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Abstract. In this paper we describe the Hochschild cohomology rings for
algebras in a class of some special biserial algebras which contains a cluster-
tilted algebra of Dynkin type D4. In particular it is shown that the Hochschild
cohomology rings modulo nilpotence for these algebras are isomorphic to the
polynomial ring K[z]. As an application we prove that the cluster-tilted algebra
of type D4 contained in this class satisfies the finiteness conditions (Fgl) and
(Fg2) introduced in [EHSST].
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§1. Introduction

Let Q be the following quiver with four vertices 0, 1, 2, 3 and five arrows:
/ | \
2 \4/> :
3
Let e; be the trivial path corresponding to the vertex ¢ for ¢ = 0,1, 2, and let
f1 the trivial path corresponding to the vertex 3. For our convenience, f; also
denotes the trivial path corresponding to ¢ for ¢ = 0,2. Hence we may write
ej = fj for j = 0,2. Let a; be the arrow from i to ¢ + 1 for i = 0,1, and let

as the arrow from 2 to 0. Moreover let by the arrow from 0 to 3, and by the
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arrow from 3 to 2. For our convenience by also denotes the arrow from 2 to 0.
Hence we may write as = bs.

Throughout this paper, we always consider the indices i of e;, f;, a; and b;
as modulo 3. Hence it follows that, for all integers 4, a; starts at e; and ends
with e;41, whereas b; starts at f; and ends with f;1,. We write paths from
left to right.

Let K be an algebraically closed field, and let n be a non-negative integer.
We denote by I,, the ideal in the path algebra K Q generated by the elements

(agaraz)"apay — bob1, (@iait1aiv2)"a;a;41, bibipr fori=1,2.
Denote the algebra K Q/I, by A,. Then the set

{(aiais10i42), (@iair1air2) ai, (aiais1ai42) aia541,
f2> bo, b1, boby ‘Z:07172a J=0,1,...,n k:()?lavn_l}

is a K-basis of A,, so that dimg A, = 9n+ 10. Also we easily see that A, is a
special biserial algebra and is not a selfinjective algebra. The purpose of this
paper is to study the Hochschild cohomology of A,,.

In [BHL], Bastian, Holm and Ladkani introduced some finite quivers, called
“standard forms,” to investigate a derived equivalence classification for cluster-
tilted algebras of Dynkin type D. We notice that the quiver Q is one of these
standard forms. Moreover, if n = 0, then the algebra Ag is a Koszul cluster-
tilted algebra of type D4 (see [ABS, F]), and hence is an algebra of finite
representation type (see [BMR]). Also, Ay appears in [BHL] as a representative
of some derived equivalence class of cluster-tilted algebras of type D.

In [F], we constructed a minimal projective bimodule resolution of A,, for
all n > 0, and gave an explicit K-basis of the Hochschild cohomology groups
of A,. In this paper we use this K-basis to describe generators and rela-
tions of the Hochschild cohomology ring HH*(A,,) of A,,, where the product is
given by the Yoneda product. In [EHSST], the authors proved that if a finite-
dimensional algebra satisfies certain reasonable finiteness conditions, denoted
by (Fgl) and (Fg2), then the support varieties have a lot of analogous prop-
erties of those for finite group algebras (see also [Sn]). In particular it is proved
in [EHSST, Theorem 2.5] that if these conditions are satisfied, then the al-
gebra is Gorenstain and a module has trivial support variety if and only if it
has finite projective dimension. In this paper, we show that the cluster-tilted
algebra Ay of type Dy satisfies (Fgl) and (Fg2), and consider a condition for
the support variety of a Ag-module to be trivial.

In [Sn], Snashall asked the following question: When is the Hochschild co-
homology ring modulo nilpotence of a finite-dimensional algebra finitely gener-
ated as an algebra? It is known that the Hochschild cohomology rings modulo
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nilpotence for the classes of the following algebras are finitely generated as al-
gebras: group algebras of finite groups ([E, V]), monomial algebras ([GSS2]),
selfinjective algebras of finite representation type ([GSS1]), and algebras of
finite global dimension ([H]). But any definitive answer to this question has
not been obtained yet. Our main theorem shows that both the Hochschild
cohomology ring HH*(A,,) and the Hochschild cohomology ring modulo nilpo-
tence HH*(A,,) /N for n > 0 are finitely generated as algebras. Note that an
example of the Hochschild cohomology ring modulo nilpotence which is not
finitely generated appears in the papers [Sn, X].

This paper is organized as follows. In Section 2, we compute the prod-
ucts in the graded subring HH%*(4,) := @,~, HH%(A,) of HH*(4,), and
give generators and relations of HH*(A,,) (Proposition 2.1). In Section 3, we
compute the products in the even Hochschild cohomology ring HH®V(A,,) :=
@, HH*(A,), and find generators and relations of HH®(A,,), explicitly
(Theorem 1). In Section 4, we describe all products in the Hochschild co-
homology ring HH*(A4,,), and then as a main result we give the presentation of
HH*(A;) by generators and relations for all n > 0 (Theorem 2). Moreover we
determine the Hochschild cohomology ring modulo nilpotence HH*(A,,) /N for
all n > 0. In section 5, as an application, we prove that the Ext algebra E(Ap)
of Ay is finitely generated as a HH%*(Ag)-module, and consequently it is shown
that Ay satisfies (Fgl) and (Fg2) (Theorem 3). Finally we describe the sup-
port varieties for all indecomposabole modules over Ay (Corollary 5.1), and
determine the structures of the Hochschild cohomology rings modulo nilpo-
tence for all cluster-tilted algebras of type D4 (Corollary 5.2).

Throughout this paper, we denote the enveloping algebra Ap® ®x A, of
Ay, by A (hence each A,-A,-bimodule corresponds to a right AS$-module and
voice versa), and write ® g as ®, for simplicity. We always denote the minimal
projective bimodule resolution of A, given in [F] by (Q°®,0). For any i > 0
and right A°-module homomorphism X : Q* — A,,, we again write the element
in HH'(A,,) := Extil% (A, Ay) represented by A as A, for simplicity.

§2. The subring HH%*(4,)
In this section we investigate the products in the graded subring
HH®(4,) := @ HH% (4,) = P ExtS (An, An)
i>0 i>0

of HH*(A,,), and then find generators and relations of HH®*(4,,). ‘
We start by recalling the Yoneda product x in HH*(A,) := @, HH'(4,)
= @50 Extlye (An, An). Let ¢ 0 QF = A, and ¢ = QF — Ay, (i, j > 0) be
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right Af-module homomorphisms. Then we have liftings og,01,...,0; of ¥,
namely, there is the following commutative diagram of right A -modules:

O+ ot Qz‘+j—?i“*1 02 Qi+l o7t Qi
ioi \La_i—l J/UI J/U(X
) i ! qi—1 52 1 0
Qz 9 Qz—l 9 .0 Ql 9 QO 9 An 0
X\
Ay,

We define the product ¢ x ¢ of the homogeneous elements ¢ € HH*(A,,) and
¢ € HHY(A,,) by ¢o* € HH™(A,). Then the Yoneda product x in HH*(A,)
is defined by linearly extending these to the products in HH*(A,,).

Now, for simplicity, we denote the basis elements of HH"(A,,) and HH% (A,,)
( > 1) given in [F, Proposition 4.9] as follows:

Xo,0 =ay+ad+ad+8:Q° — Ay;
Xom =o' +al +a5: Q% = A, form=1,...,n,if n>0;
Xejo = ¢p + O +¢3 — 1 : QY — Ay;
Xejm = 00" + ¢ + o5 Q% — A, form=1,...,n,if n> 0.

Then we have by [F, Lemma 4.1] that: for { =0,1,2

Xon - eee  — e Ja®e = (alal+1al+2)m
0,0 - o,m -
A®fi = fi, i®fi — 0,
eee  — e e = (alal+1al+2)m
e1® — 0 e1® — 0
Xejo: 4 . h Xejom = § h
fiwer = 0 fiver — 0
h® [ = —fi, fi®fi — 0.

Remark 2.1. Tt is known that the map HH(A,) — Z(A,), h— h((X e ®
el) + f1 ® f1) is an isomorphism of algebras, where the products in HH’(A,,)
are given by the Yoneda products. Then using this isomorphism we have

Xost ifs+t<n,

2.1 Xos X Xot =
(2.1) 08 01 {0 if s+t >n.

for integers s and t with 0 < s,t < n. In particular, we see that Xo is the
identity of HH°(A,,).
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For u > 1, we define the map O'gu’o 1 Q% — QY of A,-A,-bimodules by

eeRe — e for { =0,1,2
0 e1®fi = 0
O6u,0 -

f1®61 — 0

L®fi = —fA® fi,

and o, 5 : @T% — Q' by the identity map idg: for i > 1.
Now by direct observations we have the following lemma.

Lemma 2.1. We have Xg,0 = 8008%0 and 8"aéu70 = ol LTS for all u > 1

and i > 1. Hence Uéu,O (¢ > 0) give liftings of Xeu.0-

From the lemma above we can describe the products in HH*(A,,).
Lemma 2.2. We have the following products:

(a) Xe6u,0 X Xo,s = Xeu,s for integers u > 1 and s with 0 < s < n.
(b) X6u,0 X X6v,0 = Xg(uto),0 for integers u > 1 and v > 1.

Hence, for integers up > 0, ug > 0, s1, and sg with 0 < s1,89 < n,

X6(u1+UQ),51+52 Zf S1 + 52 S n

X6 X X6 =
s 202 0 if s1 4 82 > n.

Proof. (a) Let u be a positive integer. Then for 0 < s < n we get

e ®e +— (mapia42)® for1=0,1,2

e1®fi = 0
X07508u,0: floer o 0
fi®fi — 0.

Therefore X07808u70 = Xeu,s, which gives the desired product.

(b) Clearly Xe,,00600 = Xg(usv),0 holds for u > 1 and v > 1, so that we
have the desired product.

The last equality easily follows from (2.1), (a) and (b). O

Now we can find generators and relations of HH%*(A,). Here we note that
HH®*(A,,) is a commutative graded subring of HH*(A,,).

Proposition 2.1. There is the following isomorphism of graded rings:

(a) If n =0, then HH®*(A,) ~ K[ys], where degys = 6.
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(b) If n > 0, then HHA*(A,) =~ Klyo,vel/(vg ), where degyo = 0 and
degys = 6.

Proof. We put y¢ = Xgpo. If n = 0, then by Lemma 2.2 we get the desired
isomorphism in (a).
Now suppose that n > 0, and put yo = Xo,1. Then we see by (2.1) and

Lemma 2.2 that Xe,s = y§ x y¢ for u>0and s =0,1,...,n, so that {yo,ys}

is a generator of HH%*(4,,). Also by (2.1) we have the relation yj*' = 0.

Therefore we get the desired isomorphism in (b). O

§3. The even Hochschild cohomology ring HH®(4,,)

In this section we compute all products of basis elements in even degrees, and
then determine the structure of the even Hochschild cohomology ring

HH® (4,) = @5 HH* (4,).
i>0

Note that HH®V(A,,) is a commutative graded subring of HH*(A,,). Through-
out this section we keep the notations from Section 2.

For simplicity we denote the basis elements of HH%*2(A,,) and HH% 4 (4,,)
given in [F, Proposition 4.9] as follows: for j > 0

X6j+2,m::96”—4—0{'1—1—95”:Q6j+2—>/1nforsz,l,...,n—l, if n > 0;
Xojpam = i +pul + p5: QYT — A, form =0,1,...,n—1, if n > 0;
Xojpan = p§ + pf + py - Q% — A, if char K | 3n + 2.

Note that, by [F, Lemma 4.1], for s =0,1,...,n—1

Jea®eys = (maiag2)’qay for1=0,1,2
6542,
s [r®fry2 — 0 for r = 1,2,

and, for t =0,1,...,n,

e ®e  — (qagiag)ta  for1=0,1,2
Xejtart
r®frer — 0 for r =0, 1.

hold.

3.1. Liftings of Xs,120 and Xgy 140

To compute Yoneda products in HH®V(A,,) we find liftings of X¢,120 and
X6uta,0 for u > 0.
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For u > 0 we define a homomorphism oJ, 42,0 Q%*? — QY as Ap-A,-
bimodules by

50 Jea®et2 = a1 ®eyo for1=0,1,2
0ut20° Y £ @ fris = 0 for r = 1,2.

Also, for u > 0 and i > 1, define homomorphisms o, 54 : Q**? = Q' as
Ap-Ay-bimodules by the following: For j > 0

e®e = a1 e forl=0,1,2
Gl ]ea® i & aae®fi
6u+2,0 - fl ® ey s 0
fl & fl — 07
ey  — aqa ey forl=0,1,2
3j+2
o : forr=20
6u+2,0 £® apal @ fi rr
0 for r =1,
etz — qap1 ey forl=0,1,2
3j+3
o : 0 forr=1
6u+2,0 £ @ forg
a20a0 X f1 for r = 2.

Then by direct computations we have the following lemma.

— 50,0 i i _ i1 gbutit2
Lemma 3.1. We have Xgu120 = 070,490 and 0'0¢,1 00 = 06,4900

for alluw >0 and i > 1. Thus the map 0§, 50 : QT - Q" (i >0) is a
lifting of Xeu+2,0-

Next for u > 0 we define a homomorphism o, 440 Q% — QY as A,-
Ay,-bimodules by

0 Ja®err = q®eyy forl=0,1,2
Gutd0 - Ffr;m — 0 forr=0,1.

Moreover for u > 0 and i > 1 we define homomorphisms ¢, TE Qbutitd
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Q' as A,-A,-bimodules by: For j > 0

4 ee®es  — a et for (| =0,1,2
Ugiﬁlo: 0 forr=1
’ fr®f7"+2
az ® fi for r = 2,

e +— aq®e forl=0,1,2
Ugiiio: ea®fi = a®fi
’ fivwer — O
hiefh = 0,
e ® e = a; e for ([ =0,1,2
Ugftii,o : ap ® fi forr =0

T’® T '_>
{f frin {0 for r = 1.

We also have the following lemma.

Lemma 3.2. We have Xgu140 = 8008@&470 and 8iaéq+470 = qé;i47086”+i+4
for allu >0 and i > 1. Hence the map 0§, 40 : Q% = Q" (i>0)isa
lifting of Xeu+4,0-

3.2. The products in HH(A,) x HH*2(A,,)

Now we investigate the products of elements in HH%(A,) and HH%*2(A,,)
for u > 0 and v > 0.

Lemma 3.3. Suppose that n > 0 (so that HH%72(A,)) # 0). We have the
following products:

(a) For any integers u > 0 and s with 0 < s < n,

X6ua2 if0<s<n-1
Xout2,0 X Xos = { e
0 if s=mn.

(b) Xeu,0 X X20 = Xeut2,0 for any integer u > 1.

Consequently, for any integers up > 0, us > 0, s1 with 0 < s1 < n, and s
with 0 < so < n, we have

_ XG(U1+U2)+2781+82 f0<s1+sp<n-—-1
Xﬁul,sl X XGU2+2,82 - .
0 if s1+ s2 > n.
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Proof. (a) Let w and s be integers with u > 0 and 0 < s < n. Then we have

(@agp10142)°qag f0<s<n—1,

e e orifs=nandl=0
0 ifs=nandl#0

fr® fre2 = 0

for [ =0,1,2 and r = 1,2. This shows that

X, 0 o X6u+275 ifOSSSn—l
0,506u+2,0 = i
n is=n.

0 .
X0,506u+2,0 :

However n € Im Hom ¢ (9°%2, A,,) by [F, Lemma 4.5 (b)], and so Xo,n08u+2,o
=0 in HH®*2(A,,). Thus we get the desired equality.

(b) Clearly X27oa§u70 = Xeus2,0 for all u > 0. So we have the required
equality in (b).

The last equality follows from (a), (b), and Lemma 2.2. O

3.3. The products in HH"(4,) x HH%™(4,,)

Now we describe the products of elements in HH®“(A,,) and HH*™4(A,,) for
u >0 and v > 0.

Lemma 3.4. Suppose that n > 0 or char K | 3n+2 (hence HH%4(A,,) # 0).
We have the following products:

(a) For any integers u >0 and 0 < s < n,
X6u+4,0xX0,s
) Xeutas if0<s<n—1, orifs=n andchar K | 3n + 2
o if s=n and char K { 3n + 2.
(b) X6u,0 X Xa,0 = Xeu+a,0 for any integer u > 1.

So, for any integers u; > 0, uo > 0, s1 with0 < s1 < n, and so with0 < s9 < n
(if char K | 3n+2) or 0 < sp <n —1 (if char K { 3n + 2), we have

X6U1781 XX6u2+4752

X6(u1+u2)+4,31+82 Zf S1 + 52 S n— 17
orifchar K | 3n+2 and s1 + sy =n
0 if char K t3n +2 and s1 + sa = n,

or if s1 + so > n.
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Proof. (a) Let w and s be integers with u > 0 and 1 < s < n. We get

0 {el ®er1  —  (qagia42)®a for1=0,1,2
X0,806u+4,0 :
fr®frer — 0 forr=0,1,

Hence X0,508u+4,0 = py + pi 4+ p5. Therefore if 0 < s <n —1, orif s =n and
char K | 3n+2, then X07sogu+470 = Xeut4,s. Also if s = n and char K { 3n+2,
then Xon0g,440 € ImHomye (0%%4, 4,) by [F, Lemma 4.5 (d)]. Therefore
(a) is proved.

(b) We have X4 00640 = Xeuta,0 for all w > 0. This yields the required
equality in (b).

The last equality follows from (a), (b), and Lemma 2.2. O

3.4. The products in HH6“+2(/1n) X HH6”+2(/1n)

Now we describe the products in HH®**2(A,,) x HH%"*2(A,,) for u > 0 and
v > 0.

Lemma 3.5. Suppose that n > 0. We get

9 {X4’1 ifn=1and char K |3n+2, orifn>1
2,0 =

0 if n =1 and char K { 3n + 2.

Thus, for any integers up > 0, us > 0, s1, and so with 0 < 51,80 <n —1, we
have

X6u1+2,51 X X6u2+2752

X6(uitus)t+dsi4sotl U S1+s2<n—1,

orif char K | 3n+2 and s1 + sa =n—1
0 ifsi+so>n—1,

or if char K 13n+2 and s; + so =n — 1.

Proof. We have Xgpd%o = p+pt+pd. Therefore if n = 1 and char K { 3n+2,
then XQ,OO-%O € ImHomy. (0%, A,) by [F, Lemma 4.5 (d)]. So Xg’gaio =0in
HH*(A,). On the other hand if n = 1 and char K | 3n + 2 or if n > 1, then
X27003,0 = X4,1. This shows that the first equality holds.

The second equality follows from the first equality and Lemmas 2.2, 3.3,
and 3.4. ]
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3.5. The products in HH“*2(A,) x HH"**(4,,)

Now we investigate the products of elements in HH®“*2(A,,) and HH%™(A,,)
for u >0 and v > 0.

Lemma 3.6. Suppose that n > 0. Then we get Xo0x X409 = X¢1. Hence, for
any integers up > 0, ug >0, s; with 0 < s1 <n—1, and so with 0 < so < n
(if char K | 3n+2) or 0 < so <n —1 (if char K { 3n + 2), we have

X6(u1+u2+1),31+32+1 Zf S1 + 52 S n— 1;

X6ur+2,51 X X6uotd,so =
1+2,51 2+4,s2 0 if 51+ 83 > 7.

Proof. We have XQ,OUE,O = g5+ &1 + Py = Xe6,1. Also, by this equality and
Lemmas 2.2, 3.3, and 3.4, we have the second equality. ]

3.6. The products in HH“t4(A,) x HH%**(4,,)

Finally we consider the products of elements in HH5“*4(A,,) and HH5**(A,,)
for u > 0 and v > 0.

Lemma 3.7. Suppose that n > 0 or char K | 3n + 2. We have

X2, = 0 if n =0 and char K | 3n + 2,
’ XS,O if n > 0.

Thus, for any integers uy > 0, ug > 0, s1, and sy with 0 < s1,s0 < n (if
char K | 3n+2) or 0 < s1,s52 <n —1 (if char K { 3n + 2), we have

X X, _ Xﬁ(u1+u2+1)+2,81+82 Zf 51 + S2.<n
6u1+4,s1 X 6us+4,s0 — .
0 if s14 s2 > n.

Proof. We have

X400t : e e — a4 for 1 =0,1,2
TN e ® fra2 0 for r =1,2.

Thus if n = 0 and char K | 3n + 2, then Xy 907, =7 € ImHomy: (9%, Ag) by
[F, Lemma 4.5 (b)], so that X4700f1{0 =0 in HH®(Ap). Moreover if n > 0 then
X47oajf 0= 98 + 9? + 08 = Xy . Therefore the first equality holds.

The second equality follows from the first equality and Lemmas 2.2, 3.3,
and 3.4. O
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3.7. Generators and relations of HH®(4,,)

Now we can provide generators and relations of the even Hochschild cohomol-
ogy ring HH®V(A,,) of A,,.

Theorem 1. We have the following isomorphism of commutative graded al-
gebras:

(a) The case char K | 3n + 2:
(1) If n =0 (hence char K = 2), then

HH® (Ao) ~ Ky, y6]/(y3),

where degy; =i (i =4,6).
(2) If n > 0, then

HH® (A,) ~ K[yo, y2. ya, 6]/ (We T, yGy2. ¥5 — yoys, Y3 — Y2Ys),
where degy; =i (i =0,2,4,6).

(b) The case char K {3n + 2:
(1) If n =0, then

HH®(Ag) ~ K|yg], where degys = 6.
(2) If n =1, then
HH® (A1) ~ Kyo, Y2, Y4, Ys]
/(Y5> Yoy, Yoy, Y3 Yays — Yo, Vi — Y2Us),

where degy; =1 (i =0,2,4,6).
(3) If n > 1, then

HH®(An) ~ Kyo, Y2, Y4, Ye|
/o™ Yoy, Yoy, Y5 — Yoyss Y2y — Yous, Y3 — Y2ue),
where degy; =i (i =0,2,4,6).
Proof. We put

yo := Xo,1, y2 := X2, Y1 := Xq0, ys := X¢,0-

If char K | 3n + 2 and n = 0 (hence char K = 2), then note that
HH%+5(Ay) = K and HH%“*2(A) = 0 hold for all v > 0 and s = 0,4. Since
Xo6u,0 = y¢ and Xey44,0 = yayg hold for all uw > 0, HH®Y(Ap) is multiplicatively
generated by y4 and y. Moreover the equation y? = 0 holds.
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If char K { 3n + 2 and n = 0, then HH®(Ag) = HH%*(Ag). So by Proposi-
tion 2.1 we have the desired isomorphism.

If n > 0, from Lemmas 2.2 and Lemmas 3.3 through 3.7, we have the
following relations:

yott =0,

Yoy2 =0,
o Jyoys ifn=1andcharK |3n+2, orifn>1
v 0 if n =1 and char K {3n + 2,
n X4y ifcharK | 3n+2
YolYs = .
0 if char K t 3n + 2,

yi = Y2Y6-
Furthermore we have that

Xéu,s = Y6 Yo foru>0and 0 < s <n,
Xeut2,s = Ygy2yy foru>0and 0 <s < n,
Xéuta,s = Ygyayy foru>0and 0 <s < n,
Xou+an = Ygyayy for u >0 (if char K | 3n + 2).

Therefore we take {yo,y2,y4,ys} as algebra generators of HH®V(A,). This
completes the proof. O

§4. The Hochschild cohomology ring HH*(A,)

In this section we describe all products of basis elements of whole Hochshild co-
homology ring HH*(4,,), and then describe its ring structure of the Hochschild,
completely. Throughout this section, we keep the notations from Sections 2
and 3.

For simplicity, we denote the basis elements of HH%*1(A,,) given in [F,
Lemma 4.1]) as follows: for j >0

Xejt1,0 1= 40 + (n+ g : QYT — Ay;

Xej+1,m = Mg - QY 5 A, form=1,...,n,ifn>0,
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which is given by

@ = forl =0
egRe
P 0 for [ =1,2
X6j+1,0:
n+1)bg forr=0
& —
Jr® Jria {O for r =1,
aja;+1a Ma; forl=0
Q@ Dens (@arra142)"ay
X6j+1,m . 0 for | = 1,2
fT’®f7’+1 = 0 fOI'T':O,l,

respectively. Similarly, we denote the basis elements of HH%*3(A,,) given in
[F, Lemma 4.1]) as follows: for j > 0

Xojt3.0 = 09+ &) + ¢+ : QYT 5 A, if char K | 3n + 2;
Xejiam =00 + 7" + 05 : QYT = 4,

form=1,...,n,if n >0 and char K | 3n + 2;
Xejiam =00 : Q¥ — A, for m=1,...,n, if n > 0 and char K { 3n + 2.

If char K | 3n + 2, then Xg;3,m, is given by

e — (qapia0)™  forl=0,1,2
ifm=0
® —
X6j+3,m : fl fl { if m > 1
e1®fi — 0
fi®er — 0,

where m = 0,1,...,n. If char K { 3n + 2 and n > 0, then X¢;j43,, is given by

m _
asa 0
Xejezm i@ fi = 0
e1®fi — 0
(fi®er = 0
where m = 1,...,n. Moreover, if n > 0, we denote the basis elements of

HHS*5(A,,) as follows: for j > 0and m=0,1,...,n—1

. . 6ji+5
X6j+5,m = 96n . Q I+ — Anv
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which is given by

(aparaz)™apa; forl=0
0 fori=1,2
fr® frya — 0 forr=1,2.

er®ep2
X6j+5,m :

4.1. An initial part of liftings of X, X30, X31, and X5

We start by giving an initial part of liftings for X o, X309, X31, and X5.

Definition 4.1. Foru > 0 and j = 0,1, we define homomorphisms Uéu+1,0 :
Q%I — Q7 as A,-A,-bimodules by the following formulas:

ap X e1 forl =0

€z®€l+1'—>{
08“0. 0 forl=1,2
u+1,0 *
(n+1bo® fi forr=20

7"® T —
Jr® fran {0 forr=1,

Z (k‘ + 1)(a0a1a2)ka0 ® (agaoal)"_k

k=0
n—1

+ 3 (k + 1) (agaraz)*agar ® agar(azagar)™ **

k=0
n
+ Z k(aoalag)k & al(agaoal)”*k — (n + 1)b0 X eo
k=1
forl=0
n
Z k(alagao)k &® ag(aoalag)"*k
k=1

k‘(alagag)kal X (aoalaQ)”_k

+
BeE

L e ® epya >
O6u+1,0 -

i
L

k(arazag)*araz ® araz(agarar)” "+

_|_
i

forl=1

i
L

—
o

+ 1)(azapa1)*azap ® azag(ajazag)”*-1

T I
=7

k(a2a0a1)k & (ILO(CHCLQQ())n_’C

e
Il
—

k(azapar)*as @ (ajazag)” %  forl =2

+
M=

T
I

\fr®fr+2'_>0 Jorr=1,2.
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By direct computations, we have the following lemma.
Lemma 4.1. We have
Xour1,0 = 0°08, 41,0 and 81Uéu+1,0 = Ugu+1,062
for u>0. Hence aéu+170 (1 =0,1) is an initial part of a lifting of Xeut1,0-
Definition 4.2. If char K | 3n + 2, for u > 0 and j = 0,1,2,3, we define

homomorphisms O'éu+370 c Q03T 5 Q7 as A,-Ay-bimodules by the following
formulas:

e = eg®e forl=0,1,2
50 )hef = fivh
6u+3,0 * el ®f1 . 0
fivwer — 0,
( e ® et ifn=0andl=0,1,2
eo ® (arasap)”
3n—2
+ > (k+2)agarag - ap @ agia -+ - azy,
k=0
+(3n+ 1)(apajaz)™ ® ey
ifn>1andl=0
e1 ® (azapar)"
3n—1
. eee+r = + > (k+Dajag- - ar @ agys - - aspt1
O6u+3,0 - k=1
+(3n + 1)(ajaz2a0)™ ® ey
ifn>1landl=1
es ® (aparaz)™
3n
+ > kasaz---ap ® agt2 - - azny2
k=2
+(3n + 1)(azapa1)™ ® e
| ifn>1andl =2
\f?"®f7“+1 = (_1)rf7’®f7‘+1 fO?”T:O,l,
ez e @ey Jor1=10,1,2

2 . n
o, : — =1
6u+3,0 £® Fri f1® (aparaz)™  forr
—(agapa1)" ® f1 forr =2,
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( (el®el ifn=0andl=0,1,2
eo @ (aparaz)"+
3n—2
Z (]{7 + 2)&0&1(12 Ak Q Qg1 A3p—1
k=0

+Bn+1)(aparaz)" ®ey ifn>1andl=0

e1 ® (aragap)"+

eeRe +— 3n—1

ST (k+1)ajas - ap @ agy1---azn
k=1

U§u+3,o : +(Bn+1)(a1a2a0)" ®e1 ifn>1andl=1

ez ® (agapar)™+

3n
E ka2a3 s ag & Af+1 - A3n+1
k=2

+Bn+1)(agapa1)" ®ey ifn>1andl =2

fiwfi ifn=0
& —
f1® fi {() ifn>1
e1®fi = e®f
\f1®61 = —fi®er.

Then we have the following lemma.

Lemma 4.2. If char K | 3n + 2, we have that Xey+30 = 8008u+370 and
'0hi30 = Ogursod™ for allu > 0 and i = 1,2,3. Hence 0,50 (i =
0,1,2,3) is an initial part of a lifting of Xeu+3,0-

Definition 4.3. Ifchar K {3n+2 andn > 0, foru > 0, we define a homomor-
phism G[6)U+371 : Q%3 5 Q0 as Ap,-Ay,-bimodules by the following formulas:

=0
PR apaias R eg  for
0 forl=1,2
0gu+3,1 NhAefi = 0
e1®fi = 0
fivwe, — 0,

Clearly, the following lemma holds.

Lemma 4.3. If char K {1 3n + 2 and n > 0, the equation Xey431 = 8008u+371
holds for all w > 0. Hence 08u+3,1 is an initial part of a lifting of Xeu43,1-
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Definition 4.4. If n > 0, for u > 0, we define a homomorphism 08u+570 :
Q%> — Q0 as A,-A,-bimodules by the following formula:

apa1 Qeg  forl=0
0 forl=1,2
Ir®frez — 0 forr=1,2.

0 Je ®eyo
O6u+5,0 -

Lemma 4.4. Ifn > 0, we have that Xey+50 = a%gu%p for allu > 0. Hence
Ugu+5,0 is an initial part of a lifting of Xeu45,0-

4.2. The products in HH%(A,) x HH%*1(4,,)

First we compute the products of elements in HH%(A,,) and HH®*1(A,,) for
u>0and v>0.

Lemma 4.5. We have the following products:
(a) Xo,s X Xeut1,0 = Xeut1,s for any integers u > 0 and s with 0 < s < n.
(b) Xeuo0 % X1,0 = Xeu+1,0 for any integer u > 1.

Therefore for any integers u; > 0, ug > 0, s1, and so with 0 < 51,590 < n, we
have
o XG(ul-l—ug)-‘rl,sl—i—sz Zf s1+s2<n
X6’I.L1,Sl X X6ug+].752 — .
0 if s1 4+ s9 > n.

Proof. Since, for integers u and s with u > 0 and 0 < s < n,

(aparaz)’ag forl=0

e ® ey —
: s {O forl=1,2

0 .
X0,506u+1,0 :

Lot H{(n—f—l)bg its=r=20
r r+1

otherwise,

we have that Xo,sagquLO = X6u+1,s- Furthermore, it is clear that Xl’odéup =
X6u+1,0 for all w > 0. Thus (a) and (b) are proved. The last equation follows
from (a), (b), and Lemma 2.2. O

4.3. The products in HH%(A,) x HH"3(4,,)

In the following, we calculate the products of elements in HH®“(A,) and
HH%*3(A,,) for u > 0 and v > 0.



HOCHSCHILD COHOMOLOGY RING 457

Lemma 4.6. Let char K | 3n+ 2. We have the following products:
(a) Xo,s X Xeut3,0 = Xeuts,s for any integers u > 0 and s with 0 < s < n.
(b) Xeuo0 %X X3,0 = Xeu+ts,o for any integer u > 1.

Therefore for any integers u1 > 0, ug > 0, s1, and so with 0 < 51,59 < n, we
have
_ X6(U1+U2)+3,31+32 Z.f s1t+s2<n
X6u1751 X X6u2+3,52 = .
0 if 51+ 89 > n.

Proof. Since, for integers v and s with v > 0 and 0 < s < n,

er® e = (qar1ap42)®  for1=0,1,2
1 ifs=0
0 H®fi— f .
X07506u+3,0 : O lf 0 < S S n
e1® fi—0
L fi®er — 0,

we have that X07508u+370 = X6u+3,s- Moreover, we have X37002u70 = X6u+3,0
for all w > 0. So (a) and (b) are proved. The last equation follows from (a),
(b), and Lemma 2.2. O

Lemma 4.7. Let char K t3n+2 and n > 0. We have the following products:

(a) For any integers u >0 and s with 0 < s < n,

X6u+3,s+1 ifO <s<n

Xos X X, =
0 futsl {O if s =n.

(b) Xeuo % X31 = Xeu+s,1 for any integer u > 1.

Therefore, for any integers u; > 0, ug > 0, s1 with 0 < s1 < n, and so with
0 < s9 < n, we have

X X _ ) X6(uitug) 135145241 U s1 4+ 82 <1
6u1,s1 X 6us+3,52 — .
0 if s1+ s2 > n.

Proof. Since for integers u and s with u > 0 and 0 < s < n,

S
X0,508u+3,1 N f®fie0
e1® f1—0
L fi ®er =0,
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we have that X0,508u+3,1 = Xo6u+3,s+1. Moreover, for all v > 0, we have

X3108,0 = Xeuts,1- Thus (a) and (b) are proved. The last equation follows
from (a), (b), and Lemma 2.2. O

4.4. The products in HH(A,) x HH"5(4,,)
Lemma 4.8. Let n > 0. We have the following products:
(a) For any integers u >0 and s with 0 < s < n,

Xs +5, if0<s<n
Xo,s X Xouts50 = e
0 if s =mn.

(b) Xeu0 %X X5,0 = Xeuts,0 for any integer u > 1.

Therefore, for any integers u1 > 0, ug > 0, s1 with 0 < s1 < n, and so with
0 < s9 < n, we have

Xﬁ(u1+u2)+5781+82 Zf S1 + So <N

X6u s1 X X6 -
,S1 u2+5,52 .
! 0 if s1+ s9 > n.

Proof. Since, for integers v and s with © > 0 and 0 < s < n,

(agalag)saoal forl =0
0 € & epy2
X0,506u+5,0 : 0 for1=1,2
fr® fre2—=0 for r =1,2,

we have that X07508u+570 =05 = Xouts5,s for 0 < s <mn and X07n08u+5,0 =n€
Im Hom e (8975, A,,) by [F, Lemma 4.5 (e)]. Therefore (a) is proved. As for
(b), we have X5,00g’u70 = Xeu+s,0 for all u > 0. The last equation follows from
(a), (b), and Lemma 2.2. O

4.5. The products in HH“"1(A,,) x HH*1(4,,)

Lemma 4.9. We have X12,0 = 0. Hence for any integers uy > 0, us > 0, s1,
and sy with 0 < 51,59 < n, we have Xey,+1,67 X X6ug+1,50 = 0.

Proof. We have

n(n+1)
e Qe — 2
Xl,OUio : 0 fori=1,2

Jr® frya—=0 for r = 1,2.

(aparag)"apa; for 1 =0



HOCHSCHILD COHOMOLOGY RING 459

Since 7 is an element in Im Hom ge (9%, A,,) (see [F, Lemma 4.5 (b)]), we have
X12,0 = (n(n+1))/2 n =0 in HA%(A,). The second equation follows from the
first equation and Lemmas 2.2 and 4.5. ]

4.6. The products in HH“*1(A,) x HH"2(4,,)

Next we describe the products in HH“1(A,,) x HH®™(4,,) for u > 0 and
v > 0.

Lemma 4.10. Let n > 0. For any integer v > 0, we have the following
product:
3_1X6u+371 if char K | 3n + 2

X X Xog =
6u+1,0 2,0 {X6u+3,1 if char K 1 3n + 2.

Hence, for any integers uy > 0, ug > 0, s1 with 0 < s1 < n, and sy with
0 < s9 < n, we have

X6u1+1,81 X X6u2+2,52
37 X6(uytus)+3,51+s241  if char K [ 3n+2 and s1+ 52 <n

= X6(uituz)+3,51+s2+1 if char K {3n+2 and s1 +sa <n
0 if s14 82 > n.

Proof. Since, for any integer u > 0,

D e s 0 for [ =0,2
e Re
: : ajasag forl=1

X6u+1700'%70 e ® f1—0
f1 X e1 — 0
fl ®f1 HO?

we have

Xeutr1,0 X Xog = b7
By + ¢ + o + (0 — $3) if char K | 3n + 2 and char K = 2
370+ é1 + 63) + 3715 — ¢3) +371 - 2(1 — 6p)
if char K | 3n + 2 and char K # 2
o5+ (o1 — &) if char K 1 3n + 2.

Since ¢ — @3 and ¢1 — @ are in Im Hom e (99412, A,) (see [F, Lemma 4.5 (c)]),
the first equation is proved. The second equation follows from the first equa-
tion and Lemmas 2.2, 3.3, 4.6, and 4.7. O
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Remark 4.1. Let char K { 3n+ 2 and n > 0. Then we have Xeyy3,s =
Xg’OXgilXLOXQ’O foru>0 and 0 < s < n. Hence HH“T3(A,,) is generated
by the products of Xe 0, Xo,1,X1,0, X2,0 for u > 0.

4.7. The products in HH“T1(A,) x HH"3(4,,)

Lemma 4.11. Let char K | 3n 4+ 2. For any integer uw > 0, we have the
following product:

Xoutan if char K =2 andn =0 (mod 4)

X6ut1,0 X X30 =
vl ’ 0 otherwise

Hence, for any integers u; > 0, ug > 0, s1, and so with 0 < s1,s9 < n, we
have

X6(ur+us)+4n i char K =2, n =0 (mod 4)
Xoui+1,51 X X6ug+3,50 = and s1 = s9 =0

0 otherwise.

Proof. Since, for an integer u > 0,

( 2 1
(3n + ;(n + )(aoalag)”ag forl=0
1
e e — ?m(n;_)(alagao)"al forl=1
X6u+1,00§,0 : 1
(Sn—;)n(agaoal)"ag for [ =2
n+ 1)bg forr=1
fT®fT+1H{( ) for r =2

it follows that

Xeut1,0 X X3,0
Bn+2)(n+1) , n 3n(n+1) , Bn+1)n

= 5 11 5 Mt ks + (D
—(n+ 1)(u} — py — wo) if n odd
=4 3n+2

D) (mo + p1 + py) — (n+ 1)(uf — py —vo) if n even



HOCHSCHILD COHOMOLOGY RING 461

hold. Note that pf — p% — vy € Im Hom e (9%, A,,) by [F, Lemma 4.5 (d)].
Therefore we have that

0 if n odd
X6ut1,0 X X30 =14 3n+2
2

If n is even, then char K = 2 or char K | (3n 4 2)/2. Thus we have

Xe6utan if neven.

n+2 {1 if char K = 2 and n =0 (mod 4)

2 10 otherwise.

Hence the first equation is proved. The second equality follows from the first
equation and Lemmas 2.2, 3.4, 4.5, and 4.6. O

Corollary 4.1. Let char K 1 3n + 2 and n > 0. For any integer u > 0, we
have Xeut+1,0 X X371 = 0. Hence, for any integers u; > 0, us > 0, s1 with
0<s1<mn, and so with 0 < so < n, we have Xeu;+1,5; X X6us+3,50 = 0.

4.8. The products in HH“"1(A,,) x HH*4(4,,)

Lemma 4.12. Suppose that n > 0 or char K | 3n+ 2. For any integer u > 0,
we have the following products:

0 if char K =2 and n =0

Xeut1,0 X X4 = _
X6ut5,0 otherwise.

Hence for any integers uy > 0, ugo > 0, s; with 0 < s1 < n, and sy with
0<sy<mn (if char K | 3n+2) or 0 < sy <n (if char K { 3n + 2), we have

X6(utus)+5.514+s2 U1 >0 and s1+ 52 <n
X6U1+1,S]_ X XGU2+4,82 = (Ul UZ) ST .
0 otherwise.
Proof. Since, for any integer u > 0,

0 for [ =0,1

e Re —
: H2 {agao forl =2

fr® fry2—0 for r =1,2,

1 .
X6u+1,0040 :

we have that

0 ifcharK|3n+2andn=0
Xe6ut+1,0 X X40 { |

69  otherwise
)0 if charK =2 and n =0
169 — (09— 69) otherwise.
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Since ) — 69 is in Im Hom e (9%, A,,) (see [F, Lemma 4.5 (e)]), the first
equation is proved. The second equation follows from the first equation and
Lemmas 2.2, 3.4, 4.5, and 4.8. O

Remark 4.2. If n > 0, then by Lemma 4.8 and 4.12 we have Xgyi5,5 =
X§0X51X1,0X40 holds for u > 0 and 0 < s < n. Thus HH6“+5(An) 18
generated by the products of X0, X1,0,X4,0,Xo0,1 for u > 0. Note that the
equation X1 X1,0X40 =0 holds.

4.9. The products in HH“"1(A,,) x HH*5(4,,)
By the previous sections, we have the following corollary:

Corollary 4.2. Letn > 0. For any integer u > 0, we have Xgy4+1,0 X X50 = 0.
Hence, for any integers uy > 0, ug > 0, s1 with 0 < s1 < n, and sy with
0 < s9 <n, we have Xgy,4+1,5; X X6uz+5,55 = 0.

4.10. The products in HH“"2(A,,) x HH"*3(4,,)

Lemma 4.13. Let char K | 3n+ 2 and n > 0 (hence char K # 3). For any
integer u > 0, we have the following product:

X6ut2,0 X X30 = 3X6u+5,0

Hence, for any integers uy > 0, uo > 0, s1 with 0 < s1 < n, and sy with
0 < s9 < n, we have

3X6(u1+u2)+5,51+52 if s1+s2<n

X6u X X =
142,81 6uz+3,s2 .
0 if s1 4+ 59 > n.

Proof. Since

Xeuss 00§o _Ja ® ejro — aqjay4q for1=0,1,2
o fr® frao—0 forr=1,2,

it follows that
Xeut2,0 X X30 =00 + 67 + 03
= (6% — 65) — (65 — 63) + 365
= 36).
holds in HH®**5(4,,). Notice that 6 — 63 and 3 — 69 are in Im Hom ge (95%75,

Ayp) (see [F, Lemma 4.5 (e)]). The second equality follows from the first
equation and Lemmas 2.2, 3.3, 4.6, and 4.8. O
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Corollary 4.3. Let char K 1 3n + 2 and n > 0. For any integer u > 0, we
have
0 ifn=1

Xeut2,0 X X371 = _
Xout+s1 tfn>2.

Therefore, for any integers uy > 0, ug > 0, 57 with 0 < s1 < n, and so with
0 < s9 < n, we have

X, X, _ Xﬁ(U1+U2)+5751+82 Zf s1+ 82 <n
6u1+2,s1 X 6ua+3,s90 — .
0 if s1+ s2 > n.

4.11. The products in HH%*"2(A,,) and HH%"5(4,,)

By the previous sections we get the following corollary:

Corollary 4.4. Let n > 0. For any integer u > 0, we have Xgy120 X X50 =
Xeut7,1- Hence, for any integers up > 0, uz > 0, s1, and so with 0 < 51,52 <
n, we have

X X ) X6(utus ) 41,51 45041 U S1HS2 <1
6u1+2,s1 X 6us+5,s2 .
0 if s1 4+ s2 > n.

4.12. The products in HH“"3(A,,) x HH"*3(4,,)

We next describe the products in HH“*3(A,,) x HH%*3(4,,) for u,v > 0.
First we consider the case where char K | 3n + 2.

Lemma 4.14. Let char K | 3n 4+ 2. For any integer u > 0, we have the
following product:

9 X6n ifchar K =2 andn =0 (mod 4)
3,0 — .
0 otherwise.

Hence, for any integers w1 > 0, ug > 0, s1 and s2 with 0 < 51,59 < n, we
have

X6(ur+us+1),n  f char K =2, n =0 (mod 4)
X6u1+3,51 X X6ug+3,80 = and s1 =59 =0

0 otherwise.
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Proof. Since

(3n+1)(3n+2)

e ® e — 5 (apagy1a142)" forl =0,1,2
fi ifn=0
|_>
X3,003?,’,0 heh {0 ifn>1
e1® f1—0
fi®er =0,
we have
$o + & + 5+ ifn=0
X30={GBn+1)Bn+2) 0 0 .on
9 (00 + @7+ ) ifn>1
3n+1)3n+2
_ @neDn e
In the case n odd, we have Xio = 0. If n is even, then char K = 2 or

char K | (3n 4 2)/2. Thus we have that

Bn+1)Bn+2)  3n+2 3n+2
2 B 2 2
{1 if char K = 2 and n = 0 (mod 4)

0 otherwise.

Therefore the first equation is proved. The second equation follows from the
first equation and Lemmas 2.2 and 4.6. O

Similarly, by direct computations and the previous sections, we also have the
following:

Corollary 4.5. Let char K t3n+2 andn > 0. We have X§,1 = 0. Therefore,
for any integers u; > 0, ug > 0, s1, and so with 0 < s1,s9 < n, we have
X6u1+3,s1 X Xﬁug+3,52 - O

4.13. The products in HH“"3(A,,) x HH"*4(4,,)

Lemma 4.15. Let char K | 3n+2. For any integer v > 0, we have Xey44,0 X
X30 = 3Xeur70. Hence, for any integers uy > 0, ug > 0, s1 and sy with
0 < s1,89 < n, we have

X X — Xﬁ(u1+uz)+7781+82 ifsi+s2<n
6u1+3,s1 X 6uo+4,s9 — .
0 if s1+ s2 > n.
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Proof. For integer u > 0, we have the following:

egRe1—a forl=0,1,2

X6ut3,0040
6u+3,0040 {fr ® fr+1 — 0 forr= O, 1.

Therefore we have that
Xeuta,0 X X30 = pg + p1f + pt
= 3(ug + (n+ Dwo) + (1 — 1) — (g — 13 + vo)-

Then we get Xey 4,0 X X3 0 = 3X6u+7,0, since M(l) — ,ug and ,ug — ,ug + 1p are in
Im Hom e (9%%7, A,,) (see [F, Lemma 4.5 (a)]). Therefore the first equation
is proved. The second equation follows from the first equation and Lemmas
2.2, 3.4, 4.5, and 4.6. O

Similarly, by direct computations and the previous sections, we also have
the following:

Corollary 4.6. Let char K 1 3n + 2 and n > 0. For any integer u > 0, we
have Xeyra0 X X31 = Xeut7,1. Therefore, for any integers up > 0, ug > 0,
s1, and so with 0 < s1 < n, 0 < so < n, we have

X X — XG(U1+U2)+7781+82 if s1+s82<n
6u1+3,51 X A6ug+4,s0 = :
0 if 14 s2 > n.

4.14. The products in HH%“™(A,) x HH® for i = 3,4,5

By the previous sections we get the following corollaries:
Corollary 4.7. Let n > 0. Then the following statements hold.
(a) Let char K | 3n + 2 (hence char K # 3). Then, for any integer u > 0,
Xout30 X X50=0 and Xeuta0 X X50 =3 Xou+9,1-
Hence, for any integers uy > 0, ug > 0, s1 and so with 0 < 51,59 < n,

XGU1+3,81 X X6u2+5,82 =0 and

1 .
3 XG(u1+u2)+9,81+32+1 Zf S1 + S2<mn

Xﬁu x X =
1+4,51 6uz+5,52 .
0 if s1+ s2 > n.
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(b) Let char K {3n+ 2. Then, for any integer u > 0,
Xouts1 X X50=0 and Xeura,0 X X50= Xeuto,1-
Hence, for any integers u; > 0, us > 0,

X6U1+3,Sl X XGU,Q+5,82 =0
for s1 with 0 < s1 < n, and sy with 0 < s9 < n, and

X, X, o XG(u1+uz)+9,s1+52+1 Zf §1+s2<n
6ui+4,s1 X 6uz+5,50 — .
0 ifs1+s2>mn

for s1 and so with 0 < 51,89 < n.

(c) Xg,o = 0. Hence for any integers uy > 0, us > 0, s1 and so with 0 <
S1,82 < n.

4.15. Generators and relations of HH*(A,,)

By summarizing Sections 2 and 3 and Sections 4.1 through 4.16, we have the
following theorem.

Theorem 2. The Hochschild cohomology ring of A, is commutative, and it
s given as follows:

(a) The case char K | 3n + 2:
(1) If char K =2 and n =0, then
HH*(Ao) =~ Kly1, 3/ (41),

where degy; =i (i =1,3).
(2) If char K =2, n=0 (mod 4) and n # 0, then
HH*(Ay) =~ K[yo, Y1, Y2, Y3, Y4, Ye)
JWe™ v ub Y, yiye — Yous, Y1Ys — Yoy,
Y5 — Yoy, Y1Ys — Y213, Y2ys — Yole Y3 — Y0 Y6,
Y16 — Y3Ya, Yi — Y2Ve),
where degy; =14 (i =0,1,2,3,4,6).
(3) If char K =2, n#0 (mod 4), or if char K # 2, then
HH*(A,) =~ K(yo,y1, Y2, Y3, Y4, Ye)
/o™ vt voye, 3yiye — vous, v1us,
Y5 — Yoyas BY1ys — Y2y3, Y2s — YoYe, Y3,
3Y1y6 — Ysya, Y3 — Y2V6),
where degy; =i (i =0,1,2,3,4,6).
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(b) The case char K 1 3n + 2:
(1) If n =0, then
HH*(Ao) = K[y1, 6]/ (41),

where degy; =1 (i = 1,6).
(2) If n =1, then
HH*(AI) = K[y07y17y27y47 yﬁ]
/(%8s Y3, Yoy2. Yoy, Y3, VoY1 — YoYe, Yi — Y2Us),

where degy; =1 (i =0,1,2,4,6).

(3) If n > 1, then

HH*(An) =~ K[yo, y1, 92, ya. v6) /(o™ vEs w2, viya,
Y3 — Yoya, Y2y4 — YoYss Y — Y2Ve),

where degy; =i (i =0,1,2,4,6).
Proof. (a) Suppose char K | 3n + 2. We put
Yo := Xo,1, y1:= X1,0, Y2 := Xo0, Y3 := X30, y4:= X40, Y6 := X¢,0-

(1): If n = 0 (hence char K = 2), then note that HH?“"$(Ay) = K and
HH3*2(Ag) = 0 hold for all w > 0 and s = 0,1. Since X409 = y1y3 and
Yo = yg hold, we have X3, 0 = y5 and X3,+1,0 = y5y1 hold for all u > 0. Thus
HH*(Ap) is multiplicatively generated by y; and ys, and the equation y? = 0
holds. Therefore we have the desired isomorphism.

(2) and (3): If n > 0, from Sections 2 and 3 and Sections 4.1 through 4.16 we
have the following equations:

vt =0, yf =0, yiy2 =0, 3y1y2 = yoys,

yoya if char K =2, n =0 (mod 4)
Yy1ys = .
0 otherwise,
Y3 = Yoya, 3Y1Y4 = Y2u3, Y2Ys = Yols,
9 yoye if char K =2, n =0 (mod 4)
Y3 = .
0 otherwise,

3Y1Y6 = Y3Ya, Yi = Y2Ye-

Note that the equations ygy2 = 0 and 3y1y4 = y2y3 yield the equation
Yo y1y4 = 0. Moreover we have that

Xéu,s = Y Yo foru>0and 0 < s <n,
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Xéu+1,s = YsYoY1 foru>0and 0 <s<n,
Xeut2,s = YgYoy2 foru>0and 0 < s <n,
Xéu+3,s = YgYoy3 foru>0and 0 < s <n,
Xéutd,s = Y Yoya foru>0and 0 < s <n,
Xéuts,s = YsYoy1ya foru>0and 0 <s < n.

Thus it is shown that the relations are enough, and therefore we can take
{v0, Y1, Y2, Y3, Y1,y } as algebra generators of HH*(4,,). Note that HH*(A,,) is
a commutative algebra, since HH*(4,,) is graded commutative and y?, y1y3, y3
are zero if char K # 2. Hence we have the results.

(b) Suppose char K t3n + 2. We put

Yo := Xo1, y1:= X0, y2:= X0, ¥4 := X0, ¥6 := Xo,0-

(1): If n = 0 then note that HH®*"$(Ay) = K and HH®*™*(Ay) = 0 hold
for all u > 0, s = 0,1, and t = 2,3,4,5. Then we have y? = 0, and the
equations Xe, 0 = y§ and Xeyt1,0 = ygy1 hold for w > 0. Hence HH*(Ay) is
multiplicatively generated by y1,ys, and we have the result.

(2) and (3): If n > 0, from Sections 2 and 3 and Sections 4.1 through 4.16 we
have the following equations:

0 forn=1
yoys form >1,

y8+1 :07 y%:()a yngZOa ygy4:07 y% :{

Y2Ya = YoVYse, yi = Y2VYe6-

Furthermore we have

Xou,s = Y6 Yo foru>0and 0 <s<mn,
Xou+1,s = Y Yot foru>0and 0 <s<mn,
Xou+t2,s = Y§YoY2 foru >0and 0 < s <n,

Xou+ts,s = ygyg_lylyz foru>0and 0 < s <n,
Xou+d,s = Y Yoya foru>0and 0 < s <mn,
Xou+s,s = YgYoY1Y4 foru>0and 0 <s<n.

Hence it is shown that the relations are enough, and therefore we can take
{v0,y1,Y2,v4,ys} as algebra generators of HH*(A,). Moreover HH*(A,) is
commutative, since HH*(A4,,) is graded commutative and y% = 0. ]

Finally, by Theorem 2, we have the following structure of the Hochschild
cohomology ring modulo nilpotence of Ay:
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Corollary 4.8. There is the following of isomorphism of commutative graded
algebras:

3 ifn=0 and char K =2

HH*(A,)/N ~ K[z], where degxz = ,
6 otherwise.

Hence for n > 0, HH*(A,)/N is finitely generated as an algebra.

Proof. If n = 0, the statement is clear. Also, if char K | 3n+2 and n > 0, then
Y0, Y1, Y2, Y3, and y4 are nilpotent elements, and moreover if char K { 3n + 2
and n > 0, then yg,y1,y2, and y4 are nilpotent elements. This completes the
proof. O

§5. Applications

Throughout this section we suppose that n = 0, that is, we only deal with the
cluster-tilted algebra Ay of type Dy, so that denote Ay by A, for simplicity.
Also we keep the notation from the previous sections.

In this section, as an application, we show that A satisfies the finiteness
conditions (Fgl) and (Fg2), and describe the Hochschild cohomology rings
modulo nilpotence for all cluster-tilted algebras of type Dy.

5.1. (Fgl) and (Fg2)

We start by recalling the finiteness conditions (Fgl) and (Fg2) of [EHSST].
Let A be a finite-dimensional algebra, and let F(A) denote the Ext algebra of
A

E(A) := Ext}y(A/va, Afra) = @ Ext’y(A/ra, A/ra),
i>0

where t4 is the Jacobson radical of A. We then see that the functor A/tqg®4—
naturally induces a homomorphism ¢4 : HH*(A) — E(A) of graded algebras.
For a graded subalgebra S of HH*(A) we will consider E(A) as a S-module
by using ¢4. Then (Fgl) and (Fg2) are as follows:

(Fgl) There is a graded subalgebra H of HH*(A) such that:

(i) H is a commutative noetherian ring.

(i) H° = HH°(A) = Z(A).

(Fg2) E(A) is finitely generated as a H-module.
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Recall that the graded centre Zg(E(A)) of E(A) is the subring
Zug(B(A)) 1= (w € Bxtiy(A/ca, Afra)
‘ i >0; and 2y = (—1)Yyz for all € Extil(A/tA,A/tA) (Vg > O))
We first show the following lemma.
Lemma 5.1. The following statements hold:
(a) E(A) = KQ/(apay + boby).

(b) The element w := <Z?:O(aiai+1ai+2)2> + (bybabg)? € ExtS(A/tq, AJry)
belongs to Zg(E(A)).

(c) ¢a(ys)(= Pa(X60)) = w.

Proof. (a) By [F] Ais a Koszul algebra. Hence it follows by [GM, Theorem 2.2]
(see also [So]) that F(A) = KQ/I+, where I+ := (agaj + boby).

(b) It is straightforward to check that w commutes with all arrows a;, b;
and trivial paths e;, f;, and therefore w € Zy(E(A)).

(c) This easily follows from the definition of ¢ 4. O

Note that since A is a Koszul algebra, the image of ¢, is exactly Zg (E(A))
by [BGSS, Theorem 4.1].
Now we can prove the main result in this section.

Theorem 3. E(A) is finitely generated as a HH®* (A)-module. Accordingly A
satisfies (Fgl) and (Fg2).

Proof. We verify that E(A) is a HH®*(A)-module generated by the set

U= {e, f1, @, bj, ajait1, bjbjt1, aiaij1air2, arazbo, bibaag, bibabo,
;@i 4104205, bjbji1bj19bs, a;a;110:42a;0:41, bjbjr1bj12bibji,
(aiai11ai12)%, ajasagaiasby, bibabobibaag, (bjbjy1bjia)?
|i=0,1,2; j=0,1}.

Noting that aga; = —bpby in E(A), it can be seen that U gives a K-basis of
@?:0 Ext!(4/ta, A/t4), and moreover the set {a;w, bjw | i=0,1,2; j = 0,1}
gives a K-basis of Ext’(A/ta, A/ts). Then it is straightforward to check that
all homogeneous elements in E/(A4) can be written in the form »_ ;; kppw! for
some k, € K (p € U) and t > 0, and so E(A) is finitely generated as a right
HH®% (A)-module.

Also it follows by Proposition 2.1 that HH%*(A) is isomorphic to the poly-
nomial ring K[yg] and hence is a commutative noetherian ring. Therefore A
satisfies (Fgl) and (Fg2). O
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It is well-known that there are 12 isomorphism classes of indecomposable
right modules for the path algebra of a Dynkin quiver of type Dy (see, for
example, [ASS, Chapter VII, Theorem 5.10]). Hence, by [BMR], A has 12
isomorphism classes of indecomposable right A-modules. In fact, there are
precisely the following indecomposable right A-modules up to isomorphism:

eidfeity (i=0,1,2), fiA/fiva, eod/aors, foA/bota,
;A (j=1,2), fiA, eodfeetd, eorta, eod

Then we directly see that an indecomposable right A-module has finite projec-
tive dimension if and only if it is an injective module or a projective module.
On the other hand, since A satisfies (Fgl) and (Fg2), by [EHSST, Theo-
rem 2.5] a right A-module has finite projective dimension if an only if it has
trivial variety. Therefore we have got the following corollary.

Corollary 5.1. For an indecomposable right A-module M, the following are
equivalent:

(a) The support variety of M is trivial.

(b) M is a projective module or an injective module.

5.2. The Hochschild cohomology rings modulo nilpotence for
cluster-tilted algebras of type D,

We end this paper by determining the Hochschild cohomology rings modulo
nilpotence for all cluster-tilted algebras of type Dy.

We know from [BHL] that there are three derived equivalence classes of
cluster-tilted algebras of type D4, and moreover, as their representatives, we
can take A and the following algebras:

(a) The selfinjective algebra A1 = KT /I of finite representation type, where
I7 is the cyclic quiver
[ ] [}
[ J [ ]

and [ is the ideal generated by all paths of length 3.

e

-~

(b) The hereditary algebra As = K%, where I is the Dynkin quiver
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of type Dy.

Then by [GSS1] we get HH*(A;1)/N =~ K|[x] whereas, by [H], HH*(As) /N ~
HH*(A) ~ K. (Note that the structure of HH*(A;) is described in [BLM,
EH].) Hence by Corollary 4.8 we have the following:

Corollary 5.2. The Hochschild cohomology rings modulo nilpotence for all
cluster-tilted algebras of type Dy are finitely generated as algebras, and are
isomorphic to K or Klz].
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