakamura [19] determine the wave
front set of the solution by means of the initial data. Hassell and Wunsch
have studied the singularities by using “scattering wave front set”. Nakamura
has treated the problem in semi-classical way. He has shown that for a so-
lution u(t, x) of (1.1), (x0, ξ0) /∈ WF (u(t)) if and only if there exists a C∞

0

function a(x, ξ) in R2n with a(x0, ξ0) ≠ 0 such that ∥a(x + tDx, hDx)u0∥ =
O(h∞) as h ↓ 0. On the other hand, we use the wave packet transform instead
of the pseudo-differential operators.

§2. Preliminaries

In this section, we introduce the definition of wave front set WF (u) and give
the characterization of wave front set in terms of wave packet transform.

Definition 2.1 (Wave front set). For f ∈ S ′(Rn), we say (x0, ξ0) ̸∈ WF (f)
if there exist a function χ(x) in C∞

0 (Rn) with χ(x0) ̸= 0 and a conic neigh-
borhood Γ of ξ0 such that for all N ∈ N there exists a positive constant CN

satisfying

|χ̂f(ξ)| ≤ CN (1 + |ξ|)−N

for all ξ ∈ Γ.

To prove Theorem 1.2, we use the following characterization of the wave
front set, which is given in [15]. For fixed b with 0 < b < 1, we put φλ(x) =
λnb/2φ(λbx).

Proposition 2.2. Let (x0, ξ0) ∈ Rn and u ∈ S ′(Rn). The following conditions
are equivalent.

(i) (x0, ξ0) /∈WF (u)

(ii) There exist φ ∈ S(Rn)\{0}, a conic neighborhood V of (x0, ξ0) such that
for all N ∈ N and for all a ≥ 1 there exists a constant CN,a > 0 satisfying

|Wφλ
f(x, λξ)| ≤ CN,aλ

−N

for λ ≥ 1 and (x, ξ) ∈ V with a−1 ≤ |ξ| ≤ a.
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(iii) There exist a conic neighborhood V of (x0, ξ0) such that for all N ∈ N,
for all a ≥ 1 and for all φ ∈ S(Rn)\{0} there exists a constant CN,a,φ > 0
satisfying

|Wφλ
f(x, λξ)| ≤ CN,aλ

−N

for λ ≥ 1 and (x, ξ) ∈ V with a−1 ≤ |ξ| ≤ a.

Remark 2.3. Characterization of wave front set by wave packet transform is
firstly given by G. B. Folland [7]. Folland [7] has shown that the conclusion
follows if the basic wave packet φ is an even and nonzero function in S(Rn)
and b = 1/2. P. Gérard [6] has shown (i) is equivalent to (ii) in Proposition 2.2
with basic wave packet φ(x) = e−x2

(Proof is also in J. M. Delort [3]). Ōkaji
[20] has shown the same when φ satisfies

∫
xαφ(x)dx ̸= 0 for some multi-index

α.

Remark 2.4. Folland [7] and Ōkaji [20] give the characterization for b = 1/2.
In [15], we give the characterization for b = 1/2. Without any change of the
proof, we can extend the characterization for 0 < b < 1.

§3. Proofs of Theorem 1.2 and Corollary 1.6

In this section, we prove Theorem 1.2 and Corollary 1.6.

Proof of Theorem 1.2. The initial value problem (1.1) is transformed by the
wave packet transform with the basic wave packet φ(t)(x) to

(3.1)


(
i∂t + iξ · ∇x − i∇xV (t, x) · ∇ξ − 1

2 |ξ|
2 − Ṽ (t, x)

)
×

Wφ(t)u(t, x, ξ) = Ru(t, x, ξ),

Wφ(0)u(0, x, ξ) =Wφ0u0(x, ξ),

where Ṽ (t, x) = V (t, x)−∇xV (t, x) · x and

Ru(t, x, ξ) =
∑
|α|=2

1

α!

∫
φ(t)(y − x)

×
(∫ 1

0
∂αV (t, x+ θ(y − x))(1− θ)dθ

)
(y − x)αu(t, y)e−iξydy.

(For the deduction of (3.1), see [14].) Solving (3.1), we have the integral
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equation

Wφ(t)u(t, x, ξ) =

e−i
∫ t
0 {

1
2
|ξ(s;t,x,ξ)|2+Ṽ (s,x(s;t,x,ξ))}dsWφ0u0(x(0; t, x, ξ), ξ(0; t, x, ξ))

− i

∫ t

0
e−i

∫ t
s {

1
2
|ξ(s1;t,x,ξ)|2+Ṽ (s1,x(s1;t,x,ξ))}ds1Ru(s, x(s; t, x, ξ), ξ(s; t, x, ξ))ds,

where x(s; t, x, ξ) and ξ(s; t, x, ξ) are the solutions of{
ẋ(s) = ξ(s), x(t) = x,

ξ̇(s) = −∇xV (s, x(s)), ξ(t) = ξ.

For fixed t0, we have

(3.2) W
φ
(t−t0)
λ

u(t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))

= e−i
∫ t
0 {

1
2
|ξ(s;t0,x,λξ)|2+Ṽ (s,x(s;t0,x,λξ))}dsW

φ
(−t0)
λ

u0(x(0; t0, x, λξ), ξ(0; t0, x, λξ))

− i

∫ t

0
e−i

∫ t
s {

1
2
|ξ(s1,t0,x,λξ)|2+Ṽ (s1,x(s1;t0,x,λξ))}ds1

×Ru(s, x(s; t0, x, λξ), ξ(s; t0, x, λξ))ds,

substituting (x(t; t0, x, λξ), ξ(t; t0, x, λξ)) and φ
(−t0)
λ (x) for (x, ξ) and φ0(x)

respectively. Here we use the fact that

x(s; t, x(t; t0, x, λξ), ξ(t; t0, x, λξ)) = x(s; t0, x, λξ),

ξ(s; t, x(t; t0, x, λξ), ξ(t; t0, x, λξ)) = ξ(s; t0, x, λξ)

and e
i
2
t△φ

(−t0)
λ (x) = φ

(t−t0)
λ (x).

We fix a ≥ 1. Let V = K ×Γ be a neighborhood of (x0, ξ0) satisfying (1.4)
for t = t0, λ ≥ 1, a−1 ≤ |ξ| ≤ a and (x, ξ) ∈ V . We only show the sufficiency
here because the necessity is proved in the same way. To do so, it suffices
to show that the following assertion P (σ, φ0) holds for all σ ≥ 0 and for all
φ0 ∈ S(Rn)\{0}.
P (σ, φ0): “ There exists a positive constant Cσ,a,φ0 such that

(3.3) |W
φ
(t−t0)
λ

u(t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))| ≤ Cσ,a,φ0λ
−σ

for all x ∈ K, all ξ ∈ Γ with 1/a ≤ |ξ| ≤ a, all λ ≥ 1 and 0 ≤ t ≤ t0. ”

In fact, taking t = t0, we have φ
(t0−t0)
λ = (φ0)λ, x(t0; t0, x, λξ) = x and

ξ(t0; t0, x, λξ) = λξ. Hence from (3.3), we have immediately

|W(φ0)λu(t0, x, λξ)| ≤ Cσ,a,φ0λ
−σ
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for λ ≥ 1, x ∈ K and ξ ∈ Γ with 1/a ≤ |ξ| ≤ a. This and Proposition 2.2
show the sufficiency.

We write x∗ = x(s; t0, x, λξ), ξ
∗ = ξ(s; t0, x, λξ), t

∗ = s − t0 and φλ(x) =
(φ0)λ (x) for brevity.

We show by induction with respect to σ that P (σ, φ0) holds for all σ ≥ 0
and for all φ0 ∈ S(Rn)\{0}.

First we show that P (0, φ0) holds for all φ0 ∈ S(Rn). Since u0(x) ∈ L2(Rn),
u(t, x) ∈ C(R;L2(Rn)), Schwarz’s inequality and the conservation of L2 norm
of solutions of (1.1) show that∣∣∣W

φ
(t−t0)
λ

u(t, x(t; t0, x, λξ), ξ(t; t0, x, λξ))
∣∣∣

≤
∫

|φ(t−t0)
λ (y − x(t; t0, x, λξ))||u(t, y)|dy

≤ ∥φ(t−t0)
λ (·)∥L2∥u(t, ·)∥L2

= ∥φλ(·)∥L2∥u0(·)∥L2 = ∥φ0(·)∥L2∥u0(·)∥L2 .

Hence P (0, φ0) holds.
Next we show that for a fixed φ0 ∈ S(Rn)\{0}, P (σ + 2b, φ0) holds under

the assumption that P (σ, φ0) holds for all φ0 ∈ S(Rn)\{0}. To do so, it
suffices to show that for fixed φ0, there exists a positive constant Ca,φ0 such
that

(3.4) |Ru(s, x(s; t0, x, λξ), ξ(s; t0, x, λξ))| ≤ Ca,φ0λ
−(σ+2b)

for all x ∈ K, all ξ ∈ Γ with 1/a ≤ |ξ| ≤ a, all λ ≥ 1 and 0 ≤ s ≤ t0, since the
first term of the right hand side of (3.2) is estimated by Cλ−(σ+2b) from the
condition on u0.

Let L be an integer. Taylor’s expansion of V (s, y) yields that

(3.5) Ru(s, x∗, ξ∗)

=
∑

2≤|α|≤L−1

∂αxV (s, x∗)

α!

∫
(y − x∗)αφ

(s−t0)
λ (y − x∗)u(s, y)e−iyξ∗dy +RL,

where

RL(s, x
∗, ξ∗) = L

∑
|α|=L

1

α!

1

∥φ0∥2L2

×
∫∫ (∫ (∫ 1

0
∂αxV (s, x∗ − θ(x∗ − y))(1− θ)L−1dθ

)
(y − x∗)α

× φ
(s−t0)
λ (y − x∗) φ

(s−t0)
λ (y − z)e−iy(ξ∗−η)dy

)
W

φ
(s−t0)
λ

u(s, z, η)dzdη.
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Here we use the inversion formula of the wave packet transform

W−1
φ Wφf(x) = f(x),

where

W−1
φ g(x) =

1

(2π)n∥φ∥2
L2

∫∫
g(y, ξ)φ(x− y)eixξdξdy

for a smooth tempered function g(y, ξ) on R2n.

The strategy for the proof of (3.4) is the following. In Step 1, taking
b = 1

4 min(2− ρ, 1) according to the value of ρ which is the order of increasing
of V (t, x) with respect to x in the assumption 1.1, we estimate the first term
of the right hand side of (3.5) by Cλ−(σ+2b). In Step 2, taking L sufficiently
large according to the value of σ, we likewise estimate the second term RL of
the right hand side of (3.5).

(Step1) We estimate the first term of the right hand side of (3.5). Recall

that U0(t) = e
i
2
t△. Since xU0(t) = U0(t)(x− it∂x), we have

(y − x∗)αφ
(t∗)
λ (y − x∗) = U0(t

∗) [(y − x∗ − it∗∂y)
α(φ0)λ] (y − x∗)

=
∑

β+γ=α
β′≤β,γ′≤γ

Cβ,γ,β′,γ′t∗|β|λb(|β|−|γ|)φ
(β′,γ′)
λ (t∗, y − x∗),

where φ(β,γ)(x) = xγ∂βxφ0(x) and φ
(β,γ)
λ (t, x) = U0(t)

(
φ(β,γ)

)
λ
(x). The as-

sumption of induction yields that

|(The first term of the right hand side of (3.5))|

≤
∑

2≤|α|≤L−1

∑
β+γ=α

β′≤β,γ′≤γ

1

α!
|∂αxV (s, x∗)|Cβ,γ,β′,γ′ |t∗||β|λb(|β|−|γ|)

×
∣∣∣∣Wφ

(β′,γ′)
λ (t∗,x)

u(s, x∗, ξ∗)

∣∣∣∣
≤

∑
2≤|α|≤L−1

∑
β+γ=α

1

α!
C(1 + |x∗|)ρ−|α|Cβ,γ |t∗||β|λb(|β|−|γ|)Cλ−σ.

Since

(3.6) x∗ = x(s; t0, x, λξ) = x+

∫ s

t0

ẋ(s1)ds1

= x+ (s− t0)λξ −
∫ s

t0

(s− s1)∇xV (s1, x(s1))ds1,
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there exists a positive constant λ0 such that

(3.7) |x∗| ≥ 1

2a
|t∗|λ

for all λ ≥ λ0, λ
−2b ≤ |t∗| ≤ t0, x ∈ K and ξ ∈ Γ with 1/a ≤ |ξ| ≤ a. ( see

Appendix A for the proof of (3.7)). Hence we have for λ−2b ≤ |t∗| ≤ t0

|(The first term of the right hand side of (3.5))|

≤
∑

2≤|α|≤L−1

∑
β+γ=α

1

α!
C(1 + |t∗|λ)ρ−|α|Cβ,γ |t∗||β|λb(|β|−|γ|)Cλ−σ

≤ C ′
∑

2≤|α|≤L−1

(1 + |t∗|λ)ρ−|α|(|t∗|λb + λ−b)|α|λ−σ

≤ C ′′
∑

2≤|α|≤L−1

(|t∗|λ)ρ−|α|(|t∗|λb)|α|λ−σ

≤ C ′′′
∑

2≤|α|≤L−1

(|t∗|)ρλρ−(1−b)|α|λ−σ ≤ Cλρ+2b−2−σ ≤ Cλ−2b−σ,

since 2b = 1
2 min(2− ρ, 1). For |t∗| < λ−2b, we have that

|(The first term of the right hand side of (3.5))|

≤
∑

2≤|α|≤L−1

∑
β+γ=α

1

α!
CCβ,γ |t∗||β|λb(|β|−|γ|)Cλ−σ

≤
∑

2≤|α|≤L−1

∑
β+γ=α

1

α!
CCβ,γλ

−b(|β|+|γ|)Cλ−σ = C ′λ−2b−σ.

(Step 2) We estimate RL. Let ψ1, ψ2 be C∞ functions on R satisfying

ψ1(s) =

{
1 for s ≤ 1,

0 for s ≥ 2,

ψ2(s) =

{
0 for s ≤ 1,

1 for s ≥ 2,

ψ1(s) + ψ2(s) = 1 for all s ∈ R.

Take d with 0 < d < b. Putting Vα(s, x
∗, y) =

∫ 1
0 ∂

α
xV (s, x∗ − θ(x∗ − y))(1 −

θ)L−1dθ and

Iα,j(s, x
∗, ξ∗, λ) =

∫∫∫
ψj

(
λd|y − x∗|
1 + λ|t∗|

)
Vα(s, x

∗, y)(y − x∗)α

× φ
(t∗)
λ (y − x∗)φ

(t∗)
λ (y − z)W

φ
(t∗)
λ

u(s, z, η)e−iy(ξ∗−η)dzdηdy
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for j = 1, 2, we have

(3.8) RL(s, x
∗, ξ∗) = L

∑
|α|=L

1

α!

1

(2π)n∥φ0∥2L2

2∑
j=1

Iα,j(s, x
∗, ξ∗, λ).

We need to show that for j = 1, 2, there exists a positive constant Cσ,a,φ0

such that

(3.9) |Iα,j(s, x∗, ξ∗, λ)| ≤ Cσ,a,φ0λ
−σ−2b

for λ ≥ 1, x ∈ K, ξ ∈ Γ with 1/a ≤ |ξ| ≤ a and 0 ≤ s ≤ t0. For Iα,1,
integration by parts and the fact that (1−△y)e

iy(ξ−η) = (1+ |ξ− η|2)eiy(ξ−η)

yield that

Iα,1(s, x
∗, ξ∗, λ) =

∫∫∫ (
1 + |ξ − η|2

)−N

× (1−△y)
N

[
φ
(t∗)
λ (y − x∗)φ

(t∗)
λ (y − z)ψ1

(
λd|y − x∗|
1 + λ|t∗|

)
×Vα(s, x∗, y)(y − x∗)α]W

φ
(t∗)
λ

u(s, z, η)e−iy(ξ∗−η)dydηdz.

We take d′ such that 0 < d′ < d. Since |y − x∗| ≤ 2(1 + λ|t∗|)λ−d if

ψ1

(
λd|y−x∗|
1+λ|t∗|

)
̸= 0, the estimate (3.7) shows that for |t∗| ≥ λd

′−1 and λ ≥ λ0

with some λ0 ≥ 1, we obtain

|∂αxV (s, x∗ + θ(y − x∗))||(y − x∗)α|
≤ C(1 + |x∗ + θ(y − x∗)|)ρ−L(1 + λ|t∗|)Lλ−dL

≤ C(1 + |x∗| − |y − x∗|)ρ−L(1 + λ|t∗|)Lλ−dL

≤ C(1 + λ|t∗|)ρλ−dL.

Simple calculation yields that

∥∂βyφ
(t∗)
λ (y − x∗)∥L2 ≤ Cλb|β|,

∣∣∣∣∂βy {
ψ1

(
λd|y − x∗|
1 + λ|t∗|

)}∣∣∣∣ ≤ Cλd|β|.

Hence we have

(3.10) |Iα,1(s, x∗, ξ∗, λ)| ≤ Cλ−dLλ2N+ρ.

For |t∗| ≤ λd
′−1, we have |y − x∗| ≤ C(1 + λ|t∗|)λ−d ≤ Cλd

′−d, which shows
that |Iα,1| ≤ Cλ−(d−d′)Lλ2N+ρ. Hence (3.9) with j = 1 holds if we take L
sufficiently large.
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Finally we estimate Iα,2. Since xU0(t) = U0(t)(x − it∇x), ∂xjU0(t) =
U0(t)∂xj , xφλ(x) = λ−b(xφ)λ(x) and ∇φλ(x) = λb(∇φ)λ(x), we have for any
integer M and any multi-index α

(1 + |x|2)M∂αxφ
(t)
λ (x)

=U0(t)
[
(1 + |x− it∇|2)M∂αxφ0,λ(x)

]
=U0(t)

 ∑
|β+γ|≤2M

Cβ,γ(λ
bt)|γ|λ−b(|β|−|α|)(xβ∂α+γ

x φ0)λ


≤

∑
|β+γ|≤2M

Cβ,γ(λ
bt)|γ|λ−b(|β|−|α|)U0(t)

[
(xβ∂α+γ

x φ0)λ

]
.

Hence we have for M,N ∈ N,

|Iα,2|

=

∣∣∣∣∫∫∫ ψ2

(
λd|y − x∗|
1 + λ|t∗|

)
Vα(s, x

∗, y)(y − x∗)αφ
(t∗)
λ (y − x∗)φ

(t∗)
λ (y − z)

× W
φ
(t∗)
λ

u(s, z, η)e−iy(ξ∗−η)dzdηdy
∣∣∣

=

∣∣∣∣∫∫∫ (1 + |y − x∗|2)−M (1 + |η − ξ∗|2)−N (1 + |y − x∗|2)M

×(1−△y)
N

[
ψ2

(
λd|y − x∗|
1 + λ|t∗|

)
Vα(s, x

∗, y)(y − x∗)α

×φ(t∗)
λ (y − x∗)φ

(t∗)
λ (y − z)W

φ
(t∗)
λ

u(s, z, η)

]
e−iy(ξ∗−η)dzdηdy

∣∣∣
≤

∑
|α1+···+α4|≤2N

∑
|α|≤|β+γ|≤2M+|α|

β′≤β,γ′≤γ

×
∑

α′
3≤α3

Cα1,...,α4,β,γ,α′
3,β

′,γ′ |t∗||γ|λb(|γ|+|α1|+|α2|−|β|)

×
∫∫∫

(1 + |y − x∗|2)−M (1 + |η − ξ∗|2)−N

×
∣∣∣U0(t

∗)
[(
xβ

′−α2∂α1+γ′
y φ0

)
λ

]
(y − x∗)

∣∣∣ ∣∣∣U0(t
∗)
[(
∂α3
y φ0

)
λ

]
(y − z)

∣∣∣
× (1 + λ|t∗|)−|α3|λd|α3|

∣∣∣∂α′
3

x ψ2

∣∣∣ ∣∣∂α4
y Vα

∣∣ ∣∣∣W
φ
(t∗)
λ

u(s, z, η)
∣∣∣ dzdηdy.

Since |y − x∗| ≥ λ−d(1 + λ|t∗|) if ψ2(λ
d|y − x∗|/(1 + |t∗|λ)) ̸= 0, we have
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with M = m+ n+ 1 and N = n+ 1

|Iα,2| ≤
∑

|α1+···+α4|≤2N

∑
|α|≤|β+γ|≤2M+|α|

∑
α′
3≤α3

C|t∗||γ|λb(|γ|+|α1|)λb(|α2|−|β|)

× (1 + λ−2d(1 + λ|t∗|)2)−m∥(1 + |y|2)−n−1)∥L2
y
∥(1 + |η|2)−n−1)∥L2

η

× (1 + λ|t∗|)−|α3|λd|α3|∥yβ−α2∂α1+γ
y φ0∥L2

y
∥∂α3

z φ0∥L2
z
∥W

φ
(t∗)
λ

u(s, z, η)∥L2
z,η
.

For 0 ≤ t ≤ λ−2b, we have |t∗|λb ≤ λ−b. Hence we obtain

|Iα,2| ≤
∑

|α1+···+α4|≤2N

∑
L≤|β+γ|≤2M+L

∑
α′
3≤α3

Cλ−b(|γ|+|β|−|α1|−|α2|)λd|α3|

≤ Cλ−b(L−2N) = Cλ−b(L−2(n+1)) ≤ Cλ−2b−σ,

if we take L ≥ N + 2n+ 4 + σ/b.
For λ−2b ≤ t ≤ t0, we have

|Iα,2|

≤
∑

|α1+···+α4|≤2N

∑
L≤|β+γ|≤2M+L

C(1 + λ−2d(1 + λ|t∗|)2)−m

× (λb|t∗|)|γ|−|α2|λb(|α1|−|β|)λd|α3|

≤ C(1 + (λ1−d−2b)2)−mλb(2M+2N+L)

≤ Cλ−2m(1−d−2b)λb(2m+4(n+1)+L)

≤ Cλ−2m(1−d−3b)λb(4(n+1)+L).

Since 1−d−2b > 1−4b ≥ 0, we have |Iα,2| ≤ Cλ−2b−σ, if we takem sufficiently
large. This shows (3.9) with j = 2 for x ∈ K, ξ ∈ Γ with 1/a ≤ |ξ| ≤ a and
λ ≥ 1 and 0 ≤ s ≤ t0.

Proof of Corollary 1.6. (3.6) shows that

(3.11) x(0; t, x, λξ) = x− λtξ + δ1(λ)

where |δ1(λ)| ≤ Cλρ−1 uniformly in V ∩ {ξ ∈ Rn|a−1 ≤ |ξ| ≤ a} for λ ≥ 1. In
the same way as for (3.11), we have

(3.12) ξ(0; t, x, λξ) = λξ + δ2(λ)

where δ2(λ) has the same property of δ1(λ). Roughly speaking, we show that

(3.13) W
φ
(t∗)
λ

u0(x− λtξ + δ1(λ), λξ + δ2(λ)) =

W
φ
(t∗)
λ

u0(x− λtξ, λξ) + (lower order term).
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We have

W
φ
(t∗)
λ

u0(x− λtξ + δ1(λ), λξ + δ2(λ))

=

∫
φ
(t∗)
λ (y − (x− λξt+ δ1(λ)))u0(y)e

−iy(λξ+δ2(λ))dy.

By Taylor’s expansion, we have with an integer L

φ
(t∗)
λ (y − (x− λξt+ δ1(λ))) = φ

(t∗)
λ (y − (x− λξt))

+
∑

1≤|α|≤L

1

α!
∂αx

(
φ
(t∗)
λ (y − (x− λξt))

)
(−δ1(λ))α

+
∑

|α|=L+1

1

α!
rα (−δ1(λ))α ,

where rα = L+1
α!

∫ 1
0 (1− θ)L∂αy φ

(t∗)
λ (y − (x− λξt)− θδ1(λ)) and

e−y(λξ+δ2(λ)) = e−yλξ

1 +
∑
1≤|α|

1

α!
(−iyδ1(λ))α

 ,

from which we obtain

W
φ
(t∗)
λ

u0(x− λtξ + δ1(λ), λξ + δ2(λ)) =

W
φ
(t∗)
λ

u0(x− λtξ, λξ)

+
∑

1≤|α|≤L

∑
1≤|β|

λb|α|
(−δ1)α

α!

(−δ2)β

β!
W

(∂α
xφ)

(t∗)
λ

[
yβu(y)

]
(x− λtξ, λξ)

+
∑

|α|=L+1

∑
1≤|β|

λb|α|
(−δ1)α

α!

(−δ2)β

β!

∫
Rαy

βu(y)e−iyλξdy.

Taking L large, the above equality implies that W
(∂α

xφ)
(t∗)
λ

[
yβu(y)

]
(x(0; t, x,

λξ), ξ(0; t, x, λξ)) and W
(∂α

xφ)
(t∗)
λ

[
yβu(y)

]
(x− λtξ, λξ) have the same order of

with respect to λ uniformly in V ∩ {ξ ∈ Rn|a−1 ≤ |ξ| ≤ a} for λ ≥ 1, since
|δ1(λ)|, |δ2(λ)| ≤ λρ−1, W

(∂α
xφ)

(t∗)
λ

[
yβu(y)

]
(x − λtξ, λξ) is the same order of

W
φ
(t∗)
λ

u0(x − λtξ, λξ) with respect to λ and the order of
∫
Rαy

βu(y)e−iyλξdy

with respect to λ is estimated above by some constant. This completes the
proof.
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§A. Proof of the estimate (3.7)

In this appendix, we give the proof of the estimate (3.7). We fix p. We show
the estimate (A.1) below for |t0| ≥ |t∗| ≥ λp−1, λ ≥ λ0, x ∈ K, ξ ∈ Γ with
1/a ≤ |ξ| ≤ a.

Proof. The equation (3.6) can be solved by Picard’s iteration method. We put
x(0)(s) = x+ (s− t0)λξ and we define

x(N+1)(s) = x+ (s− t0)λξ −
∫ s

t0

(s− s1)∇xV (s1, x
(N)(s1))ds1

for N ≥ 0. Then we have the solution x(s) of (3.6) as x(s) = limN→∞ x(N)(s).
We show that there exists a positive constant λ0 ≥ 1 such that

(A.1)
1

2a
|t∗|λ ≤ |x(N)(s)| ≤ 2a|t∗|λ, (N = 0, 1, 2, . . .)

for λ ≥ λ0, λ
p−1 ≤ |t∗| ≤ t0, x ∈ K and ξ ∈ Γ with 1/a ≤ |ξ| ≤ a. We only

treat the case that 1 ≤ ρ < 2. We show (A.1) by induction with respect to N .
Obviously (A.1) holds for N = 0.
Assuming that (A.1) holds for N , we have

|x(N+1)(s)| ≥ |x+ (s− t0)λξ| −
∣∣∣∣∫ s

t0

|s− s1||∇xV (s1, x
(N)(s1))|ds1

∣∣∣∣
≥ |t∗|λ|ξ| − |x| −

∫ t0

s
|s− s1|C(1 + |x(N)(s1)|)ρ−1ds1

≥ |t∗|λ|ξ| − |x| − C

∫ t0

s
|s− s1|(1 + 2(|t0 − s1|λ|ξ|)ρ−1)ds1

≥ |t∗|λ|ξ| − |x| − C|t∗|2 − Cλρ−1|ξ|ρ−1|t∗|ρ+1

≥ |t∗|λ|ξ|
(
1− |x|

|t∗|λ|ξ|
− C

|t0|
λ|ξ|

− C|t0|ρλρ−2|ξ|ρ−2

)
≥ |t∗|λ|ξ|

(
1− a|x|

λp
− C

a|t0|
λ

− C
a2−ρ|t0|ρ

λ2−ρ

)
.

Since p > 0 and 2− ρ > 0, there exists a constant λ0 ≥ 1 such that

1− a|x|
λp

− C
a|t0|
λ

− C
a2−ρ|t0|ρ

λ2−ρ
≥ 1

2

for λ ≥ λ0. Hence we have |x(N+1)(s)| ≥ 1
2 |t

∗|λ|ξ| ≥ 1
2a |t

∗|λ.
In the same way as above, we can show that

|x(N+1)(s)| ≤ 2|t∗|λa

for λ ≥ λ0, λ
p−1 ≤ |t∗| ≤ t0, x ∈ K and ξ ∈ Γ with 1/a ≤ |ξ| ≤ a, assuming

that (A.1) holds for N .
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