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Abstract. In this paper we describe the Hochschild cohomology rings for
algebras in a class of some special biserial algebras which contains a cluster-
tilted algebra of Dynkin type D4. In particular it is shown that the Hochschild
cohomology rings modulo nilpotence for these algebras are isomorphic to the
polynomial ring K[x]. As an application we prove that the cluster-tilted algebra
of type D4 contained in this class satisfies the finiteness conditions (Fg1) and
(Fg2) introduced in [EHSST].
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§1. Introduction

Let Q be the following quiver with four vertices 0, 1, 2, 3 and five arrows:
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Let ei be the trivial path corresponding to the vertex i for i = 0, 1, 2, and let
f1 the trivial path corresponding to the vertex 3. For our convenience, fi also
denotes the trivial path corresponding to i for i = 0, 2. Hence we may write
ej = fj for j = 0, 2. Let ai be the arrow from i to i + 1 for i = 0, 1, and let
a2 the arrow from 2 to 0. Moreover let b0 the arrow from 0 to 3, and b1 the
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arrow from 3 to 2. For our convenience b2 also denotes the arrow from 2 to 0.
Hence we may write a2 = b2.

Throughout this paper, we always consider the indices i of ei, fi, ai and bi
as modulo 3. Hence it follows that, for all integers i, ai starts at ei and ends
with ei+1, whereas bi starts at fi and ends with fi+1. We write paths from
left to right.

Let K be an algebraically closed field, and let n be a non-negative integer.
We denote by In the ideal in the path algebra KQ generated by the elements

(a0a1a2)
na0a1 − b0b1, (aiai+1ai+2)

naiai+1, bibi+1 for i = 1, 2.

Denote the algebra KQ/In by Λn. Then the set

{(aiai+1ai+2)
j , (aiai+1ai+2)

jai, (aiai+1ai+2)
kaiai+1,

f2, b0, b1, b0b1 | i = 0, 1, 2; j = 0, 1, . . . , n; k = 0, 1, . . . , n− 1}

is a K-basis of Λn, so that dimK Λn = 9n+10. Also we easily see that Λn is a
special biserial algebra and is not a selfinjective algebra. The purpose of this
paper is to study the Hochschild cohomology of Λn.

In [BHL], Bastian, Holm and Ladkani introduced some finite quivers, called
“standard forms,” to investigate a derived equivalence classification for cluster-
tilted algebras of Dynkin type D. We notice that the quiver Q is one of these
standard forms. Moreover, if n = 0, then the algebra Λ0 is a Koszul cluster-
tilted algebra of type D4 (see [ABS, F]), and hence is an algebra of finite
representation type (see [BMR]). Also, Λ0 appears in [BHL] as a representative
of some derived equivalence class of cluster-tilted algebras of type D.

In [F], we constructed a minimal projective bimodule resolution of Λn for
all n ≥ 0, and gave an explicit K-basis of the Hochschild cohomology groups
of Λn. In this paper we use this K-basis to describe generators and rela-
tions of the Hochschild cohomology ring HH∗(Λn) of Λn, where the product is
given by the Yoneda product. In [EHSST], the authors proved that if a finite-
dimensional algebra satisfies certain reasonable finiteness conditions, denoted
by (Fg1) and (Fg2), then the support varieties have a lot of analogous prop-
erties of those for finite group algebras (see also [Sn]). In particular it is proved
in [EHSST, Theorem 2.5] that if these conditions are satisfied, then the al-
gebra is Gorenstain and a module has trivial support variety if and only if it
has finite projective dimension. In this paper, we show that the cluster-tilted
algebra Λ0 of type D4 satisfies (Fg1) and (Fg2), and consider a condition for
the support variety of a Λ0-module to be trivial.

In [Sn], Snashall asked the following question: When is the Hochschild co-
homology ring modulo nilpotence of a finite-dimensional algebra finitely gener-
ated as an algebra? It is known that the Hochschild cohomology rings modulo
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nilpotence for the classes of the following algebras are finitely generated as al-
gebras: group algebras of finite groups ([E, V]), monomial algebras ([GSS2]),
selfinjective algebras of finite representation type ([GSS1]), and algebras of
finite global dimension ([H]). But any definitive answer to this question has
not been obtained yet. Our main theorem shows that both the Hochschild
cohomology ring HH∗(Λn) and the Hochschild cohomology ring modulo nilpo-
tence HH∗(Λn)/N for n ≥ 0 are finitely generated as algebras. Note that an
example of the Hochschild cohomology ring modulo nilpotence which is not
finitely generated appears in the papers [Sn, X].

This paper is organized as follows. In Section 2, we compute the prod-
ucts in the graded subring HH6∗(Λn) :=

⊕
i≥0HH6i(Λn) of HH∗(Λn), and

give generators and relations of HH6∗(Λn) (Proposition 2.1). In Section 3, we
compute the products in the even Hochschild cohomology ring HHev(Λn) :=⊕

i≥0HH
2i(Λn), and find generators and relations of HHev(Λn), explicitly

(Theorem 1). In Section 4, we describe all products in the Hochschild co-
homology ring HH∗(Λn), and then as a main result we give the presentation of
HH∗(Λn) by generators and relations for all n ≥ 0 (Theorem 2). Moreover we
determine the Hochschild cohomology ring modulo nilpotence HH∗(Λn)/N for
all n ≥ 0. In section 5, as an application, we prove that the Ext algebra E(Λ0)
of Λ0 is finitely generated as a HH6∗(Λ0)-module, and consequently it is shown
that Λ0 satisfies (Fg1) and (Fg2) (Theorem 3). Finally we describe the sup-
port varieties for all indecomposabole modules over Λ0 (Corollary 5.1), and
determine the structures of the Hochschild cohomology rings modulo nilpo-
tence for all cluster-tilted algebras of type D4 (Corollary 5.2).

Throughout this paper, we denote the enveloping algebra Λop
n ⊗K Λn of

Λn by Λe
n (hence each Λn-Λn-bimodule corresponds to a right Λe

n-module and
voice versa), and write ⊗K as ⊗, for simplicity. We always denote the minimal
projective bimodule resolution of Λn given in [F] by (Q•, ∂). For any i ≥ 0
and right Λe-module homomorphism λ : Qi → Λn, we again write the element
in HHi(Λn) := ExtiΛe

n
(Λn, Λn) represented by λ as λ, for simplicity.

§2. The subring HH6∗(Λn)

In this section we investigate the products in the graded subring

HH6∗(Λn) :=
⊕
i≥0

HH6i(Λn) =
⊕
i≥0

Ext6iΛe
n
(Λn, Λn)

of HH∗(Λn), and then find generators and relations of HH6∗(Λn).

We start by recalling the Yoneda product × in HH∗(Λn) :=
⊕

i≥0HHi(Λn)

=
⊕

i≥0 Ext
i
Λe
n
(Λn, Λn). Let ϕ : Qi → Λn and ψ : Qj → Λn, (i, j ≥ 0) be
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right Λe
n-module homomorphisms. Then we have liftings σ0, σ1, . . . , σi of ψ,

namely, there is the following commutative diagram of right Λe
n-modules:

Qi+j
∂i+j

//

σi

��

Qi+j−1∂
i+j−1

//

σi−1

��

· · · ∂j+2
// Qj+1 ∂j+1

//

σ1

��

Qj

σ0

��

ψ

  @
@@

@@
@@

@

Qi
∂i //

ϕ

$$I
IIIIIIIII Qi−1 ∂i−1

// · · · ∂2 // Q1 ∂1 // Q0 ∂0 // Λn // 0

Λn

We define the product ϕ× ψ of the homogeneous elements ϕ ∈ HHi(Λn) and
ψ ∈ HHj(Λn) by ϕσ

i ∈ HHi+j(Λn). Then the Yoneda product × in HH∗(Λn)
is defined by linearly extending these to the products in HH∗(Λn).

Now, for simplicity, we denote the basis elements of HH0(Λn) and HH6j(Λn)
(j ≥ 1) given in [F, Proposition 4.9] as follows:

X0,0 := α0
0 + α0

1 + α0
2 + β : Q0 → Λn;

X0,m := αm0 + αm1 + αm2 : Q0 → Λn for m = 1, . . . , n, if n > 0;

X6j,0 := ϕ00 + ϕ01 + ϕ02 − ψ : Q6j → Λn;

X6j,m := ϕm0 + ϕm1 + ϕm2 : Q6j → Λn for m = 1, . . . , n, if n > 0.

Then we have by [F, Lemma 4.1] that: for l = 0, 1, 2

X0,0 :

{
el ⊗ el 7→ el

f1 ⊗ f1 7→ f1,
X0,m :

{
el ⊗ el 7→ (alal+1al+2)

m

f1 ⊗ f1 7→ 0,

X6j,0 :


el ⊗ el 7→ el

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ −f1,

X6j,m :


el ⊗ el 7→ (alal+1al+2)

m

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ 0.

Remark 2.1. It is known that the map HH0(Λn) → Z(Λn), h 7→ h((
∑2

l=0 el⊗
el) + f1 ⊗ f1) is an isomorphism of algebras, where the products in HH0(Λn)
are given by the Yoneda products. Then using this isomorphism we have

(2.1) X0,s ×X0,t =

{
X0,s+t if s+ t ≤ n,

0 if s+ t > n.

for integers s and t with 0 ≤ s, t ≤ n. In particular, we see that X0,0 is the
identity of HH0(Λn).
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For u ≥ 1, we define the map σ06u,0 : Q
6u → Q0 of Λn-Λn-bimodules by

σ06u,0 :


el ⊗ el 7→ el ⊗ el for l = 0, 1, 2

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ −f1 ⊗ f1,

and σi6u,0 : Q
i+6u → Qi by the identity map idQi for i ≥ 1.

Now by direct observations we have the following lemma.

Lemma 2.1. We have X6u,0 = ∂0σ06u,0 and ∂iσi6u,0 = σi−1
6u,0∂

i+6 for all u ≥ 1

and i ≥ 1. Hence σi6u,0 (i ≥ 0) give liftings of X6u,0.

From the lemma above we can describe the products in HH6∗(Λn).

Lemma 2.2. We have the following products:

(a) X6u,0 ×X0,s = X6u,s for integers u ≥ 1 and s with 0 ≤ s ≤ n.

(b) X6u,0 ×X6v,0 = X6(u+v),0 for integers u ≥ 1 and v ≥ 1.

Hence, for integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n,

X6u1,s1 ×X6u2,s2 =

{
X6(u1+u2),s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.

Proof. (a) Let u be a positive integer. Then for 0 ≤ s ≤ n we get

X0,sσ
0
6u,0 :


el ⊗ el 7→ (alal+1al+2)

s for l = 0, 1, 2

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ 0.

Therefore X0,sσ
0
6u,0 = X6u,s, which gives the desired product.

(b) Clearly X6v,0σ
6v
6u,0 = X6(u+v),0 holds for u ≥ 1 and v ≥ 1, so that we

have the desired product.
The last equality easily follows from (2.1), (a) and (b).

Now we can find generators and relations of HH6∗(Λn). Here we note that
HH6∗(Λn) is a commutative graded subring of HH∗(Λn).

Proposition 2.1. There is the following isomorphism of graded rings:

(a) If n = 0, then HH6∗(Λn) ≃ K[y6], where deg y6 = 6.
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(b) If n > 0, then HH6∗(Λn) ≃ K[y0, y6]/(y
n+1
0 ), where deg y0 = 0 and

deg y6 = 6.

Proof. We put y6 = X6,0. If n = 0, then by Lemma 2.2 we get the desired
isomorphism in (a).

Now suppose that n > 0, and put y0 = X0,1. Then we see by (2.1) and
Lemma 2.2 that X6u,s = ys0 × yu6 for u ≥ 0 and s = 0, 1, . . . , n, so that {y0, y6}
is a generator of HH6∗(Λn). Also by (2.1) we have the relation yn+1

0 = 0.
Therefore we get the desired isomorphism in (b).

§3. The even Hochschild cohomology ring HHev(Λn)

In this section we compute all products of basis elements in even degrees, and
then determine the structure of the even Hochschild cohomology ring

HHev(Λn) =
⊕
i≥0

HH2i(Λn).

Note that HHev(Λn) is a commutative graded subring of HH∗(Λn). Through-
out this section we keep the notations from Section 2.

For simplicity we denote the basis elements of HH6j+2(Λn) and HH6j+4(Λn)
given in [F, Proposition 4.9] as follows: for j ≥ 0

X6j+2,m := θm0 + θm1 + θm2 : Q6j+2 → Λn for m = 0, 1, . . . , n− 1, if n > 0;

X6j+4,m := µm0 + µm1 + µm2 : Q6j+4 → Λn for m = 0, 1, . . . , n− 1, if n > 0;

X6j+4,n := µn0 + µn1 + µn2 : Q6j+4 → Λn if charK | 3n+ 2.

Note that, by [F, Lemma 4.1], for s = 0, 1, . . . , n− 1

X6j+2,s :

{
el ⊗ el+2 7→ (alal+1al+2)

salal+1 for l = 0, 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2,

and, for t = 0, 1, . . . , n,

X6j+4,t :

{
el ⊗ el+1 7→ (alal+1al+2)

tal for l = 0, 1, 2

fr ⊗ fr+1 7→ 0 for r = 0, 1.

hold.

3.1. Liftings of X6u+2,0 and X6u+4,0

To compute Yoneda products in HHev(Λn) we find liftings of X6u+2,0 and
X6u+4,0 for u ≥ 0.
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For u ≥ 0 we define a homomorphism σ06u+2,0 : Q6u+2 → Q0 as Λn-Λn-
bimodules by

σ06u+2,0 :

{
el ⊗ el+2 7→ alal+1 ⊗ el+2 for l = 0, 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.

Also, for u ≥ 0 and i ≥ 1, define homomorphisms σi6u+2,0 : Q6u+i+2 → Qi as
Λn-Λn-bimodules by the following: For j ≥ 0

σ3j+1
6u+2,0 :


el ⊗ el 7→ alal+1 ⊗ el for l = 0, 1, 2

e1 ⊗ f1 7→ a1a2 ⊗ f1

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ 0,

σ3j+2
6u+2,0 :


el ⊗ el+1 7→ alal+1 ⊗ el+1 for l = 0, 1, 2

fr ⊗ fr+1 7→

{
a0a1 ⊗ f1 for r = 0

0 for r = 1,

σ3j+3
6u+2,0 :


el ⊗ el+2 7→ alal+1 ⊗ el+2 for l = 0, 1, 2

fr ⊗ fr+2 7→

{
0 for r = 1

a2a0 ⊗ f1 for r = 2.

Then by direct computations we have the following lemma.

Lemma 3.1. We have X6u+2,0 = ∂0σ06u+2,0 and ∂iσi6u+2,0 = σi−1
6u+2,0∂

6u+i+2

for all u ≥ 0 and i ≥ 1. Thus the map σi6u+2,0 : Q6u+i+2 → Qi (i ≥ 0) is a
lifting of X6u+2,0.

Next for u ≥ 0 we define a homomorphism σ06u+4,0 : Q6u+4 → Q0 as Λn-
Λn-bimodules by

σ06u+4,0 :

{
el ⊗ el+1 7→ al ⊗ el+1 for l = 0, 1, 2

fr ⊗ fr+1 7→ 0 for r = 0, 1.

Moreover for u ≥ 0 and i ≥ 1 we define homomorphisms σi6u+4,0 : Q6u+i+4 →
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Qi as Λn-Λn-bimodules by: For j ≥ 0

σ3j+1
6u+4,0 :


el ⊗ el+2 7→ al ⊗ el+2 for l = 0, 1, 2

fr ⊗ fr+2 7→

{
0 for r = 1

a2 ⊗ f1 for r = 2,

σ3j+2
6u+4,0 :


el ⊗ el 7→ al ⊗ el for l = 0, 1, 2

e1 ⊗ f1 7→ a1 ⊗ f1

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ 0,

σ3j+3
6u+4,0 :


el ⊗ el+1 7→ al ⊗ el+1 for l = 0, 1, 2

fr ⊗ fr+1 7→

{
a0 ⊗ f1 for r = 0

0 for r = 1.

We also have the following lemma.

Lemma 3.2. We have X6u+4,0 = ∂0σ06u+4,0 and ∂iσi6u+4,0 = σi−1
6u+4,0∂

6u+i+4

for all u ≥ 0 and i ≥ 1. Hence the map σi6u+4,0 : Q6u+i+4 → Qi (i ≥ 0) is a
lifting of X6u+4,0.

3.2. The products in HH6u(Λn)×HH6v+2(Λn)

Now we investigate the products of elements in HH6u(Λn) and HH6v+2(Λn)
for u ≥ 0 and v ≥ 0.

Lemma 3.3. Suppose that n > 0 (so that HH6j+2(Λn) ̸= 0). We have the
following products:

(a) For any integers u ≥ 0 and s with 0 ≤ s ≤ n,

X6u+2,0 ×X0,s =

{
X6u+2,s if 0 ≤ s ≤ n− 1

0 if s = n.

(b) X6u,0 ×X2,0 = X6u+2,0 for any integer u ≥ 1.

Consequently, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2
with 0 ≤ s2 < n, we have

X6u1,s1 ×X6u2+2,s2 =

{
X6(u1+u2)+2,s1+s2 if 0 ≤ s1 + s2 ≤ n− 1

0 if s1 + s2 ≥ n.
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Proof. (a) Let u and s be integers with u ≥ 0 and 0 ≤ s ≤ n. Then we have

X0,sσ
0
6u+2,0 :


el ⊗ el+2 7→


(alal+1al+2)

salal+1 if 0 ≤ s ≤ n− 1,

or if s = n and l = 0

0 if s = n and l ̸= 0

fr ⊗ fr+2 7→ 0

for l = 0, 1, 2 and r = 1, 2. This shows that

X0,sσ
0
6u+2,0 =

{
X6u+2,s if 0 ≤ s ≤ n− 1

η if s = n.

However η ∈ ImHomΛe
n
(∂6u+2, Λn) by [F, Lemma 4.5 (b)], and so X0,nσ

0
6u+2,0

= 0 in HH6u+2(Λn). Thus we get the desired equality.
(b) Clearly X2,0σ

2
6u,0 = X6u+2,0 for all u > 0. So we have the required

equality in (b).
The last equality follows from (a), (b), and Lemma 2.2.

3.3. The products in HH6u(Λn)×HH6v+4(Λn)

Now we describe the products of elements in HH6u(Λn) and HH6v+4(Λn) for
u ≥ 0 and v ≥ 0.

Lemma 3.4. Suppose that n > 0 or charK | 3n+2 (hence HH6j+4(Λn) ̸= 0).
We have the following products:

(a) For any integers u ≥ 0 and 0 ≤ s ≤ n,

X6u+4,0×X0,s

=

{
X6u+4,s if 0 ≤ s ≤ n− 1, or if s = n and charK | 3n+ 2

0 if s = n and charK - 3n+ 2.

(b) X6u,0 ×X4,0 = X6u+4,0 for any integer u ≥ 1.

So, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with 0 ≤ s2 ≤ n
(if charK | 3n+ 2) or 0 ≤ s2 ≤ n− 1 (if charK - 3n+ 2), we have

X6u1,s1×X6u2+4,s2

=


X6(u1+u2)+4,s1+s2 if s1 + s2 ≤ n− 1,

or if charK | 3n+ 2 and s1 + s2 = n

0 if charK - 3n+ 2 and s1 + s2 = n,

or if s1 + s2 > n.
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Proof. (a) Let u and s be integers with u ≥ 0 and 1 ≤ s ≤ n. We get

X0,sσ
0
6u+4,0 :

{
el ⊗ el+1 7→ (alal+1al+2)

sal for l = 0, 1, 2

fr ⊗ fr+1 7→ 0 for r = 0, 1,

Hence X0,sσ
0
6u+4,0 = µs0 + µs1 + µs2. Therefore if 0 ≤ s ≤ n− 1, or if s = n and

charK | 3n+2, then X0,sσ
0
6u+4,0 = X6u+4,s. Also if s = n and charK - 3n+2,

then X0,nσ
0
6u+4,0 ∈ ImHomΛe

n
(∂6j+4, Λn) by [F, Lemma 4.5 (d)]. Therefore

(a) is proved.

(b) We have X4,0σ6u,0 = X6u+4,0 for all u ≥ 0. This yields the required
equality in (b).

The last equality follows from (a), (b), and Lemma 2.2.

3.4. The products in HH6u+2(Λn)×HH6v+2(Λn)

Now we describe the products in HH6u+2(Λn) × HH6v+2(Λn) for u ≥ 0 and
v ≥ 0.

Lemma 3.5. Suppose that n > 0. We get

X2
2,0 =

{
X4,1 if n = 1 and charK | 3n+ 2, or if n > 1

0 if n = 1 and charK - 3n+ 2.

Thus, for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n− 1, we
have

X6u1+2,s1 ×X6u2+2,s2

=


X6(u1+u2)+4,s1+s2+1 if s1 + s2 < n− 1,

or if charK | 3n+ 2 and s1 + s2 = n− 1

0 if s1 + s2 > n− 1,

or if charK - 3n+ 2 and s1 + s2 = n− 1.

Proof. We have X2,0σ
2
2,0 = µ10+µ

1
1+µ

1
2. Therefore if n = 1 and charK - 3n+2,

then X2,0σ
2
2,0 ∈ ImHomΛe

n
(∂4, Λn) by [F, Lemma 4.5 (d)]. So X2,0σ

2
2,0 = 0 in

HH4(Λn). On the other hand if n = 1 and charK | 3n + 2 or if n > 1, then
X2,0σ

2
2,0 = X4,1. This shows that the first equality holds.

The second equality follows from the first equality and Lemmas 2.2, 3.3,
and 3.4.
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3.5. The products in HH6u+2(Λn)×HH6v+4(Λn)

Now we investigate the products of elements in HH6u+2(Λn) and HH6v+4(Λn)
for u ≥ 0 and v ≥ 0.

Lemma 3.6. Suppose that n > 0. Then we get X2,0×X4,0 = X6,1. Hence, for
any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n − 1, and s2 with 0 ≤ s2 ≤ n
(if charK | 3n+ 2) or 0 ≤ s2 ≤ n− 1 (if charK - 3n+ 2), we have

X6u1+2,s1 ×X6u2+4,s2 =

{
X6(u1+u2+1),s1+s2+1 if s1 + s2 ≤ n− 1,

0 if s1 + s2 ≥ n.

Proof. We have X2,0σ
2
4,0 = ϕ10 + ϕ11 + ϕ12 = X6,1. Also, by this equality and

Lemmas 2.2, 3.3, and 3.4, we have the second equality.

3.6. The products in HH6u+4(Λn)×HH6v+4(Λn)

Finally we consider the products of elements in HH6u+4(Λn) and HH6v+4(Λn)
for u ≥ 0 and v ≥ 0.

Lemma 3.7. Suppose that n > 0 or charK | 3n+ 2. We have

X2
4,0 =

{
0 if n = 0 and charK | 3n+ 2,

X8,0 if n > 0.

Thus, for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n (if
charK | 3n+ 2) or 0 ≤ s1, s2 ≤ n− 1 (if charK - 3n+ 2), we have

X6u1+4,s1 ×X6u2+4,s2 =

{
X6(u1+u2+1)+2,s1+s2 if s1 + s2 < n

0 if s1 + s2 ≥ n.

Proof. We have

X4,0σ
4
4,0 :

{
el ⊗ el+2 7→ alal+1 for l = 0, 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.

Thus if n = 0 and charK | 3n + 2, then X4,0σ
4
4,0 = η ∈ ImHomΛe

0
(∂8, Λ0) by

[F, Lemma 4.5 (b)], so that X4,0σ
4
4,0 = 0 in HH8(Λ0). Moreover if n > 0 then

X4,0σ
4
4,0 = θ00 + θ01 + θ02 = X8,0. Therefore the first equality holds.

The second equality follows from the first equality and Lemmas 2.2, 3.3,
and 3.4.



450 T. FURUYA AND T. HAYAMI

3.7. Generators and relations of HHev(Λn)

Now we can provide generators and relations of the even Hochschild cohomol-
ogy ring HHev(Λn) of Λn.

Theorem 1. We have the following isomorphism of commutative graded al-
gebras:

(a) The case char K | 3n+ 2:
(1) If n = 0 (hence char K = 2), then

HHev(Λ0) ≃ K[y4, y6]/(y
2
4),

where deg yi = i (i = 4, 6).
(2) If n > 0, then

HHev(Λn) ≃ K[y0, y2, y4, y6]/(y
n+1
0 , yn0 y2, y

2
2 − y0y4, y

2
4 − y2y6),

where deg yi = i (i = 0, 2, 4, 6).

(b) The case char K - 3n+ 2:
(1) If n = 0, then

HHev(Λ0) ≃ K[y6], where deg y6 = 6.

(2) If n = 1, then

HHev(Λ1) ≃ K[y0, y2, y4, y6]

/(y20, y0y2, y0y4, y
2
2, y2y4 − y0y6, y

2
4 − y2y6),

where deg yi = i (i = 0, 2, 4, 6).
(3) If n > 1, then

HHev(Λn) ≃ K[y0, y2, y4, y6]

/(yn+1
0 , yn0 y2, y

n
0 y4, y

2
2 − y0y4, y2y4 − y0y6, y

2
4 − y2y6),

where deg yi = i (i = 0, 2, 4, 6).

Proof. We put

y0 := X0,1, y2 := X2,0, y4 := X4,0, y6 := X6,0.

If char K | 3n + 2 and n = 0 (hence char K = 2), then note that
HH6u+s(Λ0) = K and HH6u+2(Λ0) = 0 hold for all u ≥ 0 and s = 0, 4. Since
X6u,0 = yu6 and X6u+4,0 = y4y

u
6 hold for all u ≥ 0, HHev(Λ0) is multiplicatively

generated by y4 and y6. Moreover the equation y24 = 0 holds.
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If charK - 3n+ 2 and n = 0, then HHev(Λ0) = HH6∗(Λ0). So by Proposi-
tion 2.1 we have the desired isomorphism.

If n > 0, from Lemmas 2.2 and Lemmas 3.3 through 3.7, we have the
following relations:

yn+1
0 = 0, yn0 y2 = 0,

y22 =

{
y0y4 if n = 1 and charK | 3n+ 2, or if n > 1

0 if n = 1 and charK - 3n+ 2,

yn0 y4 =

{
X4,n if charK | 3n+ 2

0 if charK - 3n+ 2,

y24 = y2y6.

Furthermore we have that

X6u,s = yu6y
s
0 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+2,s = yu6y2y
s
0 for u ≥ 0 and 0 ≤ s < n,

X6u+4,s = yu6y4y
s
0 for u ≥ 0 and 0 ≤ s < n,

X6u+4,n = yu6y4y
s
0 for u ≥ 0 (if charK | 3n+ 2).

Therefore we take {y0, y2, y4, y6} as algebra generators of HHev(Λn). This
completes the proof.

§4. The Hochschild cohomology ring HH∗(Λn)

In this section we describe all products of basis elements of whole Hochshild co-
homology ring HH∗(Λn), and then describe its ring structure of the Hochschild,
completely. Throughout this section, we keep the notations from Sections 2
and 3.

For simplicity, we denote the basis elements of HH6j+1(Λn) given in [F,
Lemma 4.1]) as follows: for j ≥ 0

X6j+1,0 := µ00 + (n+ 1)ν0 : Q
6j+1 → Λn;

X6j+1,m := µm0 : Q6j+1 → Λn for m = 1, . . . , n, if n > 0,
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which is given by

X6j+1,0 :


el ⊗ el+1 7→

{
a0 for l = 0

0 for l = 1, 2

fr ⊗ fr+1 7→

{
(n+ 1)b0 for r = 0

0 for r = 1,

X6j+1,m :

el ⊗ el+1 7→

{
(alal+1al+2)

mal for l = 0

0 for l = 1, 2

fr ⊗ fr+1 7→ 0 for r = 0, 1,

respectively. Similarly, we denote the basis elements of HH6j+3(Λn) given in
[F, Lemma 4.1]) as follows: for j ≥ 0

X6j+3,0 := ϕ00 + ϕ01 + ϕ02 + ψ : Q6j+3 → Λn, if charK | 3n+ 2;

X6j+3,m := ϕm0 + ϕm1 + ϕm2 : Q6j+3 → Λn

for m = 1, . . . , n, if n > 0 and charK | 3n+ 2;

X6j+3,m := ϕm0 : Q6j+3 → Λn for m = 1, . . . , n, if n > 0 and charK - 3n+ 2.

If charK | 3n+ 2, then X6j+3,m is given by

X6j+3,m :



el ⊗ el 7→ (alal+1al+2)
m for l = 0, 1, 2

f1 ⊗ f1 7→

{
f1 if m = 0

0 if m ≥ 1

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

where m = 0, 1, . . . , n. If charK - 3n+ 2 and n > 0, then X6j+3,m is given by

X6j+3,m :



el ⊗ el 7→

{
(a0a1a2)

m for l = 0

0 for l = 1, 2

f1 ⊗ f1 7→ 0

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

where m = 1, . . . , n. Moreover, if n > 0, we denote the basis elements of
HH6j+5(Λn) as follows: for j ≥ 0 and m = 0, 1, . . . , n− 1

X6j+5,m := θm0 : Q6j+5 → Λn,
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which is given by

X6j+5,m :

el ⊗ el+2 7→

{
(a0a1a2)

ma0a1 for l = 0

0 for l = 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.

4.1. An initial part of liftings of X1,0, X3,0, X3,1, and X5,0

We start by giving an initial part of liftings for X1,0, X3,0, X3,1, and X5,0.

Definition 4.1. For u ≥ 0 and j = 0, 1, we define homomorphisms σj6u+1,0 :

Q6u+1+j → Qj as Λn-Λn-bimodules by the following formulas:

σ06u+1,0 :


el ⊗ el+1 7→

{
a0 ⊗ e1 for l = 0

0 for l = 1, 2

fr ⊗ fr+1 7→

{
(n+ 1)b0 ⊗ f1 for r = 0

0 for r = 1,

σ16u+1,0 :



el ⊗ el+2 7→



n∑
k=0

(k + 1)(a0a1a2)
ka0 ⊗ (a2a0a1)

n−k

+
n−1∑
k=0

(k + 1)(a0a1a2)
ka0a1 ⊗ a0a1(a2a0a1)

n−k−1

+
n∑
k=1

k(a0a1a2)
k ⊗ a1(a2a0a1)

n−k − (n+ 1)b0 ⊗ e2

for l = 0

n∑
k=1

k(a1a2a0)
k ⊗ a2(a0a1a2)

n−k

+
n∑
k=1

k(a1a2a0)
ka1 ⊗ (a0a1a2)

n−k

+
n−1∑
k=1

k(a1a2a0)
ka1a2 ⊗ a1a2(a0a1a1)

n−k−1

for l = 1

n−1∑
k=0

(k + 1)(a2a0a1)
ka2a0 ⊗ a2a0(a1a2a0)

n−k−1

+
n∑
k=1

k(a2a0a1)
k ⊗ a0(a1a2a0)

n−k

+
n∑
k=1

k(a2a0a1)
ka2 ⊗ (a1a2a0)

n−k for l = 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.
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By direct computations, we have the following lemma.

Lemma 4.1. We have

X6u+1,0 = ∂0σ06u+1,0 and ∂1σ16u+1,0 = σ06u+1,0∂
2

for u ≥ 0. Hence σi6u+1,0 (i = 0, 1) is an initial part of a lifting of X6u+1,0.

Definition 4.2. If charK | 3n + 2, for u ≥ 0 and j = 0, 1, 2, 3, we define
homomorphisms σj6u+3,0 : Q

6u+3+j → Qj as Λn-Λn-bimodules by the following
formulas:

σ06u+3,0 :


el ⊗ el 7→ el ⊗ el for l = 0, 1, 2

f1 ⊗ f1 7→ f1 ⊗ f1

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

σ16u+3,0 :



el ⊗ el+1 7→



el ⊗ el+1 if n = 0 and l = 0, 1, 2

e0 ⊗ (a1a2a0)
n

+
3n−2∑
k=0

(k + 2)a0a1a2 · · · ak ⊗ ak+2 · · · a3n

+(3n+ 1)(a0a1a2)
n ⊗ e1

if n ≥ 1 and l = 0

e1 ⊗ (a2a0a1)
n

+
3n−1∑
k=1

(k + 1)a1a2 · · · ak ⊗ ak+2 · · · a3n+1

+(3n+ 1)(a1a2a0)
n ⊗ e2

if n ≥ 1 and l = 1

e2 ⊗ (a0a1a2)
n

+
3n∑
k=2

ka2a3 · · · ak ⊗ ak+2 · · · a3n+2

+(3n+ 1)(a2a0a1)
n ⊗ e0

if n ≥ 1 and l = 2

fr ⊗ fr+1 7→ (−1)rfr ⊗ fr+1 for r = 0, 1,

σ26u+3,0 :


el ⊗ el+2 7→ el ⊗ el+2 for l = 0, 1, 2

fr ⊗ fr+2 7→

{
−f1 ⊗ (a0a1a2)

n for r = 1

−(a2a0a1)
n ⊗ f1 for r = 2,
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σ36u+3,0 :



el ⊗ el 7→



el ⊗ el if n = 0 and l = 0, 1, 2

e0 ⊗ (a0a1a2)
n+

3n−2∑
k=0

(k + 2)a0a1a2 · · · ak ⊗ ak+1 · · · a3n−1

+(3n+ 1)(a0a1a2)
n ⊗ e0 if n ≥ 1 and l = 0

e1 ⊗ (a1a2a0)
n+

3n−1∑
k=1

(k + 1)a1a2 · · · ak ⊗ ak+1 · · · a3n

+(3n+ 1)(a1a2a0)
n ⊗ e1 if n ≥ 1 and l = 1

e2 ⊗ (a2a0a1)
n+

3n∑
k=2

ka2a3 · · · ak ⊗ ak+1 · · · a3n+1

+(3n+ 1)(a2a0a1)
n ⊗ e2 if n ≥ 1 and l = 2

f1 ⊗ f1 7→

{
f1 ⊗ f1 if n = 0

0 if n ≥ 1

e1 ⊗ f1 7→ e1 ⊗ f1

f1 ⊗ e1 7→ −f1 ⊗ e1.

Then we have the following lemma.

Lemma 4.2. If charK | 3n + 2, we have that X6u+3,0 = ∂0σ06u+3,0 and

∂iσi6u+3,0 = σi−1
6u+3,0∂

i+3 for all u ≥ 0 and i = 1, 2, 3. Hence σi6u+3,0 (i =
0, 1, 2, 3) is an initial part of a lifting of X6u+3,0.

Definition 4.3. If charK - 3n+2 and n > 0, for u ≥ 0, we define a homomor-
phism σ06u+3,1 : Q

6u+3 → Q0 as Λn-Λn-bimodules by the following formulas:

σ06u+3,1 :



el ⊗ el 7→

{
a0a1a2 ⊗ e0 for l = 0

0 for l = 1, 2

f1 ⊗ f1 7→ 0

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

Clearly, the following lemma holds.

Lemma 4.3. If charK - 3n+ 2 and n > 0, the equation X6u+3,1 = ∂0σ06u+3,1

holds for all u ≥ 0. Hence σ06u+3,1 is an initial part of a lifting of X6u+3,1.
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Definition 4.4. If n > 0, for u ≥ 0, we define a homomorphism σ06u+5,0 :

Q6u+5 → Q0 as Λn-Λn-bimodules by the following formula:

σ06u+5,0 :

el ⊗ el+2 7→

{
a0a1 ⊗ e2 for l = 0

0 for l = 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.

Lemma 4.4. If n > 0, we have that X6u+5,0 = ∂0σ06u+5,0 for all u ≥ 0. Hence

σ06u+5,0 is an initial part of a lifting of X6u+5,0.

4.2. The products in HH6u(Λn)×HH6v+1(Λn)

First we compute the products of elements in HH6u(Λn) and HH6v+1(Λn) for
u ≥ 0 and v ≥ 0.

Lemma 4.5. We have the following products:

(a) X0,s ×X6u+1,0 = X6u+1,s for any integers u ≥ 0 and s with 0 ≤ s ≤ n.

(b) X6u,0 ×X1,0 = X6u+1,0 for any integer u ≥ 1.

Therefore for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n, we
have

X6u1,s1 ×X6u2+1,s2 =

{
X6(u1+u2)+1,s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.

Proof. Since, for integers u and s with u ≥ 0 and 0 ≤ s ≤ n,

X0,sσ
0
6u+1,0 :


el ⊗ el+1 7→

{
(a0a1a2)

sa0 for l = 0

0 for l = 1, 2

fr ⊗ fr+1 7→

{
(n+ 1)b0 if s = r = 0

0 otherwise,

we have that X0,sσ
0
6u+1,0 = X6u+1,s. Furthermore, it is clear that X1,0σ

1
6u,0 =

X6u+1,0 for all u > 0. Thus (a) and (b) are proved. The last equation follows
from (a), (b), and Lemma 2.2.

4.3. The products in HH6u(Λn)×HH6v+3(Λn)

In the following, we calculate the products of elements in HH6u(Λn) and
HH6v+3(Λn) for u ≥ 0 and v ≥ 0.
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Lemma 4.6. Let charK | 3n+ 2. We have the following products:

(a) X0,s ×X6u+3,0 = X6u+3,s for any integers u ≥ 0 and s with 0 ≤ s ≤ n.

(b) X6u,0 ×X3,0 = X6u+3,0 for any integer u ≥ 1.

Therefore for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n, we
have

X6u1,s1 ×X6u2+3,s2 =

{
X6(u1+u2)+3,s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.

Proof. Since, for integers u and s with u ≥ 0 and 0 ≤ s ≤ n,

X0,sσ
0
6u+3,0 :



el ⊗ el 7→ (alal+1al+2)
s for l = 0, 1, 2

f1 ⊗ f1 7→

{
f1 if s = 0

0 if 0 < s ≤ n

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

we have that X0,sσ
0
6u+3,0 = X6u+3,s. Moreover, we have X3,0σ

3
6u,0 = X6u+3,0

for all u > 0. So (a) and (b) are proved. The last equation follows from (a),
(b), and Lemma 2.2.

Lemma 4.7. Let charK - 3n+2 and n > 0. We have the following products:

(a) For any integers u ≥ 0 and s with 0 ≤ s ≤ n,

X0,s ×X6u+3,1 =

{
X6u+3,s+1 if 0 ≤ s < n

0 if s = n.

(b) X6u,0 ×X3,1 = X6u+3,1 for any integer u ≥ 1.

Therefore, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with
0 < s2 ≤ n, we have

X6u1,s1 ×X6u2+3,s2 =

{
X6(u1+u2)+3,s1+s2+1 if s1 + s2 < n

0 if s1 + s2 ≥ n.

Proof. Since for integers u and s with u ≥ 0 and 0 ≤ s ≤ n,

X0,sσ
0
6u+3,1 :



el ⊗ el 7→

{
(a0a1a2)

s+1 for l = 0

0 for l = 1, 2

f1 ⊗ f1 7→ 0

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,
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we have that X0,sσ
0
6u+3,1 = X6u+3,s+1. Moreover, for all u > 0, we have

X3,1σ
3
6u,0 = X6u+3,1. Thus (a) and (b) are proved. The last equation follows

from (a), (b), and Lemma 2.2.

4.4. The products in HH6u(Λn)×HH6v+5(Λn)

Lemma 4.8. Let n > 0. We have the following products:

(a) For any integers u ≥ 0 and s with 0 ≤ s ≤ n,

X0,s ×X6u+5,0 =

{
X6u+5,s if 0 ≤ s < n

0 if s = n.

(b) X6u,0 ×X5,0 = X6u+5,0 for any integer u ≥ 1.

Therefore, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with
0 ≤ s2 < n, we have

X6u1,s1 ×X6u2+5,s2 =

{
X6(u1+u2)+5,s1+s2 if s1 + s2 < n

0 if s1 + s2 ≥ n.

Proof. Since, for integers u and s with u ≥ 0 and 0 ≤ s ≤ n,

X0,sσ
0
6u+5,0 :

el ⊗ el+2 7→

{
(a0a1a2)

sa0a1 for l = 0

0 for l = 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2,

we have that X0,sσ
0
6u+5,0 = θs0 = X6u+5,s for 0 ≤ s < n and X0,nσ

0
6u+5,0 = η ∈

Im HomΛe
n
(∂6u+5, Λn) by [F, Lemma 4.5 (e)]. Therefore (a) is proved. As for

(b), we have X5,0σ
5
6u,0 = X6u+5,0 for all u > 0. The last equation follows from

(a), (b), and Lemma 2.2.

4.5. The products in HH6u+1(Λn)×HH6v+1(Λn)

Lemma 4.9. We have X2
1,0 = 0. Hence for any integers u1 ≥ 0, u2 ≥ 0, s1,

and s2 with 0 ≤ s1, s2 ≤ n, we have X6u1+1,s1 ×X6u2+1,s2 = 0.

Proof. We have

X1,0σ
1
1,0 :


el ⊗ el+2 7→


n(n+ 1)

2
(a0a1a2)

na0a1 for l = 0

0 for l = 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2.
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Since η is an element in Im HomΛe
n
(∂2, Λn) (see [F, Lemma 4.5 (b)]), we have

X2
1,0 = (n(n+ 1))/2 η = 0 in HH2(Λn). The second equation follows from the

first equation and Lemmas 2.2 and 4.5.

4.6. The products in HH6u+1(Λn)×HH6v+2(Λn)

Next we describe the products in HH6u+1(Λn) × HH6v+4(Λn) for u ≥ 0 and
v ≥ 0.

Lemma 4.10. Let n > 0. For any integer u ≥ 0, we have the following
product:

X6u+1,0 ×X2,0 =

{
3−1X6u+3,1 if charK | 3n+ 2

X6u+3,1 if charK - 3n+ 2.

Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with
0 ≤ s2 < n, we have

X6u1+1,s1 ×X6u2+2,s2

=


3−1X6(u1+u2)+3,s1+s2+1 if charK | 3n+ 2 and s1 + s2 < n

X6(u1+u2)+3,s1+s2+1 if charK - 3n+ 2 and s1 + s2 < n

0 if s1 + s2 ≥ n.

Proof. Since, for any integer u ≥ 0,

X6u+1,0σ
1
2,0 :



el ⊗ el 7→

{
0 for l = 0, 2

a1a2a0 for l = 1

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0

f1 ⊗ f1 7→ 0,

we have

X6u+1,0 ×X2,0 = ϕ11

=


ϕ10 + ϕ11 + ϕ12 + (ϕ10 − ϕ12) if charK | 3n+ 2 and charK = 2

3−1(ϕ10 + ϕ11 + ϕ12) + 3−1(ϕ10 − ϕ12) + 3−1 · 2(ϕ11 − ϕ10)

if charK | 3n+ 2 and charK ̸= 2

ϕ10 + (ϕ11 − ϕ10) if charK - 3n+ 2.

Since ϕ10−ϕ12 and ϕ11−ϕ10 are in Im HomΛe
n
(∂6u+3, Λn) (see [F, Lemma 4.5 (c)]),

the first equation is proved. The second equation follows from the first equa-
tion and Lemmas 2.2, 3.3, 4.6, and 4.7.
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Remark 4.1. Let charK - 3n + 2 and n > 0. Then we have X6u+3,s =
Xu

6,0X
s−1
0,1 X1,0X2,0 for u ≥ 0 and 0 < s ≤ n. Hence HH6u+3(Λn) is generated

by the products of X6,0, X0,1, X1,0, X2,0 for u ≥ 0.

4.7. The products in HH6u+1(Λn)×HH6v+3(Λn)

Lemma 4.11. Let charK | 3n + 2. For any integer u ≥ 0, we have the
following product:

X6u+1,0 ×X3,0 =

{
X6u+4,n if charK = 2 and n ≡ 0 (mod 4)

0 otherwise

Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤ n, we
have

X6u1+1,s1 ×X6u2+3,s2 =


X6(u1+u2)+4,n if charK = 2, n ≡ 0 (mod 4)

and s1 = s2 = 0

0 otherwise.

Proof. Since, for an integer u ≥ 0,

X6u+1,0σ
1
3,0 :



el ⊗ el+1 7→



(3n+ 2)(n+ 1)

2
(a0a1a2)

na0 for l = 0

3n(n+ 1)

2
(a1a2a0)

na1 for l = 1

(3n+ 1)n

2
(a2a0a1)

na2 for l = 2

fr ⊗ fr+1 7→

{
(n+ 1)b0 for r = 1

0 for r = 2

it follows that

X6u+1,0 ×X3,0

=
(3n+ 2)(n+ 1)

2
µn0 +

3n(n+ 1)

2
µn1 +

(3n+ 1)n

2
µn2 + (n+ 1)ν0

=

−(n+ 1)(µn1 − µn2 − ν0) if n odd
3n+ 2

2
(µn0 + µn1 + µn2 )− (n+ 1)(µn1 − µn2 − ν0) if n even
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hold. Note that µn1 − µn2 − ν0 ∈ Im HomΛe
n
(∂6u+4, Λn) by [F, Lemma 4.5 (d)].

Therefore we have that

X6u+1,0 ×X3,0 =

0 if n odd
3n+ 2

2
X6u+4,n if n even.

If n is even, then charK = 2 or charK | (3n+ 2)/2. Thus we have

3n+ 2

2
=

{
1 if charK = 2 and n ≡ 0 (mod 4)

0 otherwise.

Hence the first equation is proved. The second equality follows from the first
equation and Lemmas 2.2, 3.4, 4.5, and 4.6.

Corollary 4.1. Let charK - 3n + 2 and n > 0. For any integer u ≥ 0, we
have X6u+1,0 × X3,1 = 0. Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 with
0 ≤ s1 ≤ n, and s2 with 0 < s2 ≤ n, we have X6u1+1,s1 ×X6u2+3,s2 = 0.

4.8. The products in HH6u+1(Λn)×HH6v+4(Λn)

Lemma 4.12. Suppose that n > 0 or charK | 3n+2. For any integer u ≥ 0,
we have the following products:

X6u+1,0 ×X4,0 =

{
0 if charK = 2 and n = 0

X6u+5,0 otherwise.

Hence for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with
0 ≤ s2 ≤ n (if charK | 3n+ 2) or 0 ≤ s2 < n (if charK - 3n+ 2), we have

X6u1+1,s1 ×X6u2+4,s2 =

{
X6(u1+u2)+5,s1+s2 if n > 0 and s1 + s2 < n

0 otherwise.

Proof. Since, for any integer u ≥ 0,

X6u+1,0σ
1
4,0 :

el ⊗ el+2 7→

{
0 for l = 0, 1

a2a0 for l = 2

fr ⊗ fr+2 7→ 0 for r = 1, 2,

we have that

X6u+1,0 ×X4,0 =

{
0 if charK | 3n+ 2 and n = 0

θ02 otherwise

=

{
0 if charK = 2 and n = 0

θ00 − (θ00 − θ02) otherwise.
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Since θ00 − θ02 is in Im HomΛe
n
(∂6u+5, Λn) (see [F, Lemma 4.5 (e)]), the first

equation is proved. The second equation follows from the first equation and
Lemmas 2.2, 3.4, 4.5, and 4.8.

Remark 4.2. If n > 0, then by Lemma 4.8 and 4.12 we have X6u+5,s =
Xu

6,0X
s
0,1X1,0X4,0 holds for u ≥ 0 and 0 ≤ s < n. Thus HH6u+5(Λn) is

generated by the products of X6,0, X1,0, X4,0, X0,1 for u > 0. Note that the
equation Xn

0,1X1,0X4,0 = 0 holds.

4.9. The products in HH6u+1(Λn)×HH6v+5(Λn)

By the previous sections, we have the following corollary:

Corollary 4.2. Let n > 0. For any integer u ≥ 0, we have X6u+1,0×X5,0 = 0.
Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 ≤ n, and s2 with
0 ≤ s2 < n, we have X6u1+1,s1 ×X6u2+5,s2 = 0.

4.10. The products in HH6u+2(Λn)×HH6v+3(Λn)

Lemma 4.13. Let charK | 3n + 2 and n > 0 (hence charK ̸= 3). For any
integer u ≥ 0, we have the following product:

X6u+2,0 ×X3,0 = 3X6u+5,0

Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 < n, and s2 with
0 ≤ s2 ≤ n, we have

X6u1+2,s1 ×X6u2+3,s2 =

{
3X6(u1+u2)+5,s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.

Proof. Since

X6u+2,0σ
2
3,0 =

{
el ⊗ el+2 7→ alal+1 for l = 0, 1, 2

fr ⊗ fr+2 7→ 0 for r = 1, 2,

it follows that

X6u+2,0 ×X3,0 = θ00 + θ01 + θ02

= (θ01 − θ00)− (θ00 − θ02) + 3θ00

= 3θ00.

holds in HH6u+5(Λn). Notice that θ
0
1−θ00 and θ00−θ02 are in Im HomΛe

n
(∂6u+5,

Λn) (see [F, Lemma 4.5 (e)]). The second equality follows from the first
equation and Lemmas 2.2, 3.3, 4.6, and 4.8.
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Corollary 4.3. Let charK - 3n + 2 and n > 0. For any integer u ≥ 0, we
have

X6u+2,0 ×X3,1 =

{
0 if n = 1

X6u+5,1 if n ≥ 2.

Therefore, for any integers u1 ≥ 0, u2 ≥ 0, s1 with 0 ≤ s1 < n, and s2 with
0 < s2 ≤ n, we have

X6u1+2,s1 ×X6u2+3,s2 =

{
X6(u1+u2)+5,s1+s2 if s1 + s2 < n

0 if s1 + s2 ≥ n.

4.11. The products in HH6u+2(Λn) and HH6v+5(Λn)

By the previous sections we get the following corollary:

Corollary 4.4. Let n > 0. For any integer u ≥ 0, we have X6u+2,0 ×X5,0 =
X6u+7,1. Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 ≤ s1, s2 ≤
n, we have

X6u1+2,s1 ×X6u2+5,s2 =

{
X6(u1+u2+1)+1,s1+s2+1 if s1 + s2 < n

0 if s1 + s2 ≥ n.

4.12. The products in HH6u+3(Λn)×HH6v+3(Λn)

We next describe the products in HH6u+3(Λn) × HH6v+3(Λn) for u, v ≥ 0.
First we consider the case where charK | 3n+ 2.

Lemma 4.14. Let charK | 3n + 2. For any integer u ≥ 0, we have the
following product:

X2
3,0 =

{
X6,n if charK = 2 and n ≡ 0 (mod 4)

0 otherwise.

Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 and s2 with 0 ≤ s1, s2 ≤ n, we
have

X6u1+3,s1 ×X6u2+3,s2 =


X6(u1+u2+1),n if charK = 2, n ≡ 0 (mod 4)

and s1 = s2 = 0

0 otherwise.
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Proof. Since

X3,0σ
3
3,0 :



el ⊗ el 7→
(3n+ 1)(3n+ 2)

2
(alal+1al+2)

n for l = 0, 1, 2

f1 ⊗ f1 7→

{
f1 if n = 0

0 if n ≥ 1

e1 ⊗ f1 7→ 0

f1 ⊗ e1 7→ 0,

we have

X2
3,0 =

ϕ
0
0 + ϕ01 + ϕ02 + ψ if n = 0
(3n+ 1)(3n+ 2)

2

(
ϕ00 + ϕ01 + ϕ02

)
if n ≥ 1

=
(3n+ 1)(3n+ 2)

2
X6,n.

In the case n odd, we have X2
3,0 = 0. If n is even, then charK = 2 or

charK | (3n+ 2)/2. Thus we have that

(3n+ 1)(3n+ 2)

2
= −3n+ 2

2
=

3n+ 2

2

=

{
1 if charK = 2 and n ≡ 0 (mod 4)

0 otherwise.

Therefore the first equation is proved. The second equation follows from the
first equation and Lemmas 2.2 and 4.6.

Similarly, by direct computations and the previous sections, we also have the
following:

Corollary 4.5. Let charK - 3n+2 and n > 0. We have X2
3,1 = 0. Therefore,

for any integers u1 ≥ 0, u2 ≥ 0, s1, and s2 with 0 < s1, s2 ≤ n, we have
X6u1+3,s1 ×X6u2+3,s2 = 0.

4.13. The products in HH6u+3(Λn)×HH6v+4(Λn)

Lemma 4.15. Let charK | 3n+2. For any integer u ≥ 0, we have X6u+4,0×
X3,0 = 3X6u+7,0. Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 and s2 with
0 ≤ s1, s2 ≤ n, we have

X6u1+3,s1 ×X6u2+4,s2 =

{
X6(u1+u2)+7,s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.
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Proof. For integer u ≥ 0, we have the following:

X6u+3,0σ
3
4,0 :

{
el ⊗ el+1 7→ al for l = 0, 1, 2

fr ⊗ fr+1 7→ 0 for r = 0, 1.

Therefore we have that

X6u+4,0 ×X3,0 = µ00 + µ01 + µ02

= 3(µ00 + (n+ 1)ν0) + (µ01 − µ00)− (µ00 − µ02 + ν0).

Then we get X6u+4,0 ×X3,0 = 3X6u+7,0, since µ
0
1 − µ00 and µ00 − µ02 + ν0 are in

Im HomΛe
n
(∂6u+7, Λn) (see [F, Lemma 4.5 (a)]). Therefore the first equation

is proved. The second equation follows from the first equation and Lemmas
2.2, 3.4, 4.5, and 4.6.

Similarly, by direct computations and the previous sections, we also have
the following:

Corollary 4.6. Let charK - 3n + 2 and n > 0. For any integer u ≥ 0, we
have X6u+4,0 × X3,1 = X6u+7,1. Therefore, for any integers u1 ≥ 0, u2 ≥ 0,
s1, and s2 with 0 < s1 ≤ n, 0 ≤ s2 < n, we have

X6u1+3,s1 ×X6u2+4,s2 =

{
X6(u1+u2)+7,s1+s2 if s1 + s2 ≤ n

0 if s1 + s2 > n.

4.14. The products in HH6u+i(Λn)×HH6v+5 for i = 3, 4, 5

By the previous sections we get the following corollaries:

Corollary 4.7. Let n ≥ 0. Then the following statements hold.

(a) Let charK | 3n+ 2 (hence charK ̸= 3). Then, for any integer u ≥ 0,

X6u+3,0 ×X5,0 = 0 and X6u+4,0 ×X5,0 = 3−1X6u+9,1.

Hence, for any integers u1 ≥ 0, u2 ≥ 0, s1 and s2 with 0 ≤ s1, s2 < n,

X6u1+3,s1 ×X6u2+5,s2 = 0 and

X6u1+4,s1 ×X6u2+5,s2 =

{
3−1X6(u1+u2)+9,s1+s2+1 if s1 + s2 < n

0 if s1 + s2 ≥ n.
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(b) Let charK - 3n+ 2. Then, for any integer u ≥ 0,

X6u+3,1 ×X5,0 = 0 and X6u+4,0 ×X5,0 = X6u+9,1.

Hence, for any integers u1 ≥ 0, u2 ≥ 0,

X6u1+3,s1 ×X6u2+5,s2 = 0

for s1 with 0 < s1 ≤ n, and s2 with 0 ≤ s2 < n, and

X6u1+4,s1 ×X6u2+5,s2 =

{
X6(u1+u2)+9,s1+s2+1 if s1 + s2 < n

0 if s1 + s2 ≥ n

for s1 and s2 with 0 ≤ s1, s2 < n.

(c) X2
5,0 = 0. Hence for any integers u1 ≥ 0, u2 ≥ 0, s1 and s2 with 0 ≤

s1, s2 < n.

4.15. Generators and relations of HH∗(Λn)

By summarizing Sections 2 and 3 and Sections 4.1 through 4.16, we have the
following theorem.

Theorem 2. The Hochschild cohomology ring of Λn is commutative, and it
is given as follows:

(a) The case char K | 3n+ 2:
(1) If char K = 2 and n = 0, then

HH∗(Λ0) ≃ K[y1, y3]/(y
2
1),

where deg yi = i (i = 1, 3).
(2) If char K = 2, n ≡ 0 (mod 4) and n ̸= 0, then

HH∗(Λn) ≃ K[y0, y1, y2, y3, y4, y6]

/(yn+1
0 , y21, y

n
0 y2, y1y2 − y0y3, y1y3 − yn0 y4,

y22 − y0y4, y1y4 − y2y3, y2y4 − y0y6, y
2
3 − yn0 y6,

y1y6 − y3y4, y
2
4 − y2y6),

where deg yi = i (i = 0, 1, 2, 3, 4, 6).
(3) If char K = 2, n ̸≡ 0 (mod 4), or if char K ̸= 2, then

HH∗(Λn) ≃ K[y0, y1, y2, y3, y4, y6]

/(yn+1
0 , y21, y

n
0 y2, 3y1y2 − y0y3, y1y3,

y22 − y0y4, 3y1y4 − y2y3, y2y4 − y0y6, y
2
3,

3y1y6 − y3y4, y
2
4 − y2y6),

where deg yi = i (i = 0, 1, 2, 3, 4, 6).
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(b) The case char K - 3n+ 2:
(1) If n = 0, then

HH∗(Λ0) ≃ K[y1, y6]/(y
2
1),

where deg yi = i (i = 1, 6).
(2) If n = 1, then

HH∗(Λ1) ≃ K[y0, y1, y2, y4, y6]

/(y20, y
2
1, y0y2, y0y4, y

2
2, y2y4 − y0y6, y

2
4 − y2y6),

where deg yi = i (i = 0, 1, 2, 4, 6).
(3) If n > 1, then

HH∗(Λn) ≃ K[y0, y1, y2, y4, y6]/(y
n+1
0 , y21, y

n
0 y2, y

n
0 y4,

y22 − y0y4, y2y4 − y0y6, y
2
4 − y2y6),

where deg yi = i (i = 0, 1, 2, 4, 6).

Proof. (a) Suppose char K | 3n+ 2. We put

y0 := X0,1, y1 := X1,0, y2 := X2,0, y3 := X3,0, y4 := X4,0, y6 := X6,0.

(1): If n = 0 (hence char K = 2), then note that HH3u+s(Λ0) = K and
HH3u+2(Λ0) = 0 hold for all u ≥ 0 and s = 0, 1. Since X4,0 = y1y3 and
y6 = y23 hold, we have X3u,0 = yu3 and X3u+1,0 = yu3y1 hold for all u ≥ 0. Thus
HH∗(Λ0) is multiplicatively generated by y1 and y3, and the equation y21 = 0
holds. Therefore we have the desired isomorphism.
(2) and (3): If n > 0, from Sections 2 and 3 and Sections 4.1 through 4.16 we
have the following equations:

yn+1
0 = 0, y21 = 0, yn0 y2 = 0, 3y1y2 = y0y3,

y1y3 =

{
yn0 y4 if char K = 2, n ≡ 0 (mod 4)

0 otherwise,

y22 = y0y4, 3y1y4 = y2y3, y2y4 = y0y6,

y23 =

{
yn0 y6 if char K = 2, n ≡ 0 (mod 4)

0 otherwise,

3y1y6 = y3y4, y
2
4 = y2y6.

Note that the equations yn0 y2 = 0 and 3y1y4 = y2y3 yield the equation
yn0 y1y4 = 0. Moreover we have that

X6u,s = yu6y
s
0 for u ≥ 0 and 0 ≤ s ≤ n,
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X6u+1,s = yu6y
s
0y1 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+2,s = yu6y
s
0y2 for u ≥ 0 and 0 ≤ s < n,

X6u+3,s = yu6y
s
0y3 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+4,s = yu6y
s
0y4 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+5,s = yu6y
s
0y1y4 for u ≥ 0 and 0 ≤ s < n.

Thus it is shown that the relations are enough, and therefore we can take
{y0, y1, y2, y3, y4, y6} as algebra generators of HH∗(Λn). Note that HH∗(Λn) is
a commutative algebra, since HH∗(Λn) is graded commutative and y21, y1y3, y

2
3

are zero if char K ̸= 2. Hence we have the results.

(b) Suppose char K - 3n+ 2. We put

y0 := X0,1, y1 := X1,0, y2 := X2,0, y4 := X4,0, y6 := X6,0.

(1): If n = 0 then note that HH6u+s(Λ0) = K and HH6u+t(Λ0) = 0 hold
for all u ≥ 0, s = 0, 1, and t = 2, 3, 4, 5. Then we have y21 = 0, and the
equations X6u,0 = yu6 and X6u+1,0 = yu6y1 hold for u ≥ 0. Hence HH∗(Λ0) is
multiplicatively generated by y1, y6, and we have the result.
(2) and (3): If n > 0, from Sections 2 and 3 and Sections 4.1 through 4.16 we
have the following equations:

yn+1
0 = 0, y21 = 0, yn0 y2 = 0, yn0 y4 = 0, y22 =

{
0 for n = 1

y0y4 for n > 1,

y2y4 = y0y6, y
2
4 = y2y6.

Furthermore we have

X6u,s = yu6y
s
0 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+1,s = yu6y
s
0y1 for u ≥ 0 and 0 ≤ s ≤ n,

X6u+2,s = yu6y
s
0y2 for u ≥ 0 and 0 ≤ s < n,

X6u+3,s = yu6y
s−1
0 y1y2 for u ≥ 0 and 0 < s ≤ n,

X6u+4,s = yu6y
s
0y4 for u ≥ 0 and 0 ≤ s < n,

X6u+5,s = yu6y
s
0y1y4 for u ≥ 0 and 0 ≤ s < n.

Hence it is shown that the relations are enough, and therefore we can take
{y0, y1, y2, y4, y6} as algebra generators of HH∗(Λn). Moreover HH∗(Λn) is
commutative, since HH∗(Λn) is graded commutative and y21 = 0.

Finally, by Theorem 2, we have the following structure of the Hochschild
cohomology ring modulo nilpotence of Λn:
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Corollary 4.8. There is the following of isomorphism of commutative graded
algebras:

HH∗(Λn)/N ≃ K[x], where deg x =

{
3 if n = 0 and char K = 2

6 otherwise.

Hence for n ≥ 0, HH∗(Λn)/N is finitely generated as an algebra.

Proof. If n = 0, the statement is clear. Also, if char K | 3n+2 and n > 0, then
y0, y1, y2, y3, and y4 are nilpotent elements, and moreover if char K - 3n + 2
and n > 0, then y0, y1, y2, and y4 are nilpotent elements. This completes the
proof.

§5. Applications

Throughout this section we suppose that n = 0, that is, we only deal with the
cluster-tilted algebra Λ0 of type D4, so that denote Λ0 by Λ, for simplicity.
Also we keep the notation from the previous sections.

In this section, as an application, we show that Λ satisfies the finiteness
conditions (Fg1) and (Fg2), and describe the Hochschild cohomology rings
modulo nilpotence for all cluster-tilted algebras of type D4.

5.1. (Fg1) and (Fg2)

We start by recalling the finiteness conditions (Fg1) and (Fg2) of [EHSST].
Let A be a finite-dimensional algebra, and let E(A) denote the Ext algebra of
A

E(A) := Ext∗A(A/rA, A/rA) =
⊕
i≥0

ExtiA(A/rA, A/rA),

where rA is the Jacobson radical of A. We then see that the functor A/rA⊗A−
naturally induces a homomorphism ϕA : HH∗(A) → E(A) of graded algebras.
For a graded subalgebra S of HH∗(A) we will consider E(A) as a S-module
by using ϕA. Then (Fg1) and (Fg2) are as follows:

(Fg1) There is a graded subalgebra H of HH∗(A) such that:

(i) H is a commutative noetherian ring.

(ii) H0 = HH0(A) = Z(A).

(Fg2) E(A) is finitely generated as a H-module.
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Recall that the graded centre Zgr(E(A)) of E(A) is the subring

Zgr(E(A)) :=
(
x ∈ ExtiA(A/rA, A/rA)∣∣∣ i ≥ 0; and xy = (−1)ijyx for all ∈ ExtjA(A/rA, A/rA) (∀j ≥ 0)

)
.

We first show the following lemma.

Lemma 5.1. The following statements hold:

(a) E(Λ) = KQ/(a0a1 + b0b1).

(b) The element w :=
(∑2

i=0(aiai+1ai+2)
2
)
+ (b1b2b0)

2 ∈ Ext6Λ(Λ/rΛ, Λ/rΛ)

belongs to Zgr(E(Λ)).

(c) ϕΛ(y6)(= ϕΛ(X6,0)) = w.

Proof. (a) By [F] Λ is a Koszul algebra. Hence it follows by [GM, Theorem 2.2]
(see also [So]) that E(Λ) = KQ/I⊥, where I⊥ := (a0a1 + b0b1).

(b) It is straightforward to check that w commutes with all arrows ai, bi
and trivial paths ei, fi, and therefore w ∈ Zgr(E(Λ)).

(c) This easily follows from the definition of ϕΛ.

Note that since Λ is a Koszul algebra, the image of ϕΛ is exactly Zgr(E(Λ))
by [BGSS, Theorem 4.1].

Now we can prove the main result in this section.

Theorem 3. E(Λ) is finitely generated as a HH6∗(Λ)-module. Accordingly Λ
satisfies (Fg1) and (Fg2).

Proof. We verify that E(Λ) is a HH6∗(Λ)-module generated by the set

U =
{
ei, f1, ai, bj , aiai+1, bjbj+1, aiai+1ai+2, a1a2b0, b1b2a0, b1b2b0,

aiai+1ai+2ai, bjbj+1bj+2bj , aiai+1ai+2aiai+1, bjbj+1bj+2bjbj+1,

(aiai+1ai+2)
2, a1a2a0a1a2b0, b1b2b0b1b2a0, (bjbj+1bj+2)

2

| i = 0, 1, 2; j = 0, 1
}
.

Noting that a0a1 = −b0b1 in E(Λ), it can be seen that U gives a K-basis of⊕6
l=0 Ext

l
Λ(Λ/rΛ, Λ/rΛ), and moreover the set {aiw, bjw | i = 0, 1, 2; j = 0, 1}

gives a K-basis of Ext7Λ(Λ/rΛ, Λ/rΛ). Then it is straightforward to check that
all homogeneous elements in E(Λ) can be written in the form

∑
p∈U kppw

t for
some kp ∈ K (p ∈ U) and t ≥ 0, and so E(Λ) is finitely generated as a right
HH6∗(Λ)-module.

Also it follows by Proposition 2.1 that HH6∗(Λ) is isomorphic to the poly-
nomial ring K[y6] and hence is a commutative noetherian ring. Therefore Λ
satisfies (Fg1) and (Fg2).
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It is well-known that there are 12 isomorphism classes of indecomposable
right modules for the path algebra of a Dynkin quiver of type D4 (see, for
example, [ASS, Chapter VII, Theorem 5.10]). Hence, by [BMR], Λ has 12
isomorphism classes of indecomposable right Λ-modules. In fact, there are
precisely the following indecomposable right Λ-modules up to isomorphism:

eiΛ/eirΛ (i = 0, 1, 2), f1Λ/f1rΛ, e0Λ/a0rΛ, f0Λ/b0rΛ,

ejΛ (j = 1, 2), f1Λ, e0Λ/e0r
2
Λ, e0rΛ, e0Λ.

Then we directly see that an indecomposable right Λ-module has finite projec-
tive dimension if and only if it is an injective module or a projective module.
On the other hand, since Λ satisfies (Fg1) and (Fg2), by [EHSST, Theo-
rem 2.5] a right Λ-module has finite projective dimension if an only if it has
trivial variety. Therefore we have got the following corollary.

Corollary 5.1. For an indecomposable right Λ-module M , the following are
equivalent:

(a) The support variety of M is trivial.

(b) M is a projective module or an injective module.

5.2. The Hochschild cohomology rings modulo nilpotence for
cluster-tilted algebras of type D4

We end this paper by determining the Hochschild cohomology rings modulo
nilpotence for all cluster-tilted algebras of type D4.

We know from [BHL] that there are three derived equivalence classes of
cluster-tilted algebras of type D4, and moreover, as their representatives, we
can take Λ and the following algebras:

(a) The selfinjective algebra A1 = KΓ1/I1 of finite representation type, where
Γ1 is the cyclic quiver

•

• •

•

OO
//

��
oo

and I1 is the ideal generated by all paths of length 3.

(b) The hereditary algebra A2 = KΓ2, where Γ2 is the Dynkin quiver

•

•

• •=={{{

!!C
CC

//
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of type D4.

Then by [GSS1] we get HH∗(A1)/N ≃ K[x] whereas, by [H], HH∗(A2)/N ≃
HH∗(A2) ≃ K. (Note that the structure of HH∗(A1) is described in [BLM,
EH].) Hence by Corollary 4.8 we have the following:

Corollary 5.2. The Hochschild cohomology rings modulo nilpotence for all
cluster-tilted algebras of type D4 are finitely generated as algebras, and are
isomorphic to K or K[x].
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