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Abstract. Skewness and kurtosis characteristics of a multivariate p-
dimensional distribution introduced by Mardia (1970) have been used in var-
ious testing procedures and demonstrated attractive asymptotic properties in
large sample settings. However these characteristics are not designed for high-
dimensional problems where the dimensionality, p can largely exceeds the sam-
ple size, N . Such type of high-dimensional data are commonly encountered
in modern statistical applications. This the suggests that new measures of
skewness and kurtosis that can accommodate high-dimensional settings must
be derived and carefully studied. In this paper, we show that, by exploiting
the dependence structure, new expressions for skewness and kurtosis are intro-
duced as an extension of the corresponding Mardia’s measures, which uses the
potential advantages that the block-diagonal covariance structure has to offer
in high dimensions. Asymptotic properties of newly derived measures are inves-
tigated and the cumulant based characterizations are presented along with of
applications to a mixture of multivariate normal distributions and multivariate
Laplace distribution, for which the explicit expressions of skewness and kurto-
sis are obtained. Test statistics based on the new measures of skewness and
kurtosis are proposed for testing a distribution shape, and their limit distri-
butions are established in the asymptotic framework where N → ∞ and p is
fixed but large, including p > N . For the dependence structure learning, the
gLasso based technique is explored followed by AIC step which we propose for
optimization of the gLasso candidate model. Performance accuracy of the test
procedures based on our estimators of skewness and kurtosis are evaluated using
Monte Carlo simulations and the validity of the suggested approach is shown
for a number of cases when p > N .
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§1. Introduction

Modern experimental technology provides a possibility for collection and ex-
change of massive sets of data which naturally poses a challenge the quanti-
tative analyses of such type of data. Examples include statistical analyses of
complex and high-dimensional systems where simultaneous measuring a large
number of feature variables is associated with small sample size. This is a
common situation in e.g. gene expression data which usually comprises mea-
surements on thousands of features, but the sample size is often in several
hundreds; image data are usually obtained by measuring dozens of thousands
of variables at the same time whereas the size of available samples usually
remains in hundreds.

An important component of statistical analyses of this type of high-dimensi-
onal problems are characteristics of the shape of the population distribution
underlying the data, such as e.g. measures of spherical or elliptical symmetry.
For example, the dimensionality reduction technique, sliced inverse regression
suggested in Cook and Li [2] and its extension (see, Liang [14]) are shown
to be powerful alternatives to standard feature selection procedures in high-
dimensional setting, however under the assumption of sphericity or elliptic
symmetry of the underlying distribution. Another example to give is on learn-
ing structural sparsity in high-dimensional data by gLasso technique; this is a
very efficient tool, however the interpretations of zeros in the inverse covari-
ance matrix and convergence properties of the obtained estimators are given
under multivariate normality (which is a special case of elliptically symmetric
distribution).

Further needs for development of new symmetry measures can also be mo-
tivated by the following circumstances. Over the last decades, several new
distribution families have been introduced for modeling skewed data, e.g. the
asymmetric multivariate Laplace distribution is studied with applications in
Kots et al. [12], multivariate skew t-distribution is considered in Kots and
Nadarajar [13] and various types of skew elliptical distributions are presented
in the monograph Genton [5]. Typically these families are characterized by
the scale and symmetry parameters and estimation of these parameters cre-
ates problems when sample size is small relative to the dimensionality. Hence,
it would be highly desirable to develop new characteristics along with the cor-
responding testing procedures that have stable performance accuracy in high
dimensions.

Most common population measures characterizing the distribution shape
are given bymultivariate skewness andmultivariate kurtosis defined by Mardia
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[15] as

β1 = E[{(x− µ)′Σ−1(y − µ)}3],(1.1)

β2 = E[{(x− µ)′Σ−1(x− µ)}2],(1.2)

where x and y are independent and identically distributed random p-dimensio-
nal vectors with expectation µ and non-singular covariance matrix Σ.

Recall that the multivariate skewness is a measure of the asymmetry of
a distribution about its mean and its value far from zero indicates stronger
asymmetry of the underlying distribution than that with close to zero skewness
value. The multivariate kurtosis measures the peakedness of a distribution
scaled by its covariance (Both these measures are always non-negative, unlike
the univariate case). We also note that β1 = 0 and β2 = p(p+ 2) hold under
multivariate normality.

Several suggestions and generalizations for modifying of (1.1) and (1.2)
are considered since Mardia’s pioneering work. For recent results, we refer
to e.g. Miyagawa et al. [17] who proposed the sample measure of multivari-
ate kurtosis of the form containing Mardia [15] and Srivastava [20]. Further,
Koizumi et al. [10] suggest two extensions of Jarque-Bera test, which is an om-
nibus type test for assessing multivariate normality. They are constructed by
combining estimators of Mardia’s, multivariate skewness and kurtosis, or by
Srivastava’s multivariate skewness and kurtosis introduced in Srivastava [20].
For reviews of testing the multivariate normality using skewness and kurtosis,
see e.g., Henze [6] or Mecklin and Mundfrom [16]. Clearly, these procedures,
while demonstrating attractive asymptotic properties and good performance
accuracy in large sample case, are not applicable in high dimensions since the
sample based covariance matrix is singular when p > n and hence can not be
inverted. The main goal of this paper is to design such measures of skewness
and kurtosis which can tackle the challenge of high-dimensionality in combi-
nation with small sample size. Our crucial idea in designing these measures is
to point out advantages offered by the dependence structure, and show how
these advantages can be exploited.

We introduce new measures of skewness and kurtosis under the block-
diagonal covariance structure with a constraint that the block dimension does
not exceed the sample size and no other constraints on the covariance struc-
ture within the blocks. We then use asymptotic theory assuming p fixed and
n → ∞, including the case when p > n and establish the asymptotic dis-
tributions of our suggested sample based skewness and kurtosis under the
additional normality assumption. Furthermore, while the original estimators
of β1 and β2 as well as corresponding test procedures were developed keep-
ing p fixed and letting n → ∞, our new estimates are so constructed that
they are also valid under the standard high-dimensional asymptotic, i.e. when
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both p and n → ∞. As the use of our estimators of β1 and β2, particu-
larly high-dimensional case, to tackle the problem of testing normality is very
natural application, a simulation study with a variety of parameter settings
is performed. The accuracy of the test statistics is evaluated for size con-
trol, inclusive of the cases when the dimensionality p far exceeds sample size.
Since our theoretical results, e.g. moments of the suggested estimators, are
largely asymptotic, we provide numerical evaluation of asymptotic accuracy.
In particular, with the use of simulations, we derive two improved versions of
sample based skewness. Finally, the block-diagonal covariance structure: this
assumption, while being very beneficial for theoretical consideration in high-
dimensions, seem to be too strong for practical applications. Of course, in e.g.
genome data the block-diagonal covariance structure is a natural model repre-
senting interactions of tightly linked genes; pathway-level analysis can provide
biologically meaningful hypothetical block structure of functionally related
genes. However, it is important to derive a structure estimation technique
which work without information from outside the datasets. This motivates
our proposal on the structure learning technique which consists of two stages;
gLasso procedure is first used for obtaining a set of candidate sparse struc-
tures and then Akaike’s Information Criterion (AIC) is applied to optimize
the block-diagonal structure approximation.

The reminder of the paper is organized as follows. In Section 2, we de-
fine population measures of skewness and kurtosis along with corresponding
cumulant-based expressions, establish explicit inequality relating skewness and
kurtosis, and provide some examples of applications of newly derived charac-
teristics. In Section 3, we derive main asymptotic results under multivariate
normality and show how the suggested estimators of skewness and kurtosis can
be improved by the exact bias correction and normalizing transformations. In
Section 4, we suggest an algorithm for estimating the covariance structure
and show its optimal properties. Section 5 summarizes Monte Carlo simula-
tion experiments and the validity of suggested test procedures under different
parameter settings.

§2. New measures of multivariate skewness and kurtosis and
their characterizations

In this section, we derive our new measures of multivariate skewness and
kurtosis. Let x and y be independent, identically distributed, p-dimensional
random vectors, with x,y ∼ F , where F denotes the distribution function
with E(x) = E(y) = µ and Cov(x) = Cov(y) = Σ. Assume further that x
and y can be partitioned into non-empty, disjoint independent subsets as

x = (x(1)′ ,x(2)′ , . . . ,x(k)′)′ and y = (y(1)′ ,y(2)′ , . . . ,y(k)′)′,
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where x(l) = (x
(l)
1 , x

(l)
2 , . . . , x

(l)
pl )

′, y(l) = (y
(l)
1 , y

(l)
2 , . . . , y

(l)
pl )

′ are pl-vectors and∑k
l=1 pl = p. Then µ = (µ(1)′ ,µ(2)′ , . . . ,µ(k)′)′ and Σ = diag(Σ1,Σ2, . . . ,Σk),

where Σl is pl × pl matrix. We define our measures of skewness and kurtosis
as

βh,1 ≡
k∑

l=1

E
[
{(x(l) − µ(l))′Σl

−1(y(l) − µ(l))}3
]
=

k∑
l=1

β
(l)
h,1,

βh,2 ≡
k∑

l=1

E
[
{(x(l) − µ(l))′Σl

−1(x(l) − µ(l))}2
]
=

k∑
l=1

β
(l)
h,2,

respectively, which are natural extensions of original Mardia [15]. We note
that βh,1 = 0 and βh,2 =

∑k
l=1 pl(pl + 2) hold under assumption that F is

the distribution function of Np(µ,Σ). Observe that both βh,1 and βh,2 are
invariant measures with respect to nonsingular transformation

x = A∗u+ b,(2.1)

where A∗ = diag(A1, A2, . . . , Ak), Al is a non-singular pl × pl matrix (l =
1, 2, . . . , k) and b ∈ Rp. Using invariance property, we, without loss of gener-
ality, assume that µ = 0 and Σ = Ip, and derive the relationship of skewness
and kurtosis. For any a0, a1, a2 ∈ R,

E

(a0 + a1

pl∑
i=1

x
(l)
i + a2

pl∑
i=1

x
(l)2

i

)2
 ≥ 0(2.2)

hold. Due to independence of x(l)’s and by the assumptions on µ and Σ, we
obtain

E

( pl∑
i=1

x
(l)
i

)2
 = pl, E

( pl∑
i=1

x
(l)2

i

)2
 = β

(l)
h,2.

Further, by applying technique from Kollo and Srivastava [11] for each l block
after some vector algebra, we obtain

E

[(
pl∑
i=1

x
(l)
i

)(
pl∑
i=1

x
(l)2

i

)]
= plβ

(l)
h,1.

Now, by putting a0 = p2l , a1 = plβ
(l)
h,1, a2 = pl into (2.2), we see that β

(l)
h,2 ≥

p2l + β
(l)
h,1, which in turn provides the following inequality:

βh,2 ≥
k∑

l=1

p2l + βh,1.
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We further obtain expression for population measures βh,1 and βh,2 in terms
of cumulants. We first define Kh,1 and Kh,2 as

Kh,1 =
k∑

l=1

pl∑
r,r′=1

pl∑
s,s′=1

pl∑
t,t′=1

(κ
(rr′)
11(l))

−1(κ
(ss′)
11(l))

−1(κ
(tt′)
11(l))

−1κ
(rst)
111(l)κ

(r′s′t′)
111(l) ,(2.3)

Kh,2 =

k∑
l=1

pl∑
r,r′=1

pl∑
s,s′=1

(κ
(rr′)
11(l))

−1(κ
(ss′)
11(l))

−1κ
(rr′ss′)
1111(l) ,(2.4)

where κ
(rstu)
1111(l) denotes the cumulant of order (1, 1, 1, 1) for the random variables

(x
(l)
r , x

(l)
s , x

(l)
t , x

(l)
u ) and r, s, t, u = 1, 2, . . . , pl. Now, by calculating moments

and by using the relationship between cumulants and moments (see, Kendall
and Stuart [8], p.84), we obtain

Kh,1 = βh,1,(2.5)

Kh,2 = βh,2 −
k∑

l=1

pl(pl + 2).(2.6)

We mention two examples where our suggested measures might be useful.

Example 1: Mixture of multivariate normal distributions with common
covariance matrices.

The random vector x is said to have a mixture multivariate normal distri-
bution if x has the probability density function (p.d.f.)

ϵϕ(x;µ1,Σ) + ϵ′ϕ(x;µ2,Σ),(2.7)

for some p-dimensional vector µj , j = 1, 2 and some non-singular matrix Σ
with 0 < ϵ < 1, ϵ′ = 1− ϵ, and ϕ is the p.d.f. of normal distribution.

Day [3] has proposed to use Mahalanobis distance, ∆2 = (µ1−µ2)
′Σ−1(µ1−

µ2) as a measure of non-normality for this population and has derived test of

normality based on an estimator of ∆. We assume that µj = (µ
(1)′

j ,µ
(2)′

j , . . . ,

µ
(k)′

j )′, j = 1, 2 and Σ = diag(Σ1,Σ2 . . . ,Σk), and show for this mixture that
Kh,1 and Kh,2 can be expressed as functions of ∆l which is the Mahalanobis
distance for l’s block, defined as

∆2
l = (µ

(l)
1 − µ

(l)
2 )′Σ−1

l (µ
(l)
1 − µ

(l)
2 ).

By making suitable non-singular transformation for each block and by in-
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dependence of x(l)’s, we find that the p.d.f. in (2.7) reduces to

k∏
l=1

[
ϵϕ(x(l);µ

(l)
1 ,Σl) + ϵ′ϕ(x(l);µ

(l)
2 ,Σl)

]
=

k∏
l=1

{ϵϕ(x(l)1 −∆l) + ϵ′ϕ(x
(l)
1 )}

pl∏
i=2

ϕ(x
(l)
i ).

Observe that Kh,1 and Kh,2 remain unchanged since they are invariant under
linear transformations.

We show for this population that Kh,1 and Kh,2 are some function of ∆l so
that a possible test of multivariate normality can be considered. By indepen-
dence of x(l)’s, the moment generating function of x, mx(t), can be expressed
as

mx(t) = E[et
′x] = E[et

(1)′x(1)+t(2)
′
x(2)+···+t(k)

′
x(k)

]

= E[et
(1)′x(1)

]E[et
(2)′x(2)

] · · ·E[et
(k)′x(k)

]

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
et

(1)′x(1){ϵϕ(x(1)1 −∆1) + ϵ′ϕ(x
(1)
1 )}

p1∏
i=2

ϕ(x
(1)
i )dx(1) · · ·

∫ ∞

−∞
· · ·
∫ ∞

−∞
et

(k)′x(k){ϵϕ(x(k)1 −∆k) + ϵ′ϕ(x
(k)
1 )}

pk∏
i=2

ϕ(x
(k)
i )dx(k)

for t = (t(1)
′
, t(2)

′
, . . . , t(k)

′
)′ ∈ Rp and t(l) = (t

(l)
1 , t

(l)
2 , . . . , t

(l)
pl )

′. Since the
expressions of each product term are the same it is sufficient to evaluate it for
one block. We get∫ ∞

−∞
· · ·
∫ ∞

−∞
et

(l)′x(k){ϵϕ(x(l)1 −∆l) + ϵ′ϕ(x
(l)
1 )}

pl∏
i=2

ϕ(x
(l)
i )dx(l)

=

pl∏
i=2

exp
[ t(l)2i

2

](
ϵ′ exp

[ t(l)21

2

]
+ ϵ

∫ ∞

−∞
et

(l)
1 x

(l)
1 ϕ(x

(l)
1 −∆l)dx

(l)
1

)
=

pl∏
i=1

exp
[ t(l)2i

2

]
(ϵ′ + ϵ exp

[
t
(l)
1 ∆l

]
).

Now we obtain the cumulant generating function

k∑
l=1

pl∑
i=1

t
(l)2

i

2
+

k∑
l=1

log(ϵ′ + ϵ exp
[
t
(l)
1 ∆l

]
).(2.8)
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Since cross cumulants are equal to zero, we can obtain cumulants by differen-
tiating (2.8). After a deal of calculations it can be found that

Kh,1 =

k∑
l=1

(ϵϵ′(ϵ− ϵ′)∆3
l )

2

(ϵ2 + (2 +∆2
l )ϵϵ

′ + ϵ′2)3
=

k∑
l=1

(ϵϵ′(ϵ− ϵ′)∆3
l )

2

(1 + ∆2
l ϵϵ

′)3
,

Kh,2 =

k∑
l=1

ϵϵ′(ϵ2 − 4ϵϵ′ + ϵ′2)∆4
l

(ϵ2 + (2 +∆2
l )ϵϵ

′ + ϵ′2)2
=

k∑
l=1

ϵϵ′(1− 6ϵϵ′)∆4
l

(1 + ∆2
l ϵϵ

′)2
.

HenceKh,1 andKh,2 (essentially βh,1 and βh,2) are the functions of ∆l. Clearly,
when ∆l = 0 (l = 1, 2, . . . k), Kh,1 and Kh,2 are zero in accordance with
the property of original Mardia’s measures. It is important to note that the
original Day [3] test was derived in large sample context whereas our approach
accommodates both large sample and high-dimensional cases.

Example 2: Multivariate Laplace distribution with block diagonal covari-
ance structure.

The random vector x is said to have a multivariate Laplace distribution
(denoted by x ∼ MLp(µ,Σ)), where E(x) = µ and Cov(x) = Σ. We as-
sume that µ = (µ(1)′ ,µ(2)′ , . . . ,µ(k)′)′ and Σ = diag(Σ1,Σ2 . . . ,Σk). Let
dl = µ(l)′Σ−1

l µ(l), l = 1, 2, . . . , k. By using the relationships (2.5) and (2.6)
and applying the technique by Kollo and Srivastava [11], we obtain

β
(l)
h,1 = dl(d

2
l − 6dl + 3(pl + 2)),(2.9)

β
(l)
h,2 = (pl + 2dl)(pl + 2)− 3d2l(2.10)

for each block1. Hence we obtain

βh,1 =

k∑
l=1

dl(d
2
l − 6dl + 3(pl + 2)),(2.11)

βh,2 =

k∑
l=1

{(pl + 2dl)(pl + 2)− 3d2l }.(2.12)

When dl = 0, l = 1, 2, . . . k, βh,1 = 0 and βh,2 =
∑k

l=1 pl(pl + 2).

We now define sample counter-parts of βh,1 and βh,2. Let x1,x2, . . . ,xN be
sample observation vectors of size N from a multivariate population with the

mean vector µ and the covariance matrix Σ, where xj = (x
(1)′

j ,x
(2)′

j , . . . ,x
(k)′

j )

= (x
(1)
1j , . . . , x

(1)
p1j

, x
(2)
1j , . . . , x

(k)
pkj

) (j = 1, 2, . . . , N). Let also x = (x(1)′ ,x(2)′ , . . . ,

1observe that the corrected result for β
(l)
h,2 is obtained when justifying (2.10). For the sake

of space we do not present the details of calculations here.
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x(k)′) and S = diag(S1, S2, . . . , Sk) denote the sample mean vector and the
sample covariance matrix, respectively, based on sample size N . Then

x(l) =
1

N

N∑
j=1

x
(l)
j = (x

(1)
1 , . . . , x(1)p1 , x

(2)
1 , . . . , x(k)pk

),

Sl =
1

N

N∑
j=1

(x
(l)
j − x(l))(x

(l)
j − x(l))′.

Sample measures of multivariate skewness and kurtosis are defined as

bh,1 =
1

N2

N∑
i=1

N∑
j=1

k∑
l=1

{(x(l)
i − x(l))′S−1

l (x
(l)
j − x(l))}3,(2.13)

bh,2 =
1

N

N∑
i=1

k∑
l=1

{(x(l)
i − x(l))′S−1

l (x
(l)
i − x(l))}2,(2.14)

respectively.

§3. Asymptotic properties of bh,1 and bh,2 and improved test
statistics

By using similar way of Mardia [15], we obtained the following lemma.

Lemma 1. When pl and k are fixed, the expectation of bh,1 in (2.13) and the
expectation and the variance of bh,2 in (2.14) when the population is Np(µ,Σ)
and Σ has a block diagonal structure are given by

E[bh,1] =
1

N

k∑
l=1

pl(pl + 1)(pl + 2) + o(N−1),(3.1)

E[bh,2] =
N − 1

N + 1

k∑
l=1

pl(pl + 2),(3.2)

Var[bh,2] =
8

N

k∑
l=1

pl(pl + 2) + o(N−1).(3.3)

Proof. We note that probability density function of x is

f(x) =

k∏
l=1

1

(2π)
pl
2 |Σl|

1
2

exp

[
−1

2
(x(l) − µ(l))

′
Σ−1
l (x(l) − µ(l))

]
.
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Hence, we find the independence of x(l) and x(l′) (l ̸= l′, l, l′ = 1, 2, . . . , k).
Similar to Mardia [15], we rewrite (2.13) as

bh,1 =

k∑
l=1

pl∑
r,r′=1

pl∑
s,s′=1

pl∑
t,t′=1

Srr′

(l) S
ss′

(l) S
tt′

(l)M
(rst)
111(l)M

(r′s′t′)
111(l) ,(3.4)

where

S−1
l = {Sij

(l)} and M
(rst)
111(l) =

1

N

N∑
i=1

(x
(l)
ri − x(l)r )(x

(l)
si − x(l)s )(x

(l)
ti − x

(l)
t ).

Since bh,1 is invariant under a linear transformation, we assume that µ = 0
and Σ = Ip. Sl converges to Σl in probability, respectively (l = 1, 2, . . . , k).
Hence, from (3.4), we obtain

bh,1
p−→

k∑
l=1

pl∑
r

pl∑
s

pl∑
t

(M
(rst)
111(l))

2(3.5)

=

k∑
l=1

(M
(1)
3(l))

2 + · · ·+ 3

k∑
l=1

(M
(12)
21(l))

2 + · · ·+ 6

k∑
l=1

(M
(123)
111(l))

2 + · · ·(3.6)

in probability, where M
(rrr)
111(l) = M

(r)
3(l) and M

(rss)
111(l) = M

(rs)
12(l) (r ̸= s). By using

the normality of (M
(1)
3(l), . . . ,M

(12)
21(l), . . . ,M

(123)
111(l), . . .), we can get

E[bh,1] =
1

N
p1(p1 + 1)(p1 + 2) +

1

N
p2(p2 + 1)(p2 + 2)

+ · · ·+ 1

N
pk(pk + 1)(pk + 2) + o(N−1)

=
1

N

k∑
l=1

pl(pl + 1)(pl + 2) + o(N−1).

And we let x∗
r(l) = (x

(l)
r1 , x

(l)
r2 , . . . , x

(l)
rN )′, (r = 1, 2, . . . , pl). We consider an

orthogonal transformation z∗
r(l) = Hlx

∗
r(l) = (z

(l)
r1 , z

(l)
r2 , . . . , z

(l)
rN )′, where Hl is

an orthogonal matrix with the first row as(
1√
N

,
1√
N

, . . . ,
1√
N

)
,

and the second row as(
− 1√

N(N − 1)
,− 1√

N(N − 1)
, . . . ,− 1√

N(N − 1)
,

√
N − 1

N

)
.
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Then we find that

E[bh,2] =

k∑
l=1

E

[
1

N

N∑
i=1

{(x(l)
i − x(l))′S−1

l (x
(l)
i − x(l))}2

]

=
k∑

l=1

E

[
1

N

N∑
i=1

{(Hlx
(l)
i −Hlx

(l))′(HlSlH
′
l)
−1(Hlx

(l)
i −Hlx

(l))}2
]

=
k∑

l=1

(N − 1)2E[y2l ],

where

yl = z
(l)′

2

(
N∑
s=2

z(l)
s z(l)′

s

)−1

z
(l)
2 , z(l)

s = (z
(l)
1s , z

(l)
2s , . . . , z

(l)
pls

)′, s = 2, 3, . . . , N.

Since z
(l)
s is distributed as Npl(0, Ipl) (see, e.g. Kendall and Stuart [7] p.229),

by an well known result of yl, we can get

E[bh,2] =
k∑

l=1

(N − 1)2
pl(pl + 2)

(N + 1)(N − 1)
=

N − 1

N + 1

k∑
l=1

pl(pl + 2).

Finally we consider the asymptotic variance of bh,2. By similar way of Mardia
[15], we evaluate the value of V ar[bh,2] up to o(N−1). Let Sl = Ipl + S∗

l so
that o(N−1) and E[S∗

l ] = 0. Then we expand S−1
l as

S−1
l = (I + S∗

l )
−1 = I − S∗

l + S∗2
l − · · · .

Hence we get

bh,2 =
1

N

k∑
l=1

N∑
i=1

{(x(l)
i − x(l))′(x

(l)
i − x(l))}2

− 2

N

k∑
l=1

N∑
i=1

(x
(l)
i − x(l))′(x

(l)
i − x(l))(x

(l)
i − x(l))′S∗

l (x
(l)
i − x(l)) + · · · .(3.7)

Put

M
(j1,...,jt)
i1,...,it,(l)

=
1

N

N∑
i=1

t∏
r=1

(x
(l)
jri

− x
(l)
jr
)ir ,

M
(i)∗
2(l) = S∗

ii(l), M
(ij)∗
11(l) = S∗

ij(l), S∗
l = {S∗

ij(l)},
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we can rewrite (3.7) as

bh,2 =

k∑
l=1

pl∑
i=1

M
(i)
4(l) +

k∑
l=1

pl∑
i̸=j

M
(ij)
22(l) − 2

k∑
l=1

pl∑
i=1

M
(i)∗
2(l)M

(i)
4(l)

− 2

k∑
l=1

pl∑
i̸=j

M
(j)∗
2(l) M

(ij)
22(l) − 2

k∑
l=1

pl∑
i=1

pl∑
j ̸=k

M
(jk)∗
11(l) M

(ijk)
211(l) − · · · .

By using asymptotic formula in Mardia [15], we can obtain

V ar[bh,2] =
8

N

k∑
l=1

pl(pl + 2) + o(N−1).

For asymptotic distributions of skewness and kurtosis, we derive the fol-
lowing theorem:

Theorem 1. Let bh,1 and bh,2 in (2.13) and (2.14) are sample measures of
multivariate skewness and multivariate kurtosis on the basis of random samples
of size N drawn from Np(µ,Σ) and Σ has a block diagonal structure. Then,
for large N ,

zh,1 =
N

6
bh,1(3.8)

has a χ2-distribution with
∑k

l=1 pl(pl + 1)(pl + 2)/6 degrees of freedom and

zh,2 =

bh,2 −
N − 1

N + 1

k∑
l=1

pl(pl + 2)√
8

N

k∑
l=1

pl(pl + 2)

(3.9)

is distributed as N (0, 1).

Proof. From (3.6), we can rewrite bh,1 as

bh,1 =

k∑
l=1

(M
(1)
3(l))

2 + · · ·+ 3

k∑
l=1

(M
(12)
21(l))

2 + · · ·+ 6

k∑
l=1

(M
(123)
111(l))

2 + · · ·(3.10)

=

k∑
l=1

{
(M

(1)
3(l))

2 + · · ·+ 3(M
(12)
21(l))

2 + · · ·+ 6(M
(123)
111(l))

2 + · · ·
}
.(3.11)
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We consider the following statistic for each block

N{(M (1)
3(l))

2 + · · ·+ 3(M
(12)
21(l))

2 + · · ·+ 6(M
(123)
111(l))

2 + · · · }
6

.(3.12)

By using the limiting distributions of quadratic form, (3.12) has a χ2-distribution
with pl(pl + 1)(pl + 2)/6 degrees of freedom, respectively. We note that these
statistics are mutually independent, we can obtain

zh,1 =
Nbh,1
6

∼ χ2
f

for large N , where f =
∑k

l=1 pl(pl + 1)(pl + 2)/6.

On using results given by (3.2) and (3.3) and the central limit theorem,
zh,2 in (3.9) has a standard normal distribution.

One of possible applications of Theorem 1 is to use zh,1 and zh,2 for testing
multivariate normality in high-dimensional setting. We are interested in test-
ing H0 : F is the distribution function of Np(µ,Σ) versus H1: not H0 when
Σ = diag(Σ1,Σ2, . . . ,Σk) and µ = (µ(1)′ ,µ(2)′ , . . . ,µ(k)′)′ using N observa-
tions x1,x2, . . . ,xN coming from the population with distribution F . Our
simulation experiments presented in Section 5 indicate that the test perfor-
mance accuracy is poor; this is due to the order of asymptotic moments in
(3.1) and (3.3). Clearly when p = o(N), the effect of the residual terms in
(3.1) and (3.3) will be pronounced. Therefore, to improve test accuracy we
suggest modification of zh,1 and zh,2. First we need to derive exact moments
of bh,1 and bh,2 which are given in the following lemma:

Lemma 2. When pl and k are fixed, the exact expectation of bh,1 in (2.13)
and the exact expectation and the exact variance of bh,2 in (2.14) when the
population is Np(µ,Σ) and Σ has a block diagonal structure are given by

E[bh,1] =
1

(N + 1)(N + 3)

k∑
l=1

pl(pl + 2){(N + 1)(pl + 1)− 6},(3.13)

E[bh,2] =
N − 1

N + 1

k∑
l=1

pl(pl + 2),(3.14)

Var[bh,2] =

k∑
l=1

8pl(pl + 2)

(N + 1)2(N + 3)(N + 5)
(N − pl − 1)(N − pl + 1).(3.15)

Proof. To use Khatri and Pillai’s [9] results, (2.13) and (2.14) are expressed
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as follows:

bh,1 = N

k∑
l=1

N∑
i=1

N∑
j=1

R3
ij(l),

bh,2 = N

k∑
l=1

N∑
i=1

R2
ii(l),

where

Rij(l) = (x
(l)
i − x(l))′(NSl)

−1(x
(l)
j − x(l)).(3.16)

Since bh,1 and bh,2 are invariant under linear transformation in (2.1), we assume

without loss of generality µ = 0 and Σ = Ip. Put x∗
r(l) = (x

(l)
r1 , x

(l)
r2 , . . . , x

(l)
rN )′

(r = 1, 2, . . . , pl), then transform x∗
r(l) to ξ∗r(l) = (ξ

(l)
r1 , ξ

(l)
r2 , . . . , ξ

(l)
rN )′ so that

ξ
(l)
r,i−1 =

√
i− 1

i

(
− x

(l)
ri − 1

i− 1

i−1∑
i′=1

x
(l)
ri′

)
, i = 2, 3, . . . , N

ξ
(l)
rN =

√
Nx(l)r .

This is called Helmert orthogonal transformation. By this transformation, we
get

x
(l)
i − x(l) = −aiξi−1(l) +

N−1∑
i′=i

bi′ξi′(l), i = 1, 2, . . . N,

N∑
i=1

(x
(l)
i − x(l))(x

(l)
i − x(l))′ =

N−1∑
i=1

ξi(l)ξ
′
i(l) = TlT

′
l ,

where

ξ0(l) = 0, ξN(l) = −aNξN−1(l), ξi(l) = (ξ
(l)
1i , ξ

(l)
2i , . . . , ξ

(l)
pli
)′,

ai =

√
i− 1

i
, bi =

1√
i(i+ 1)

.

Then exact moments of z
(l)
i = T−1

l ξi(l), i = 1, 2, . . . , N are given by Khatri
and Pillai [9]. And Rij(l) in (3.16) is expressed as

Rij(l) =
(
− aiz

(l)
i−1 +

N−1∑
i′=i

bi′z
(l)
i′

)′(
− ajz

(l)
j−1 +

N−1∑
i′=j

bi′z
(l)
i′

)
, i, j = 1, 2, . . . , N.

(3.17)

Hence from the moments of z
(l)
1 , z

(l)
2 , . . . ,z

(l)
N−1 exact moments of bh,1 and bh,2

can be obtained.
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Now, by using Lemma 2 and Theorem 1, we propose the following improved
statistics.

Theorem 2. Let bh,1 and bh,2 in (2.13) and (2.14) are sample measures of
multivariate skewness and multivariate kurtosis on the basis of random samples
of size N drawn from Np(µ,Σ) and Σ has a block diagonal structure. Then,
for large N and N − pl − 1 > 0,

z∗h,1 =
N

6

k∑
l=1

(pl + 1)(N + 1)(N + 3)

N{(N + 1)(pl + 1)− 6}
bh,1(3.18)

has a χ2-distribution with
∑k

l=1 pl(pl + 1)(pl + 2)/6 degrees of freedom and

z∗h,2 =

{(N + 1)bh,2 −
k∑

l=1

pl(pl + 2)(N − 1)}
√

(N + 3)(N + 5)√
8

k∑
l=1

pl(pl + 2)(N − 3)(N − pl − 1)(N − pl + 1)

(3.19)

is distributed as N (0, 1).

Observe that bh,1 is an estimator for the population parameter βh,1 which is
zero not only in case of normality but also for the wider class of all elliptically
symmetric distributions; see, e.g. Baringhaus and Henze [1]. Therefore, the
test for multivariate normality based on z∗h,1 must be considered only against
alternative distributions having positive multivariate skewness. Following this,
we propose another modification of z∗h,1 based on Wilson-Hilferty transforma-
tion (Wilson and Hilferty [21]), an effective and simple transform of z∗h,1 to
standard normal distribution.

Theorem 3. Let bh,1 in (2.13) be a sample measure of multivariate skewness
on the basis of random samples of size N drawn from Np(µ,Σ) Then

zwh =

{(
z∗h,1
f

) 1
3

− 1 +
2

9f

}
/

√
2

9f
, f =

1

6

k∑
l=1

pl(pl + 1)(pl + 2)(3.20)

is distributed as N (0, 1) when f → ∞ after N → ∞.

Proof. The statistic (3.18) converge in distribution to χ2-distribution with∑k
l=1 pl(pl + 1)(pl + 2)/6 degrees of freedom under large N . By evaluating

the leading term of characteristic function of (3.18) with large f and under
large N , we obtain (3.20). f → ∞ means essentially the number of block
k → ∞.
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§4. Covariance structure approximation

In this section, we propose a new method of estimation for block diagonal
structure. Let x be a random p-vectors from Np(µ,Σ) and x1,x2, . . . ,xN be
sample observation vectors of size N from Np(µ,Σ). Assume Ξ = diag(Ξ1,Ξ2,
. . . ,Ξk) = Σ−1 where Ξl is a pl × pl matrix, pl < N, l = 1, 2, . . . , k and∑k

l=1 pl = p. Our purpose is to get a estimator of Ξ.
To ensure that the estimator of Ξ exists and be sparsity we make the

following assumptions about the covariance matrix Σ.
Existence. There exist such a constant ε > 0 that

0 < ε ≤ ϕmin(Σ) ≤ ϕmax(Σ) <
1

ε
,

where ϕmin(Σ) and ϕmax(Σ) are the smallest and the largest eigenvalues of
Σ, respectively. This condition ensures that Ξ exists.

Sparsity. Let A = {(i, j) : ξij ̸= 0, i > j} denote the set of non-zero
off-diagonal entries of Ξ. For the number of A-elements, we assume that

#A <
p(p− 1)

2
,

where #A means the number of set A. This assumption is to ensure sparsity
of Ξ.

Then, Pavlenko et al. [18] proposed a gLasso estimator of Ξ as the mini-
mizer of the penalized negative log-likelihood

Ξ̂λ = arg min
Ξ>0

{tr(ΞΣ̂)− log|Ξ|+ λ||Ξ−||1},

where Σ̂ is the maximum likelihood estimator of Σ, Ξ− = Ξ−diag(Ξ), ||Ξ−||1 =∑
i<j |ξij | is ℓ1-norm of Ξ−, λ is a non-negative tuning parameter, and λ is

the order
√

log p/N (see, Rothman et al. [19]). This estimator is similar to
the original gLasso introduced in Friedman et al. [4] (they used ||Ξ||1 instead
of ||Ξ−||1).

Further, following the modification to fast convergence be considered by
Pavlenko et al. [18]. Let K denote the inverse of correlation matrix and
Γ denote the diagonal matrix of the standard deviations. Then, a gLasso
estimator of K be defined as

K̃λ = arg min
K>0

{tr(KK̂−1)− log|K|+ λ||K−||1},(4.1)

where K̂−1 is the estimated correlation matrix. Since K = (κi,j) = ΓΞΓ, the
estimator of Ξ be given by

Ξ̃λ = Γ̂−1K̃λΓ̂
−1,(4.2)
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where Γ̂ is a sample estimator of Γ. We call this procedure gLasso-method.
However, these estimators cannot necessarily estimate Ξ to the block di-

agonal structure. Then, we propose an AIC-method of making Ξ the block
diagonal matrix by using Akaike’s information criterion (AIC). AIC is defined
as

AIC =− 2 logL(Ξ̂|X) + 2d,(4.3)

where logL(·) means log-likelihood function, Ξ̂ is maximum likelihood esti-
mator of Ξ and d is the number of free parameters. The model which makes
AIC the minimum is considered to be the optimal model. Our method of
estimation for block diagonal structure is following:

(A.1) We calculate Ξ̃λby gLasso estimator in (4.1) and (4.2).

(A.2) Candidate models are determined from obtained Ξ̃λ.

(A.3) AICs for all candidate models are calculated by (4.3).

(A.4) We select the optimal model by values of AICs.

Hence, a block diagonal estimation of Ξ be attained.
An example of the proposed AIC-method is given. Parameters are the

following:
p = 6, N = 10, λ = 0.29 and population is Np(µ,Σ) where µ = 0,Σ =
diag(Σ1,Σ2,Σ3),

Σl =

(
1 ρ
ρ 1

)
(l = 1, 2, 3) and ρ = 0.85. Then

Ξ̃λ =



0.73 −0.35 0 0 0 0.03
−0.35 0.68 0 0 0 0.04

0 0 0.83 −0.26 0 0
0 0 −0.26 0.77 0.11 0
0 0 0 0.11 0.72 −0.40

0.03 0.04 0 0 −0.40 0.60

 .

is calculated by glasso package in R. Next, we consider how to decide candidate
models. When we decide candidate models, we need the following rule:

(R.1) (The number of 0 in each block matrix) ≤ 2.

(R.2) If the number of 0 is not contained in block matrix which has not
overlapped under (R.1), the size of this matrix do not make small.

(R.3) If block matrix which satisfy (R.1) has overlapped, we fix one block
matrix and make others small.
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Under these rules, we find four candidate models in this case. For example,

0.73 −0.35 0 0 0 0
−0.35 0.68 0 0 0 0

0 0 0.83 0 0 0
0 0 0 0.77 0.11 0
0 0 0 0.11 0.72 −0.40
0 0 0 0 −0.40 0.60


is model(2, 1, 3)(=model(p1, p2, p3)) and there are model(2, 2, 2), model(2, 3, 1)
and model(2, 1, 2, 1). We calculate AIC for each candidate model, respectively.
In this case, AIC in (4.3) becomes

AIC = N

3∑
l=1

(pl log 2π − log |S−1
l |+ pl) + 2d,

where S = diag(S1, S2, S3) is the maximum likelihood estimator of Σ =
diag(Σ1,Σ2,Σ3), d is the number of free parameters of a model. S−1 and
AIC of the model(2, 1, 3) be calculated as

S−1(2, 1, 3) =



5.64 −5.02 0 0 0 0
−5.02 5.09 0 0 0 0

0 0 1.08 0 0 0
0 0 0 2.01 3.02 −2.10
0 0 0 3.02 9.79 −7.70
0 0 0 −2.10 −7.70 6.56

 ,

AIC(2, 1, 3) = 161.4.

In similar way, AICs of model(2, 2, 2), model(2, 3, 1) and model(2, 1, 2, 1) are
calculated as

AIC(2, 2, 2) = 151.2, AIC(2, 3, 1) = 170.5, AIC(2, 1, 2, 1) = 184.5.

Since AIC(2, 2, 2) is the smallest value in this example, model(2, 2, 2) is the
optimal model. In this case, true model is selected.

§5. Simulation studies

5.1. Performance accuracy of new multivariate skewness and kur-
tosis

In this subsection, we investigate accuracies of test procedures based on our
newly defined estimators bh,1 and bh,2. Monte Carlo simulation are used to
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evaluate the size of our test statistics by calculating attained significance level
(ASL) as

ASL =
#{H0 is rejected}

Total number of replications
.

For each block, we assume that µ(l) = 0 and Σl = Ipl (l = 1, 2, . . . , k) without
loss of generality by invariance property.

An assortment of block sizes pl’s is considered for each p in combination
withN , which qualitatively represents both large sample and high-dimensional
cases:

p = 200, 300, 400, 500, 1000, 2000, pl = 5, 10, 20, N = 50, 100, 200, 400, 800.

In our numerical experiment, we carry out 10, 000 and 1, 000 replications for
the case of N < 400 and N ≥ 400, respectively. But for the cases of p =
1000, 2000, we carry out 1, 000 replications for all parameters.

For each set of p and pl, draw a sample of N independent observations from
corresponding distribution under the null hypothesis. Replicate this r times,
and for each zh,1, z

∗
h,1, zwh, zh,2 and z∗h,2 calculate

ASL =
#{H0 is rejected}

r
.

The results listed in Tables 1-7 demonstrate that ASL is closely approaching
the true test size when N is large and, what is most important, provide good
accuracy for p > N and even for p ≫ N , stably over various of block sizes.
This is except for zh,1 and zh,2, whose poor performance can be explained by
the effects of the bias term of o(N−1) in the expectation and variance, see
(3.1) and (3.3), respectively. Hence our numerical experiments support the
results of Theorems 1–3, thereby justifying validity of newly defined statistics
for testing multivariate normality in high-dimensions.

It is important to not that our estimators skewness and kurtosis can be
applied for directional tests, i.e. for testing symmetry or peakedness of a
distribution. We note that both z∗h,1 and zwh improve corresponding original
estimators, zh,1 for all the sets of simulation parameters. We also note that
z∗h,2 is an improvement of zh,2 when N ≤ 400, and for N = 800, the accuracy of
both zh,2 and z∗h,2 is almost the same. Hence, we can recommend z∗h,1 and zwh

when the test of symmetry of a distribution is of interests. When N ≤ 400,
we recommend z∗h,2 for the kurtosis test.

5.2. Correct selection rate of AIC-method

In this subsection, we investigate correct selection rate (CSR) of AIC-method
and gLasso-method by simulation studies, respectively. CSR of AIC-method
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calculated by using algorithm (A.1)-(A.4) in Section 4 is the probability of
selecting the true model. CSR of gLasso-method calculated by (4.1) and (4.2)
is the probability of selecting the true model. We decide candidate models
under the condition (R.1)-(R.3) in Section 4. As a numerical experiment,
we carry out 100 replications. Simulation parameters are the following: p =
10, N = 10, 20, λ =

√
log p/N . We consider two cases for the covariance

structure of population.

• (Case 1) x ∼ Np(0,Σ),

Σ = diag(Σ1,Σ2,Σ3,Σ4,Σ5), Σl =

(
1 ρ
ρ 1

)
(l = 1, 2, 3, 4, 5), ρ = 0.9.

• (Case 2) x ∼ Np(0,Σ),

Σ = diag(Σ1,Σ2,Σ3,Σ4), Σs =

1 ρ ρ
ρ 1 ρ
ρ ρ 1

 (s = 1, 3), Σt =

(
1 ρ
ρ 1

)
(t = 2, 4), ρ = 0.9.

Table 8 give CSR for the Case 1 by AIC-method and gLasso-method. Table
9 give CSR for the Case 2 by AIC-method and gLasso-method. From Tables
8 and 9, we note that our method improve gLasso-method by using AIC.
Even when N is small, CSR of AIC-method is quite higher than the one of
gLasso-method.

§6. Conclusion

In this paper, we considered tests for the multivariate normality when p > N .
We proposed new definitions for multivariate skewness and kurtosis as natural
extensions of Mardia’s measures, and derived their asymptotic distributions
under the multivariate normal population. Approximate accuracies of zh,1,
z∗h,1, zwh, zh,2 and z∗h,2 were evaluated by Monte Carlo simulation.

And we considered the problem to estimate for the covariance structure.
There is gLasso-method in Pavlenko et al. [18] for this problem. We proposed
an AIC-method which is an improvement of gLasso-method by using an in-
formation criterion AIC. Finally, correct selection rates of AIC-method were
given by simulation.
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Table 1 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.1

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.002 0.128 0.133 0.058 0.104

100 0.014 0.120 0.120 0.076 0.099

200 0.040 0.106 0.109 0.087 0.100

400 0.068 0.113 0.111 0.108 0.110

800 0.072 0.090 0.094 0.097 0.099

10 50 0.000 0.125 0.124 0.036 0.100

100 0.004 0.120 0.129 0.065 0.099

200 0.024 0.112 0.118 0.084 0.102

400 0.051 0.101 0.130 0.091 0.101

800 0.079 0.111 0.129 0.104 0.109

20 50 0.000 0.099 0.095 0.010 0.106

100 0.000 0.128 0.124 0.047 0.106

200 0.007 0.123 0.124 0.073 0.101

400 0.040 0.122 0.121 0.096 0.114

800 0.066 0.119 0.117 0.098 0.106

300 5 50 0.000 0.131 0.124 0.060 0.106

100 0.010 0.119 0.117 0.077 0.099

200 0.033 0.111 0.109 0.086 0.100

400 0.038 0.120 0.120 0.091 0.106

800 0.033 0.110 0.120 0.088 0.100

10 50 0.000 0.127 0.129 0.037 0.102

100 0.001 0.128 0.124 0.070 0.102

200 0.017 0.115 0.115 0.080 0.100

400 0.043 0.111 0.108 0.090 0.100

800 0.071 0.107 0.097 0.084 0.089

20 50 0.000 0.100 0.094 0.010 0.107

100 0.000 0.123 0.125 0.046 0.102

200 0.003 0.118 0.127 0.069 0.099

400 0.019 0.113 0.102 0.088 0.101

800 0.054 0.128 0.106 0.095 0.100
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Table 2 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.1

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.126 0.127 0.054 0.103

100 0.006 0.124 0.121 0.078 0.103

200 0.025 0.114 0.118 0.086 0.098

400 0.058 0.124 0.102 0.088 0.097

800 0.058 0.083 0.114 0.100 0.101

10 50 0.000 0.130 0.127 0.037 0.102

100 0.001 0.125 0.124 0.073 0.110

200 0.013 0.117 0.114 0.081 0.099

400 0.035 0.111 0.112 0.084 0.093

800 0.063 0.105 0.094 0.084 0.090

20 50 0.000 0.105 0.097 0.009 0.106

100 0.000 0.127 0.128 0.047 0.102

200 0.001 0.123 0.130 0.072 0.103

400 0.016 0.112 0.128 0.086 0.103

800 0.037 0.116 0.114 0.091 0.100

500 5 50 0.000 0.127 0.134 0.055 0.102

100 0.004 0.124 0.117 0.076 0.104

200 0.023 0.114 0.108 0.088 0.101

400 0.044 0.113 0.113 0.100 0.105

800 0.063 0.110 0.103 0.102 0.104

10 50 0.000 0.128 0.119 0.039 0.109

100 0.000 0.128 0.122 0.063 0.098

200 0.010 0.117 0.117 0.086 0.103

400 0.015 0.110 0.109 0.093 0.102

800 0.053 0.098 0.098 0.108 0.113

20 50 0.000 0.098 0.099 0.009 0.103

100 0.000 0.128 0.126 0.044 0.099

200 0.001 0.115 0.124 0.073 0.103

400 0.009 0.115 0.115 0.088 0.098

800 0.051 0.126 0.126 0.098 0.107
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Table 3 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.05

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.000 0.072 0.072 0.021 0.055

100 0.006 0.063 0.068 0.033 0.050

200 0.018 0.056 0.056 0.043 0.052

400 0.029 0.060 0.054 0.055 0.060

800 0.038 0.047 0.044 0.049 0.051

10 50 0.000 0.070 0.071 0.011 0.053

100 0.001 0.063 0.072 0.026 0.049

200 0.009 0.063 0.063 0.039 0.052

400 0.029 0.058 0.080 0.041 0.045

800 0.040 0.061 0.056 0.056 0.059

20 50 0.000 0.050 0.048 0.002 0.055

100 0.000 0.074 0.071 0.017 0.053

200 0.002 0.068 0.073 0.031 0.052

400 0.016 0.067 0.066 0.044 0.058

800 0.031 0.066 0.058 0.048 0.056

300 5 50 0.000 0.076 0.072 0.023 0.057

100 0.004 0.066 0.065 0.034 0.052

200 0.015 0.060 0.060 0.043 0.052

400 0.017 0.064 0.058 0.043 0.054

800 0.014 0.057 0.058 0.042 0.051

10 50 0.000 0.076 0.075 0.011 0.054

100 0.000 0.073 0.068 0.031 0.054

200 0.007 0.064 0.062 0.036 0.048

400 0.022 0.057 0.055 0.040 0.048

800 0.028 0.056 0.055 0.039 0.044

20 50 0.000 0.053 0.049 0.001 0.054

100 0.000 0.071 0.071 0.017 0.053

200 0.001 0.064 0.071 0.029 0.049

400 0.008 0.060 0.065 0.040 0.051

800 0.027 0.068 0.049 0.050 0.055
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Table 4 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.05

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.070 0.073 0.021 0.052

100 0.003 0.068 0.068 0.035 0.054

200 0.011 0.060 0.063 0.040 0.049

400 0.027 0.059 0.051 0.046 0.052

800 0.028 0.036 0.063 0.051 0.052

10 50 0.000 0.075 0.068 0.012 0.052

100 0.000 0.069 0.068 0.030 0.057

200 0.006 0.067 0.063 0.037 0.050

400 0.016 0.056 0.057 0.033 0.041

800 0.025 0.052 0.057 0.042 0.045

20 50 0.000 0.052 0.049 0.001 0.054

100 0.000 0.074 0.073 0.016 0.053

200 0.001 0.070 0.073 0.032 0.051

400 0.004 0.055 0.072 0.042 0.049

800 0.019 0.055 0.050 0.049 0.056

500 5 50 0.000 0.075 0.075 0.019 0.053

100 0.001 0.069 0.063 0.034 0.051

200 0.009 0.062 0.060 0.042 0.051

400 0.019 0.048 0.048 0.049 0.056

800 0.032 0.049 0.049 0.048 0.054

10 50 0.000 0.072 0.068 0.013 0.054

100 0.000 0.068 0.068 0.027 0.052

200 0.004 0.065 0.065 0.040 0.055

400 0.006 0.061 0.061 0.043 0.052

800 0.028 0.051 0.051 0.043 0.049

20 50 0.000 0.049 0.048 0.002 0.053

100 0.000 0.073 0.070 0.014 0.050

200 0.000 0.067 0.069 0.030 0.053

400 0.002 0.058 0.058 0.044 0.050

800 0.018 0.068 0.068 0.050 0.057
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Table 5 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.01

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.000 0.020 0.018 0.002 0.011

100 0.001 0.015 0.018 0.006 0.012

200 0.003 0.013 0.013 0.007 0.011

400 0.004 0.008 0.014 0.010 0.011

800 0.008 0.014 0.011 0.009 0.010

10 50 0.000 0.018 0.021 0.001 0.012

100 0.000 0.017 0.020 0.003 0.010

200 0.001 0.014 0.014 0.006 0.012

400 0.008 0.020 0.015 0.007 0.011

800 0.006 0.009 0.015 0.014 0.017

20 50 0.000 0.010 0.010 0.000 0.012

100 0.000 0.019 0.018 0.001 0.012

200 0.000 0.016 0.018 0.004 0.010

400 0.002 0.016 0.015 0.010 0.010

800 0.005 0.014 0.012 0.010 0.011

300 5 50 0.000 0.021 0.021 0.002 0.013

100 0.001 0.017 0.017 0.004 0.011

200 0.002 0.014 0.016 0.008 0.012

400 0.003 0.016 0.010 0.008 0.011

800 0.003 0.013 0.016 0.009 0.013

10 50 0.000 0.019 0.020 0.001 0.011

100 0.000 0.019 0.020 0.003 0.013

200 0.001 0.016 0.015 0.006 0.010

400 0.004 0.015 0.014 0.008 0.010

800 0.003 0.007 0.017 0.011 0.012

20 50 0.000 0.010 0.009 0.000 0.013

100 0.000 0.021 0.018 0.002 0.012

200 0.001 0.014 0.019 0.004 0.009

400 0.001 0.013 0.018 0.006 0.010

800 0.007 0.017 0.012 0.009 0.010
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Table 6 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.01

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.020 0.019 0.003 0.013

100 0.000 0.018 0.019 0.005 0.011

200 0.002 0.013 0.016 0.007 0.010

400 0.005 0.012 0.010 0.008 0.009

800 0.007 0.010 0.012 0.008 0.009

10 50 0.000 0.020 0.019 0.001 0.013

100 0.000 0.019 0.018 0.004 0.013

200 0.001 0.019 0.014 0.007 0.010

400 0.003 0.013 0.012 0.006 0.012

800 0.002 0.011 0.010 0.004 0.005

20 50 0.000 0.008 0.010 0.000 0.012

100 0.000 0.020 0.020 0.001 0.011

200 0.000 0.018 0.019 0.004 0.011

400 0.001 0.016 0.020 0.008 0.012

800 0.001 0.010 0.009 0.009 0.010

500 5 50 0.000 0.021 0.019 0.002 0.011

100 0.000 0.019 0.016 0.005 0.010

200 0.002 0.014 0.013 0.008 0.010

400 0.004 0.007 0.007 0.008 0.009

800 0.005 0.009 0.010 0.008 0.009

10 50 0.000 0.019 0.018 0.001 0.013

100 0.000 0.018 0.018 0.003 0.012

200 0.000 0.018 0.018 0.007 0.011

400 0.000 0.012 0.012 0.003 0.008

800 0.006 0.010 0.010 0.004 0.005

20 50 0.000 0.009 0.008 0.000 0.012

100 0.000 0.019 0.019 0.001 0.010

200 0.000 0.018 0.017 0.005 0.012

400 0.000 0.011 0.011 0.006 0.013

800 0.004 0.015 0.015 0.009 0.012
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Table 7 The ASL of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for pl = 20

Skewness Kurtosis

p α N zh,1 z∗h,1 zwh zh,2 z∗h,2
1000 0.1 50 0.000 0.110 0.110 0.030 0.130

100 0.000 0.134 0.134 0.049 0.110

200 0.000 0.125 0.125 0.068 0.097

400 0.000 0.122 0.121 0.060 0.099

0.05 50 0.000 0.060 0.060 0.000 0.080

100 0.000 0.077 0.075 0.020 0.059

200 0.000 0.065 0.065 0.030 0.048

400 0.000 0.064 0.063 0.035 0.051

0.01 50 0.000 0.020 0.020 0.000 0.030

100 0.000 0.017 0.017 0.000 0.019

200 0.000 0.010 0.010 0.008 0.016

400 0.000 0.012 0.011 0.009 0.011

2000 0.1 50 0.000 0.111 0.111 0.008 0.109

100 0.000 0.149 0.149 0.041 0.106

200 0.000 0.119 0.118 0.076 0.110

400 0.000 0.115 0.115 0.093 0.106

0.05 50 0.000 0.058 0.056 0.001 0.056

100 0.000 0.082 0.082 0.017 0.049

200 0.000 0.070 0.070 0.031 0.055

400 0.000 0.080 0.080 0.040 0.058

0.01 50 0.000 0.012 0.012 0.001 0.012

100 0.000 0.018 0.018 0.001 0.014

200 0.000 0.024 0.023 0.007 0.011

400 0.000 0.020 0.020 0.008 0.011

Table 8 Comparison of CSR (case 1)

N gLasso-method AIC-method

10 0.19 0.87

20 0.56 0.92

Table 9 Comparison of CSR (case 2)

N gLasso-method AIC-method

10 0.31 0.64

20 0.68 0.94
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