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Abstract. We prove strong instability (instability by blowup) of standing
waves for some nonlinear Schrödinger equations with double power nonlinearity.
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§1. Introduction

In this paper, we study instability of standing wave solutions eiωtϕω(x) for
nonlinear Schrödinger equations with double power nonlinearity:

i∂tu = −∆u− a|u|p−1u− b|u|q−1u, (t, x) ∈ R× RN ,(1.1)

where a and b are positive constants, 1 < p < q < 2∗ − 1, 2∗ = 2N/(N − 2) if
N ≥ 3, and 2∗ = ∞ if N = 1, 2.

Moreover, we assume that ω > 0 and ϕω ∈ H1(RN ) is a ground state of

−∆ϕ+ ωϕ− a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0, x ∈ RN .(1.2)

For the definition of ground state, see (1.5) below. It is well known that there
exists a ground state ϕω of (1.2) (see, e.g., [2, 15]).

The Cauchy problem for (1.1) is locally well-posed in the energy space
H1(RN ) (see, e.g., [3, 7, 8]). That is, for any u0 ∈ H1(RN ) there exist
T ∗ = T ∗(u0) ∈ (0,∞] and a unique solution u ∈ C([0, T ∗),H1(RN )) of (1.1)
with u(0) = u0 such that either T ∗ = ∞ (global existence) or T ∗ < ∞ and
lim
t→T ∗

∥∇u(t)∥L2 = ∞ (finite time blowup).
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Furthermore, the solution u(t) satisfies

E(u(t)) = E(u0), ∥u(t)∥2L2 = ∥u0∥2L2(1.3)

for all t ∈ [0, T ∗), where the energy E is defined by

E(v) =
1

2
∥∇v∥2L2 −

a

p+ 1
∥v∥p+1

Lp+1 −
b

q + 1
∥v∥q+1

Lq+1 .

Here we give the definitions of stability and instability of standing waves.

Definition 1. We say that the standing wave solution eiωtϕω of (1.1) is stable
if for any ε > 0 there exists δ > 0 such that if ∥u0 − ϕω∥H1 < δ, then the
solution u(t) of (1.1) with u(0) = u0 exists globally and satisfies

sup
t≥0

inf
θ∈R,y∈RN

∥u(t)− eiθϕω(·+ y)∥H1 < ε.

Otherwise, eiωtϕω is said to be unstable.

Definition 2. We say that eiωtϕω is strongly unstable if for any ε > 0 there
exists u0 ∈ H1(RN ) such that ∥u0 − ϕω∥H1 < ε and the solution u(t) of (1.1)
with u(0) = u0 blows up in finite time.

Before we consider the double power case, we recall some well-known results
for the single power case:

i∂tu = −∆u− |u|p−1u, (t, x) ∈ R× RN .(1.4)

When 1 < p < 1 + 4/N , the standing wave solution eiωtϕω of (1.4) is stable
for all ω > 0 (see [4]). While, if 1 + 4/N ≤ p < 2∗ − 1, then eiωtϕω is strongly
unstable for all ω > 0 (see [1] and also [3]).

Next, we consider the double power case (1.1) with a > 0 and b > 0. From
Berestycki and Cazenave [1], we see that if 1 + 4/N ≤ p < q < 2∗ − 1, then
the standing wave solution eiωtϕω of (1.1) is strongly unstable for all ω > 0
(see [14] for the case p = 1 + 4/N < q).

On the other hand, when 1 < p < 1 + 4/N < q < 2∗ − 1, the standing
wave solution eiωtϕω of (1.1) is unstable for sufficiently large ω (see [13]),
while eiωtϕω is stable for sufficiently small ω (see [5] and also [12, 11] for more
results in one dimensional case). However, it was not known whether eiωtϕω

is strongly unstable or not for the case where 1 < p < 1 + 4/N < q < 2∗ − 1
and ω is sufficiently large.

Now we state our main result in this paper.

Theorem 1. Let a > 0, b > 0, 1 < p < 1+4/N < q < 2∗−1, and let ϕω ∈ Gω.
Then there exists ω1 > 0 such that the standing wave solution eiωtϕω of (1.1)
is strongly unstable for all ω ∈ (ω1,∞).
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For ω > 0, we define functionals Sω and Kω on H1(RN ) by

Sω(v) =
1

2
∥∇v∥2L2 +

ω

2
∥v∥2L2 −

a

p+ 1
∥v∥p+1

Lp+1 −
b

q + 1
∥v∥q+1

Lq+1 ,

Kω(v) = ∥∇v∥2L2 + ω∥v∥2L2 − a∥v∥p+1
Lp+1 − b∥v∥q+1

Lq+1 .

Note that (1.2) is equivalent to S′
ω(ϕ) = 0, and

Kω(v) = ∂λSω(λv)
∣∣
λ=1

= ⟨S′
ω(v), v⟩

is the so-called Nehari functional. We denote the set of nontrivial solutions of
(1.2) by

Aω = {v ∈ H1(RN ) : S′
ω(v) = 0, v ̸= 0},

and define the set of ground states of (1.2) by

Gω = {ϕ ∈ Aω : Sω(ϕ) ≤ Sω(v) for all v ∈ Aω}.(1.5)

Moreover, consider the minimization problem:

d(ω) = inf{Sω(v) : v ∈ H1(RN ), Kω(v) = 0, v ̸= 0}.(1.6)

Then, it is well known that Gω is characterized as follows.

Gω = {ϕ ∈ H1(RN ) : Sω(ϕ) = d(ω), Kω(ϕ) = 0}.(1.7)

The proof of finite time blowup for (1.1) relies on the virial identity (1.8).
If u0 ∈ Σ := {v ∈ H1(RN ) : |x|v ∈ L2(RN )}, then the solution u(t) of (1.1)
with u(0) = u0 belongs to C([0, T ∗),Σ), and satisfies

d2

dt2
∥xu(t)∥2L2 = 8P (u(t))(1.8)

for all t ∈ [0, T ∗), where

P (v) = ∥∇v∥2L2 −
aα

p+ 1
∥v∥p+1

Lp+1 −
bβ

q + 1
∥v∥q+1

Lq+1

with α =
N

2
(p− 1), β =

N

2
(q − 1) (see, e.g., [3]).

Note that for the scaling vλ(x) = λN/2v(λx) for λ > 0, we have

∥∇vλ∥2L2 = λ2∥∇v∥2L2 , ∥vλ∥p+1
Lp+1 = λα∥v∥p+1

Lp+1 , ∥vλ∥q+1
Lq+1 = λβ∥v∥q+1

Lq+1 ,

∥vλ∥2L2 = ∥v∥2L2 , P (v) = ∂λE(vλ)
∣∣
λ=1

.
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The method of Berestycki and Cazenave [1] is based on the fact that d(ω) =
Sω(ϕω) can be characterized as

d(ω) = inf{Sω(v) : v ∈ H1(RN ), P (v) = 0, v ̸= 0}(1.9)

for the case 1 + 4/N ≤ p < q < 2∗ − 1. Using this fact, it is proved in [1] that
if u0 ∈ Σ ∩ BBC

ω then the solution u(t) of (1.1) with u(0) = u0 blows up in
finite time, where

BBC
ω = {v ∈ H1(RN ) : Sω(v) < d(ω), P (v) < 0}.

We remark that (1.9) does not hold for the case 1 < p < 1+4/N < q < 2∗−1.
On the other hand, Zhang [16] and Le Coz [9] gave an alternative proof of

the result of Berestycki and Cazenave [1]. Instead of (1.9), they proved that

d(ω) ≤ inf{Sω(v) : v ∈ H1(RN ), P (v) = 0, Kω(v) < 0}(1.10)

holds for all ω > 0 if 1 + 4/N ≤ p < q < 2∗ − 1 (compare with Lemma 2
below). Using this fact, it is proved in [16, 9] that if u0 ∈ Σ ∩ BZL

ω then the
solution u(t) of (1.1) with u(0) = u0 blows up in finite time, where

BZL
ω = {v ∈ H1(RN ) : Sω(v) < d(ω), P (v) < 0, Kω(v) < 0}.

In this paper, we use and modify the idea of Zhang [16] and Le Coz [9] to
prove Theorem 1. For ω > 0 with E(ϕω) > 0, we introduce

Bω = {v ∈ H1(RN ) : 0 < E(v) < E(ϕω), ∥v∥2L2 = ∥ϕω∥2L2 ,(1.11)

P (v) < 0, Kω(v) < 0}.

Then we have the following.

Theorem 2. Let a > 0, b > 0, 1 < p < 1 + 4/N < q < 2∗ − 1, and assume
that ϕω ∈ Gω satisfies E(ϕω) > 0. If u0 ∈ Σ ∩ Bω, then the solution u(t) of
(1.1) with u(0) = u0 blows up in finite time.

Remark. Our method is not restricted to the double power case (1.1), but is
also applicable to other type of nonlinear Schrödinger equations. For example,
we consider nonlinear Schrödinger equation with a delta function potential:

i∂tu = −∂2
xu− γδ(x)u− |u|q−1u, (t, x) ∈ R× R,(1.12)

where δ(x) is the Dirac measure at the origin, γ > 0 and 1 < q < ∞. The
energy of (1.12) is given by

E(v) =
1

2
∥∂xv∥2L2 −

γ

2
|v(0)|2 − 1

q + 1
∥v∥q+1

Lq+1 .
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The standing wave solution eiωtϕω(x) of (1.12) exists for ω ∈ (γ2/4,∞).

For the case q > 5, it is proved in [6] that there exists ω2 ∈ (γ2/4,∞) such
that the standing wave solution eiωtϕω(x) of (1.12) is stable for ω ∈ (γ2/4, ω2),
and it is unstable for ω ∈ (ω2,∞). Since the graph of the function

E(vλ) =
λ2

2
∥∂xv∥2L2 −

γλ

2
|v(0)|2 − λβ

q + 1
∥v∥q+1

Lq+1

with β =
q − 1

2
> 2 has the same properties as in Lemma 1 for (1.1), we can

prove that the standing wave solution eiωtϕω(x) of (1.12) is strongly unstable
for ω satisfying E(ϕω) > 0 (see also Theorem 5 of [10] for the case γ < 0).

The rest of the paper is organized as follows. In Section 2, we give the proof
of Theorem 2. In Section 3, we show that E(ϕω) > 0 for sufficiently large ω,
and prove Theorem 1 using Theorem 2.

§2. Proof of Theorem 2

Throughout this section, we assume that

a > 0, b > 0, 1 < p < 1 + 4/N < q < 2∗ − 1, E(ϕω) > 0.

Recall that 0 < α =
N

2
(p− 1) < 2 < β =

N

2
(q − 1), and

E(vλ) =
λ2

2
∥∇v∥2L2 −

aλα

p+ 1
∥v∥p+1

Lp+1 −
bλβ

q + 1
∥v∥q+1

Lq+1 ,(2.1)

P (vλ) = λ2∥∇v∥2L2 −
aαλα

p+ 1
∥v∥p+1

Lp+1 −
bβλβ

q + 1
∥v∥q+1

Lq+1 = λ∂λE(vλ),(2.2)

Kω(v
λ) = λ2∥∇v∥2L2 + ω∥v∥2L2 − λαa∥v∥p+1

Lp+1 − λβb∥v∥q+1
Lq+1 .(2.3)

Lemma 1. If v ∈ H1(RN ) satisfies E(v) > 0, then there exist λk = λk(v)
(k = 1, 2, 3, 4) such that 0 < λ1 < λ2 < λ3 < λ4 and

• E(vλ) is decreasing in (0, λ1) ∪ (λ3,∞), and increasing in (λ1, λ3).

• E(vλ) is negative in (0, λ2) ∪ (λ4,∞), and positive in (λ2, λ4).

• E(vλ) < E(vλ3) for all λ ∈ (0, λ3) ∪ (λ3,∞).

Proof. Since a > 0, b > 0, 0 < α < 2 < β and E(v) > 0, the conclusion is
easily verified by drawing the graph of (2.1) (see Figure 1 below).
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Figure 1: The graph of λ 7→ E(vλ) for the case E(v) > 0.

Lemma 2. If v ∈ H1(RN ) satisfies E(v) > 0, Kω(v) < 0 and P (v) = 0, then
d(ω) < Sω(v).

Proof. We consider two functions f(λ) = Kω(v
λ) and g(λ) = E(vλ).

Since f(0) = ω∥v∥2L2 > 0 and f(1) = Kω(v) < 0, there exists λ0 ∈ (0, 1)
such that Kω(v

λ0) = 0. Moreover, since vλ0 ̸= 0, it follows from (1.6) that

d(ω) ≤ Sω(v
λ0).

On the other hand, since g′(1) = P (v) = 0 and g(1) = E(v) > 0, it follows
from Lemma 1 that λ3 = 1 and g(λ) < g(1) for all λ ∈ (0, 1).

Thus, we have E(vλ0) < E(v), and

d(ω) ≤ Sω(v
λ0) = E(vλ0) +

ω

2
∥vλ0∥2L2 < E(v) +

ω

2
∥v∥2L2 = Sω(v).

This completes the proof.

Lemma 3. The set Bω is invariant under the flow of (1.1). That is, if u0 ∈ Bω,
then the solution u(t) of (1.1) with u(0) = u0 satisfies u(t) ∈ Bω for all
t ∈ [0, T ∗).

Proof. Let u0 ∈ Bω and let u(t) be the solution of (1.1) with u(0) = u0. Then,
by the conservation laws (1.3), we have

0 < E(u(t)) = E(u0) < E(ϕω), ∥u(t)∥2L2 = ∥u0∥2L2 = ∥ϕω∥2L2

for all t ∈ [0, T ∗).
Next, we prove that Kω(u(t)) < 0 for all t ∈ [0, T ∗). Suppose that this were

not true. Then, since Kω(u0) < 0 and t 7→ Kω(u(t)) is continuous on [0, T ∗),
there exists t1 ∈ (0, T ∗) such that Kω(u(t1)) = 0. Moreover, since u(t1) ̸= 0,
by (1.6), we have d(ω) ≤ Sω(u(t1)). Thus, we have

d(ω) ≤ Sω(u(t1)) = E(u0) +
ω

2
∥u0∥2L2 < E(ϕω) +

ω

2
∥ϕω∥2L2 = d(ω).
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This is a contradiction. Therefore, Kω(u(t)) < 0 for all t ∈ [0, T ∗).

Finally, we prove that P (u(t)) < 0 for all t ∈ [0, T ∗). Suppose that this
were not true. Then, there exists t2 ∈ (0, T ∗) such that P (u(t2)) = 0. Since
E(u(t2)) > 0 and Kω(u(t2)) < 0, it follows from Lemma 2 that d(ω) <
Sω(u(t2)). Thus, we have

d(ω) < Sω(u(t2)) = E(u0) +
ω

2
∥u0∥2L2 < E(ϕω) +

ω

2
∥ϕω∥2L2 = d(ω).

This is a contradiction. Therefore, P (u(t)) < 0 for all t ∈ [0, T ∗).

Lemma 4. For any v ∈ Bω,

E(ϕω) ≤ E(v)− P (v).

Proof. Since Kω(v) < 0, as in the proof of Lemma 2, there exists λ0 ∈ (0, 1)
such that Sω(ϕω) = d(ω) ≤ Sω(v

λ0). Moreover, since ∥vλ0∥2L2 = ∥v∥2L2 =
∥ϕω∥2L2 , we have

(2.4) E(ϕω) ≤ E(vλ0).

On the other hand, since P (vλ) = λ∂λE(vλ), P (v) < 0 and E(v) > 0, it
follows from Lemma 1 that λ3 < 1 < λ4. Moreover, since ∂2

λE(vλ) < 0 for
λ ∈ [λ3,∞), by a Taylor expansion, we have

(2.5) E(vλ3) ≤ E(v) + (λ3 − 1)P (v) ≤ E(v)− P (v).

Finally, by (2.4), (2.5) and the third property of Lemma 1, we have

E(ϕω) ≤ E(vλ0) ≤ E(vλ3) ≤ E(v)− P (v).

This completes the proof.

Now we give the proof of Theorem 2.

Proof of Theorem 2. Let u0 ∈ Σ∩Bω and let u(t) be the solution of (1.1) with
u(0) = u0. Then, by Lemma 3, u(t) ∈ Bω for all t ∈ [0, T ∗).

Moreover, by the virial identity (1.8) and Lemma 4, we have

1

8

d2

dt2
∥xu(t)∥2L2 = P (u(t)) ≤ E(u(t))−E(ϕω) = E(u0)− E(ϕω) < 0

for all t ∈ [0, T ∗), which implies T ∗ < ∞. This completes the proof.
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§3. Proof of Theorem 1

First, we prove the following lemma.

Lemma 5. Let a > 0, b > 0, 1 < p < 1 + 4/N < q < 2∗ − 1, and let ϕω ∈ Gω.
Then there exists ω1 > 0 such that E(ϕω) > 0 for all ω ∈ (ω1,∞).

Proof. Since P (ϕω) = 0, we see that E(ϕω) > 0 if and only if

(3.1)
(2− α)a

p+ 1
∥ϕω∥p+1

Lp+1 <
(β − 2)b

q + 1
∥ϕω∥q+1

Lq+1 .

Moreover, in the same way as the proof of Theorem 2 in [13], we can prove
that

lim
ω→∞

∥ϕω∥p+1
Lp+1

∥ϕω∥q+1
Lq+1

= 0.

Thus, there exists ω1 > 0 such that (3.1) holds for all ω ∈ (ω1,∞).

Proof of Theorem 1. Let ω ∈ (ω1,∞). Then, by Lemma 5, E(ϕω) > 0.

For λ > 0, we consider the scaling ϕλ
ω(x) = λN/2ϕω(λx), and prove that

there exists λ0 ∈ (1,∞) such that ϕλ
ω ∈ Bω for all λ ∈ (1, λ0).

First, we have ∥ϕλ
ω∥2L2 = ∥ϕω∥2L2 for all λ > 0. Next, since P (ϕω) = 0 and

E(ϕω) > 0, by Lemma 1 and (2.2), there exists λ4 > 1 such that

0 < E(ϕλ
ω) < E(ϕω), P (ϕλ

ω) < 0

for all λ ∈ (1, λ4). Finally, since P (ϕω) = 0, we have

∂λKω(ϕ
λ
ω)
∣∣
λ=1

= −(p− 1)aα

p+ 1
∥ϕω∥p+1

Lp+1 −
(q − 1)bβ

q + 1
∥ϕω∥q+1

Lq+1 < 0.

Since Kω(ϕω) = 0, there exists λ0 ∈ (1, λ4) such that Kω(ϕ
λ
ω) < 0 for all

λ ∈ (1, λ0).

Therefore, ϕλ
ω ∈ Bω for all λ ∈ (1, λ0). Moreover, since ϕλ

ω ∈ Σ for λ > 0,
it follows from Theorem 2 that for any λ ∈ (1, λ0), the solution u(t) of (1.1)
with u(0) = ϕλ

ω blows up in finite time.

Finally, since lim
λ→1

∥ϕλ
ω − ϕω∥H1 = 0, the proof is completed.
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