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Maximal cycles in graphs of large girth
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Abstract. In this paper we give a lower bound of the circumference of a graph
in terms of girth and the number of edges. It is shown that a graph of girth at
least g ≥ 4 with n vertices and at least m ≥ n edges contains a cycle of length
at least (g− 2)m/(n− 2). In particular, for the case g = 4, an analogous result
for 2-edge-connected weighted graphs is given. Moreover, the extremal case is
characterized in both results.
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§1. Introduction

In this paper we consider only finite simple graphs. The existence of long
cycles in graphs have been paid much attention in the previous literature.
The following is one of the classical result among such studies.

Theorem 1 (Erdős and Gallai, [2]). Let G be a graph with n vertices. If
|E(G)| ≥ n, then G contains a cycle of length at least 2|E(G)|/(n− 1).

In this paper we extend this result by considering the graphs with large
girth. Here θr,k denotes the graph obtained by exchanging each P3 joining two
vertices of degree r in K2,r for the path of length k (See Figure 1). Note that
θr,2 = K2,r and θ2,k = C2k holds.

Theorem 2. Let G be a graph with n vertices. If |E(G)| ≥ n and the
girth of G is at least g, then G contains a cycle of length at least (g −
2)|E(G)|/(n − 2). Moreover, if G does not contain any cycle of length more
than (g − 2)|E(G)|/(n− 2), then g is even and G ≃ θr,g/2 for some r.
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Figure 1: θr,k.

In particular, for the case g = 4, we give an analogous result for weighted
graphs. An edge-weighted graph, or simply a weighted graph, is one provided
with an edge-weighting function w from the edge set to nonnegative real num-
bers. For an edge e of a weighted graph G, we call w(e) the weight of e.
The weight of a subgraph H of G is defined by the sum of the weights of
the edges in H, denoted by w(H). Moreover, the weighted degree dwG(v) of a
vertex v of G is the sum of the weights of the edges incident with v in G. An
unweighted graph can be regarded as an weighted graph in which each edge
has weight 1. In this sense, the following theorem generalizes Theorem 1 for
2-edge-connected graphs.

Theorem 3 (Bondy and Fan, [1]). Let G be a 2-edge-connected weighted graph
with n vertices. Then G contains a cycle of weight at least 2w(G)/(n− 1).

The following, which is a common generalization of Theorems 2 and 3 for
2-edge-connected graphs of girth at least 4, is our new result as well.

Theorem 4. Let G be a 2-edge-connected weighted graph with n vertices. If the
girth of G is at least 4, then G contains a cycle of weight at least 2w(G)/(n−2).
Moreover, if w(G) > 0 and G does not contain any cycle of weight more than
2w(G)/(n−2), then i) G ≃ K2,r for some r, and ii) if r ≥ 3, then each vertex
of degree 2 has weighted degree w(G)/(n− 2).

We prove Theorem 2 in Section 3 and Theorem 4 in the next section. In the
rest of this section, we prepare terminology and notation used in this paper.
Let G be a graph. For a vertex set X of G, we denote by G[X] the subgraph
of G induced by X. For v ∈ V (G), we simply write G− v instead of G− {v}
when there is no fear of confusion. The degree of v is denoted by d(v), and the
minimum degree of G is denoted by δ(G). An endblock is a block that has at
most one cut vertex (we call a 2-connected graph itself an endblock as well).
A block which is isomorphic to K2 is called trivial.
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If G ≃ θr,k for some r, k ≥ 2, a pair of vertices (x, y) is called an opposite
pair if both of x and y have degree r in G and the distance between x and
y are k in G. Note that there is a unique opposite pair if r ≥ 3, and there
are k such pairs if r = 2. We call an weighted graph G with n vertices and
girth at least 4 extremal if G does not contain any cycle of weight more than
2w(G)/(n− 2).

§2. Proof of Theorem 4

Before we prove Theorem 4, we investigate the structure of weighted graphs
in the extremal case.

Proposition 5. Let G be an extremal weighted graph such that G ≃ K2,n−2.
Then

a) if n ≥ 5, then each vertex of degree 2 has weighted degree w(G)/(n− 2),

b) if n ≥ 5, then there exists a path of weight at least 2w(G)/(n−2) joining
x and y for any two vertices x and y of degree 2 and

c) if n ≥ 4, then there exists a path of weight 2w(G)/(n−2)−w(xy) joining
x and y for any xy ∈ E(G).

Proof. First consider the case n ≥ 5. Let V2 be the vertices of degree 2 in G
and let s, t ∈ V (G)\V2 with s ̸= t. Moreover, let u1 be the vertex of maximum
weighted degree among V2, and let u2 be the second maximum one. Since∑

v∈V2
dwG(v) = w(G), dwG(u1) ≥ w(G)/(n−2) holds. If dwG(u1) > w(G)/(n−2),

then since the average weighted degree of the vertices in V2 is w(G)/(n − 2)
and |V2| ≥ 3, it follows that dwG(u1) + dwG(u2) > 2w(G)/(n − 2). Thus the
weight of the cycle u1su2tu1 is more than 2w(G)/(n − 2), contradicting the
fact that G is extremal. Hence we have dwG(u1) = w(G)/(n−2), which implies
a).

Let x, y, u be three distinct vertices in V2. Then we can take two paths
P1 = xsuty and P2 = xtusy, and it follows from a) that w(P1) + w(P2) =
dwG(x) + dwG(y) + 2dwG(u) = 4w(G)/(n− 2). Thus either P1 or P2 has weight at
least 2w(G)/(n− 2), which implies b).

Next consider the case n ≥ 4. Let xy ∈ E(G) and let C = xyzvx be a cycle
of G. If n ≥ 5, it follows from a) that w(C) = 2w(G)/(n − 2), and if n = 4,
then w(C) = w(G) = 2w(G)/(n − 2). In either case, the weight of the path
yzux is 2w(G)/(n− 2)− w(xy), which implies c). 2

Proof of Theorem 4. We use induction on n. The assertion immediately
holds for the case n = 4. Thus we assume n ≥ 5 and the theorem holds for
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every weighted graph with at most n − 1 vertices. Moreover, the assertion
immediately holds for the case w(G) = 0, thus we assume that w(G) > 0.
Let C be the cycle of the heaviest weight in G. Note that w(G) > 0 implies
w(C) > 0.

Assume that G has a cutvertex x. LetD1 be a component of G−x, let G1 =
G[V (D1)∪{x}] and let G2 = G[V (G)−V (D1)]. Note that both G1 and G2 are
2-edge-connected and E(G1)∩E(G2) = ∅ holds by definition. By the induction
hypothesis, there exists a cycle Ci of weight at least 2w(Gi)/(|V (Gi)| − 2) in
Gi, for i = 1 and 2. Thus it follows that

2w(G) = 2w(G1) + 2w(G2)

≤ (|V (G1)| − 2)w(C1) + (|V (G2)| − 2)w(C2)

≤ (n− 3)w(C)

< (n− 2)w(C),

which implies the assertion.
Next assume that G is 3-connected. In this case we use the following

theorem.

Theorem 6 ([3]). Let G be a 2-connected triangle-free weighted graph. If
dwG(v) ≥ d for every v ∈ V (G), then G contains a cycle of weight at least 2d.

By Theorem 6, we obtain the assertion if dwG(v) > w(G)/(n − 2) for every
v ∈ V (G). Thus we may assume that there exists a vertex x ∈ V (G) such
that dwG(x) ≤ w(G)/(n − 2). Since G − x is 2-connected, it follows from the
induction hypothesis that there exists a cycle of weight at least

2w(G− x)

|V (G− x)| − 2
≥ 2

n− 3
· (n− 3)w(G)

n− 2
=

2w(G)

n− 2
(2.1)

in G− x. If the equality does not hold in (2.1), then we obtain the assertion,
thus we assume that the equality holds in (2.1). Then dwG(x) = w(G)/(n− 2)
and G − x is extremal. Again by the induction hypothesis, it follows that
G − x ≃ K2,n−3. Since G is 3-connected, x is adjacent to all the vertices
of degree 2 in G − x. Since the girth of G is at least 4, G ≃ K3,n−3. Let
H be the set of all the subgraphs of G which are isomorphic to K3,3, then
|H| =

(
n−3
3

)
. Moreover, since each edge of G is contained in

(
n−4
2

)
graphs

in H,
∑

H∈Hw(H) =
(
n−4
2

)
w(G). Therefore we can find H∗ ∈ H such that

w(H∗) ≥
(
n−4
2

)
w(G)/

(
n−3
3

)
= 3w(G)/(n − 3). Since we can take three cycles

C1, C2 and C3 of length 6 in H∗ so that each edge in H∗ is contained in exactly
two of C1, C2 and C3 (i.e., {C1, C2, C3} is a cycle double cover of H∗), one of
C1, C2 and C3 must have weight at least 2w(H∗)/3 = 2w(G)/(n − 3). Hence
w(C) ≥ 2w(G)/(n− 3) > 2w(G)/(n− 2), which implies the assertion.
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Therefore we may assume that the connectivity of G is exactly two. In the
following we assume to the contrary that the assertion does not hold, i.e., we
assume that w(C) ≤ 2w(G)/(n−2), and if w(C) = 2w(G)/(n−2), then either
i) or ii) does not hold.

Claim 1. For every cutset {u, v}, uv /∈ E(G).

Proof. Assume that uv ∈ E(G). Let D1 be a component of G − {u, v}, let
D2 = G− ({u, v} ∪ V (D1)) and let Gi = G[V (Di) ∪ {u, v}] for i = 1, 2. Then
each Gi is 2-connected. Let Ci be the heaviest cycle in Gi, then it follows from
the induction hypothesis that

(n− 2)w(C) ≥ (|V (G1)| − 2)w(C1) + (|V (G2)| − 2)w(C2)

≥ 2w(G1) + 2w(G2)

= 2(w(G) + w(uv))

≥ 2w(G).

Thus the equality hold in the above. Then we have w(uv) = 0, w(C) =
w(Ci) and Gi is extremal for i = 1, 2. Moreover, by the induction hypothesis,
it follows that G1 ≃ K2,r1 , G2 ≃ K2,r2 holds for some r1 and r2. By c) of
Proposition 5, there exists a path Pi of weight 2w(Gi)/(|V (Gi)| − 2) = w(Ci)
joining u and v in Gi for i = 1, 2. Then the weight of the cycle induced by P1

and P2 is w(C1)+w(C2) = 2w(C) > w(C), which contradicts the choice of C.
2

Claim 2. δ(G) ≥ 3.

Proof. Assume that there exists a vertex v of degree 2. In the case where
there exists a vertex u such that {u, v} is a cutset of G, let D1 be a component
of G− {u, v}, let D2 = G− ({u, v} ∪ V (D1)) and let Gi = G[V (Di) ∪ {u, v}]
for i = 1, 2. Since G is 2-connected, we can take two neighbors, say x1 and
x2, of v so that xi ∈ Gi for i = 1, 2. Moreover, since |V (G)| ≥ 5, either
G1 or G2 has at least 4 vertices. Without loss of generality, we may assume
that |V (G1)| ≥ 4. Since {u, x1} is a cutset of G, it follows from Claim 1 that
ux1 /∈ E(G). Thus the edge vx1 is not contained in any cycle of length 4 in
G. Let G′ be the weighted graph obtained from G by deleting the vertex v
and adding the edge x1x2. Moreover, we assign weights to the edges of G′ so
that wG′(x1x2) = wG(vx1)+wG(vx2) and wG′(e) = wG(e) for every e ̸= x1x2.
Then G′ is 2-connected, the girth of G′ is at least 4 and |V (G′)| = |V (G)| − 1.
By the induction hypothesis, there exists a cycle C ′ in G′ such that

w(C ′) ≥ 2w(G′)

|V (G′)| − 2
=

2w(G)

n− 3
>

2w(G)

n− 2
.
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Since we can find a cycle of weight w(C ′) in G whether the edge x1x2 is
contained in C ′ or not, we have w(C) > 2w(G)/(n− 2), a contradiction.

Thus we may assume that G − v is 2-connected. First consider the case
where dwG(v) ≤ w(G)/(n−2). By the induction hypothesis, we can find a cycle
C ′ in G− v such that

w(C ′) ≥ 2w(G− v)

n− 3
≥ 2

n− 3
· n− 3

n− 2
w(G) =

2

n− 2
w(G).

Since w(C ′) ≤ w(C) ≤ 2w(G)/(n − 2), it follows that dwG(v) = w(G)/(n − 2)
and both G and G − v are extremal. Since either i) or ii) does not hold
by assumption, it follows from a) of Proposition 5 that G ̸≃ K2,n−2, which
implies G − v ̸≃ K2,2. On the other hand, by the induction hypothesis, we
have G − v ≃ K2,n−3. Hence n ≥ 6 holds. Since G ̸≃ K2,n−2 and the girth
of G is at least 4, v is adjacent to two vertices, say y1 and y2, of degree 2
in G − v. By b) of Proposition 5, there exists a path P of weight at least
2w(G − v)/(n − 3) = 2w(G)/(n − 2) joining y1 and y2 in G − v. Then the
weight of the cycle vy1Py2v is 3w(G)/(n−2) > 2w(G)/(n−2), a contradiction.

Next consider the case where dwG(v) > w(G)/(n − 2). By the induction
hypothesis, there exists a cycle C ′ of weight at least 2w(G − v)/(n − 3) =
2(w(G)− dwG(v))/(n− 3) in G− v. By taking two paths P1, P2 joining v and
V (C ′) which are disjoint except at v, we can find a cycle in G of weight at
least

w(P1) + w(P2) +
1

2
w(C ′) ≥ dwG(v) +

1

2
w(C ′)

≥ dwG(v) +
w(G)− dwG(v)

n− 3

>
n− 4

n− 3
· w(G)

n− 2
+

w(G)

n− 3

=
2w(G)

n− 2
,

a contradiction. 2

Let {u, v} be a cutset of G, let D1 be a component of G − {u, v}, let
D2 = G−({u, v}∪V (D1)) and letGi = G[V (Di)∪{u, v}] for i = 1, 2. SinceG is
2-connected, any endblock of Gi contains either u or v. Thus each Gi contains
at most two endblocks, i.e., the block-cutvertex tree of Gi is a path. Let Bi be
the set of blocks of Gi for i = 1, 2, and let B = B1 ∪ B2 = {B1, B2, . . . , Bm}.
Moreover, for a non-trivial block Bi, let Ci be the heaviest cycle in Bi.

Assume that each block in B is non-trivial. Then by the induction hypoth-
esis,

(n− 2)w(C) ≥ (n−m)w(C) ≥
m∑
i=1

(|V (Bi)| − 2)w(Ci) ≥
m∑
i=1

2w(Bi) = 2w(G),
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and hence it follows that G and all the blocks in B are extremal. Since w(G) >
0, there exists Bl ∈ B such that w(Bl) > 0. Then by the induction hypothesis,
Bl ≃ K2,r for some r ≥ 2. Since the block-cutvertex tree of each Gi is a path,
at most two vertices of Bl can have a neighbor in G − V (Bl). Thus at least
one vertex in Bl has degree 2, which contradicts Claim 2.

Thus there exists a trivial block Bk in B. Let V (Bk) = {x, y}, then without
loss of generality, we may assume that x ∈ V (Bk−1) and y ∈ V (Bk+1). By
Claim 2, both Bk−1 and Bk+1 are non-trivial, and since the block-cutvertex
tree of each Gi is a path, Bk−1 (resp. Bk+1) contains a unique vertex x′

(resp. y′) such that {x, x′} (resp. {y, y′}) is a cutset of G. By Claim 1, we
have xx′, yy′ /∈ E(G), and thus the edge xy is not contained in any cycle of
length 4 in G. Let G′ be the weighted graph obtained from G by contracting
the edge xy such that and wG′(e) = wG(e) for every e ∈ E(G′). Then G′ is a
2-connected weighted graph of girth at least 4. By the induction hypothesis,
there exists a cycle C ′ of weight at least 2w(G′)/(n− 3) in G′. If C ′ is not a
cycle in G, then E(C ′) ∪ {xy} induces a cycle in G, and its weight is

w(C ′) + w(xy) ≥ 2w(G′)

n− 3
+ w(xy) =

2w(G)

n− 3
+

(n− 5)w(xy)

n− 3
>

2w(G)

n− 2
,

a contradiction. Thus C ′ is a cycle in G. If w(xy) < w(G)/(n− 2), then

w(C ′) >
2
(
w(G)− w(G)

n− 2

)
n− 3

=
2w(G)

n− 2
,

a contradiction. Thus we have w(xy) ≥ w(G)/(n− 2). By taking two disjoint
paths joining {x, y} and V (C ′), we can find a cycle of weight at least

w(xy) +
1

2
w(C ′) ≥ w(xy) +

w(G)− w(xy)

n− 3

=
(n− 4)w(xy)

n− 3
+

w(G)

n− 3

≥ (n− 4)w(G)

(n− 3)(n− 2)
+

w(G)

n− 3

=
2w(G)

n− 2
.

Since w(C) ≤ 2w(G)/(n − 2), the equality holds in the above. Thus G′ is
extremal. By the induction hypothesis, we have G′ ≃ K2,n−3. Then G must
contain a vertex of degree 2, which contradicts Claim 2. This completes the
proof of Theorem 4. 2
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§3. Proof of Theorem 2

We use induction on n. If n = g, then the assertion immediately holds. Thus
we assume that n ≥ g+1 and the theorem holds for graphs with at most n−1
vertices. Let C be the longest cycle of G, then |V (C)| ≥ g holds. If G contains
a vertex x of degree at most 1, then since |E(G− x)| ≥ |V (G− x)|, it follows
from the induction hypothesis that

(g − 2)|E(G)| = (g − 2)|E(G− x)|+ g − 2

≤ (|V (G− x)| − 2)|V (C)|+ g − 2

= (n− 3)|V (C)|+ g − 2

< (n− 2)|V (C)|,

which implies |V (C)| > (g − 2)|E(G)|/(n− 2). Thus we have δ(G) ≥ 2.
Assume that G is connected and has a cutvertex x. Let D1 be a component

of G − x, let G1 = G[V (D1) ∪ {x}] and let G2 = G[V (G) − V (D1)]. Since
δ(G) ≥ 2, |E(Gi)| ≥ |V (Gi)| holds for i = 1, 2. By the induction hypothesis,
there exists a cycle Ci of length at least (g − 2)|E(Gi)|/(|V (Gi)| − 2) in Gi,
for i = 1 and 2. Thus it follows that

(g − 2)|E(G)| = (g − 2)|E(G1)|+ (g − 2)|E(G2)|
≤ (|V (G1)| − 2)|V (C1)|+ (|V (G2)| − 2)|V (C2)|
≤ (n− 3)|V (C)|
< (n− 2)|V (C)|,

which implies the assertion. By the similar argument, we obtain the assertion
in the case G is disconnected. Thus we may assume that G is 2-connected.
Moreover, we may assume that g ≥ 5, since Theorem 4 implies the assertion
if g = 4.

Let us assume for the moment that G is 3-connected. By the following
theorem, we obtain the assertion if δ(G) > |E(G)|/(n− 2).

Theorem 7 ([4]). Let G be a 2-connected graph with girth g ≥ 5 and δ(G) ≥ 3,
then G contains a cycle of length at least (g − 2)δ(G).

Thus we may assume that there exists a vertex x ∈ V (G) such that d(x) ≤
|E(G)|/(n − 2). Since G − x is 2-connected, it follows from the induction
hypothesis that there exists a cycle of length at least

(g − 2)|E(G− x)|
n− 3

≥ (g − 2)|E(G)|
n− 2

in G− x. Moreover, the equality holds in the above only when G− x ≃ θr,g/2
for some r. However, since d(x) ≥ 3 and g ≥ 5, this cannot happen. Hence
we obtain the assertion.



MAXIMAL CYCLES 435

Therefore we may assume that the connectivity of G is exactly two. Let
{u, v} be a cutset of G, let D1 be a component of G − {u, v}, let D2 =
G−({u, v}∪V (D1)) and let Gi = G[V (Di)∪{u, v}] for i = 1, 2. If uv ∈ E(G),
then each Gi is 2-connected, that is, |E(Gi)| ≥ |V (Gi)|. Let ci be the length
of the longest cycle in Gi, then

(g − 2)|E(G)| = (g − 2)|E(G1)|+ (g − 2)|E(G2)| − (g − 2)

≤ (|V (G1)| − 2)c1 + (|V (G2)| − 2)c2 − (g − 2)

≤ (|V (G1)|+ |V (G2)| − 4)|V (C)| − (g − 2)

= (n− 2)|V (C)| − (g − 2)

< (n− 2)|V (C)|,

which implies the assertion. Thus we may assume that uv /∈ E(G).
Since G is 2-connected, any endblock of Gi contains either u or v. Thus each

Gi contains at most two endblocks, i.e., the block-cutvertex tree of each Gi is a
path. Let ki (resp. mi) be the number of trivial (resp. non-trivial) blocks of Gi,
let H1, . . . , Hm1 be the non-trivial blocks of G1 and let Hm1+1, . . . ,Hm1+m2

be the non-trivial blocks of G2. Moreover, let k = k1 + k2, m = m1 +m2 and
ni = |V (Hi)|. If m = 0, then G is a cycle, and thus the assertion holds. Hence
we may assume m ≥ 1. Then it follows from the induction hypothesis that

(n− 2)|V (C)| =

(
m∑
i=1

(ni − 1) + k − 2

)
|V (C)|

=

m∑
i=1

(ni − 2)|V (C)|+ (m+ k − 2)|V (C)|

≥
m∑
i=1

(ni − 2)|V (Ci)|+ (m+ k − 2)|V (C)|

≥
m∑
i=1

(g − 2)|E(Hi)|+ (m+ k − 2)|V (C)|

= (g − 2)(|E(G)| − k) + (m+ k − 2)|V (C)|
= (g − 2)|E(G)|+ (|V (C)| − (g − 2))k + (m− 2)|V (C)|,(3.1)

where Ci is the longest cycle of Hi for each i. We divide the rest of the proof
according to the value of m and k.

Case 1. m ≥ 2.

In this case, it follows from (3.1) and the fact |V (C)| − (g − 2) ≥ 2 that
|V (C)| ≥ (g − 2)|E(G)|/(n − 2). Assume that the equality holds. Then by
(3.1), we have m = 2, k = 0, |V (Ci)| = |V (C)| and Hi ≃ θri,g/2 for some ri.
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For i = 1, 2, let Pi be the longest path joining u and v in Hi. Then since
Hi ≃ θri,g/2, |E(Pi)| ≥ g/2 holds. On the other hand, it follows from the fact
|V (Ci)| = |V (C)| that |V (C)| = g, which implies |E(Pi)| = g/2 for i = 1, 2.
Hence (u, v) is a opposite pair of Hi. This yields G ≃ θr1+r2,g/2, and thus the
assertion holds.

Case 2. m = 1.

Note that k ≥ 2 follows from the assumption m = 1 of this case. Since the
block-cutvertex tree of each Gi is a path, the edges in E(G) \E(H1) induce a
path, say P , of length k. Let s and t be the endvertices of P .

Subcase 2.1. k ≥ g/2.

It follows from (3.1) that

(n− 2)|V (C)| − (g − 2)|E(G)| ≥ (|V (C)| − (g − 2))k − |V (C)|

≥ g

2
|V (C)| − g(g − 2)

2
− |V (C)|

=
g − 2

2
(|V (C)| − g)

≥ 0,

which implies |V (C)| ≥ (g − 2)|E(G)|/(n − 2). Assume that the equality
holds. Then we have k = g/2 and g = |V (C)| = (g − 2)|E(G)|/(n− 2). Since
|E(H1)| = |E(G)| − k = |E(G)| − g/2 and |V (H1)| = |V (G)| − (k − 1) =
n− (g/2− 1), it follows from the induction hypothesis that

|V (C1)| ≥ (g − 2)|E(H1)|
|V (H1)| − 2

=
(g − 2)

(
|E(G)| − g

2

)
n−

(g
2
− 1
)
− 2

=

(g − 2)
(
|E(G)| − (g − 2)|E(G)|

2(n− 2)

)
n− 2−

(g − 2

2

)
=

g − 2

n− 2−
(g − 2

2

) · (2(n− 2)− (g − 2))|E(G)|
2(n− 2)

=
(g − 2)|E(G)|

(n− 2)
= g.

Since |V (C1)| ≤ |V (C)| = g, we have |V (C1)| = g. Moreover, again by the
induction hypothesis, it follows that H1 ≃ θr,g/2 for some r. Since |V (C)| = g,
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(s, t) must be the opposite pair of H1. Therefore, G ≃ θr1+1,g/2, which implies
the assertion.

Subcase 2.2. k < g/2.

Since H1 is a non-trivial block, we can take two internally disjoint paths
P1 and P2 joining s and t in H1. Then sP tPis is a cycle in G of length at
least g, and hence |E(Pi)| ≥ g − |E(P )| = g − k hold for i = 1, 2. This yields
|V (C)| ≥ |E(P1)|+ |E(P2)| ≥ 2(g − k), and thus it follows from (3.1) and the
fact k ≥ 2 that

(n− 2)|V (C)| − (g − 2)|E(G)| ≥ (|V (C)| − (g − 2))k − |V (C)|
= (k − 1)|V (C)| − (g − 2)k

≥ 2(k − 1)(g − k)− (g − 2)k

= (k − 2)(g − 2k).(3.2)

Since 2 ≤ k < g/2, it follows that |V (C)| ≥ (g − 2)|E(G)|/(n − 2), and the
equality holds only when k = 2.

We complete the proof of Theorem 2 by showing that |V (C)| ≠ (g −
2)|E(G)|/(n − 2) in this case. Assume to the contrary that |V (C)| = (g −
2)|E(G)|/(n−2). Then we obtain |V (C)| = 2(g−k) = 2(g−2) by (3.2). Thus
we have |E(G)| = 2(n− 2), |E(H1)| = |E(G)| − 2 and |V (H1)| = |V (G)| − 1.
It follows from the induction hypothesis that

2(g − 2) = |V (C)| ≥ |V (C1)| ≥ (g − 2)|E(H1)|
|V (H1)| − 2

≥ (g − 2)(|E(G)| − 2)

n− 3

=
(g − 2)(2(n− 2)− 2)

n− 3
= 2(g − 2).

Therefore |V (C1)| = 2(g − 2) and H1 ≃ θr,g/2 for some r. Hence we obtain
2(g − 2) = |V (C1)| = g, which contradicts g ≥ 5. 2
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