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Abstract. In this paper, we consider the problem of simultaneous testing
of the mean vector and the covariance matrix when the data have a two-step
monotone pattern that is missing observations. We give the likelihood ratio
test (LRT) statistic and propose an approximate upper percentile of the null
distribution using linear interpolation based on an asymptotic expansion of the
modified LRT statistic in the case of a complete data set. As another approach,
we give the modified LRT statistics with a two-step monotone missing data
pattern using the coefficient of the modified LRT statistic with complete data.
Finally, we investigate the asymptotic behavior of the upper percentiles of these
test statistics by Monte Carlo simulation.
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§1. Introduction

Let x1,x2, . . . ,xN1
be distributed as the p-dimensional normal distribution

Np(µ,Σ) and x1,N1+1,x1,N1+2, . . . ,x1N be distributed as the p1-dimensional
normal distribution Np1(µ1,Σ11), where

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

We partition xj into a p1 × 1 random vector and a p2 × 1 random vector as
xj = (x′

1j ,x
′
2j)

′, where xij : pi × 1, i = 1, 2, j = 1, 2, . . . , N1.
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Such a data set has two-step monotone missing data:

x′
11 x′

21
...

...
x′
1N1

x′
2N1

N1

x′
1,N1+1

∗ · · · ∗
...

...
...

x′
1N ∗ · · · ∗

N2


︸ ︷︷ ︸

p1

︸ ︷︷ ︸
p2

,

where N = N1 + N2, p = p1 + p2, N1 > p, and “∗” indicates a missing
observation.
Missing data is an important problem in statistical data analyses. A variety

of statistical procedures to deal with missing data have been developed by
many authors, including Anderson (1957), Bhargava (1962), McLachlan and
Krishnan (1997), and Little and Rubin (2002). For a general missing pattern,
Srivastava (1985) discussed the LRT for mean vectors in one-sample and two-
sample problems. Seo and Srivastava (2000) derived a test of equality of means
and the simultaneous confidence intervals for the monotone missing data in
a one-sample problem. Anderson (1957) developed an approach to derive the
MLEs of the mean vector and the covariance matrix by solving the likelihood
equations for monotone missing data with several missing patterns. Anderson
and Olkin (1985) derived the MLEs for two-step monotone missing data in a
one-sample problem. For the related discussion of the MLEs in cases of general
k-step monotone missing data, see Jinadasa and Tracy (1992) and Kanda and
Fujikoshi (1998).
Further, by the use of the MLEs of the mean vector and the covariance

matrix, the LRT statistic and Hotelling’s T 2-type statistic for tests of mean
vectors with two or three-step monotone missing data has been discussed by
Krishnamoorthy and Pannala (1999), Chang and Richards (2009), Seko et al.
(2012), and Yagi and Seo (2014), among others. The problem of simultaneous
testing of the mean and the variance under univariate and non-missing nor-
mality has been discussed by Choudhari et al. (2001) and Zhang et al. (2012).
For non-missing and multivariate normality, Davis (1971) gave the modified
LRT statistic (see Muirhead (1982) and Srivastava (2002)). In this paper, the
LRT and modified LRT statistics are given under multivariate normality with
a two-step monotone missing data pattern. Further, we assume that the data
are missing completely at random (MCAR), see Hao and Krishnamoorthy
(2001), and Little and Rubin (2002).
The remainder of this paper is organized as follows. In Section 2, we con-

sider the case in which the missing observations are of the two-step monotone
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type and provide an LRT statistic for the simultaneous testing of the mean
vector and the covariance matrix. In Section 3, an approximation to the up-
per percentile of the LRT statistic and the modified LRT statistics are given.
Finally, in Section 4, the accuracy of the approximation and the asymptotic
behavior of modified statistics are investigated by Monte Carlo simulation.

§2. Likelihood ratio test statistic

In order to derive the LRT statistic of the simultaneous testing of the mean
vector and the covariance matrix in the case of a two-step monotone missing
data pattern, we present their MLEs, which are given by

µ̂ =

(
µ̂1

µ̂2

)
=

 1

N
(N1x(1)1 +N2x(2))

x(1)2 − Σ̂21Σ̂
−1
11 (x(1)1 − µ̂1)

 ,(2.1)

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
(2.2)

=

 1

N
(W(1)11 +W(2)) Σ̂11W

−1
(1)11W(1)12

W(1)21W
−1
(1)11Σ̂11

1

N1
W(1)22·1 + Σ̂21Σ̂

−1
11 Σ̂12

 ,

where

x(1) =

(
x(1)1

x(1)2

)
, x(1)1 =

1

N1

N1∑
j=1

x1j , x(1)2 =
1

N1

N1∑
j=1

x2j ,

x(2) =
1

N2

N∑
j=N1+1

x1j ,

and

W(1) =

(
W(1)11 W(1)12

W(1)21 W(1)22

)
=

N1∑
j=1

(xj − x(1))(xj − x(1))
′,

W(2) =
N∑

j=N1+1

(x1j − x(2))(x1j − x(2))
′ +

N1N2

N
(x(1)1 − x(2))(x(1)1 − x(2))

′,

W(1)22·1 = W(1)22 −W(1)21W
−1
(1)11W(1)12 .

These results follow from the results in Anderson and Olkin (1985) and
Kanda and Fujikoshi (1998).
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In the derivation, we use the following transformed parameters (η,∆) :

η =

(
η1

η2

)
=

(
µ1

µ2 −∆21µ1

)
,

∆ =

(
∆11 ∆12

∆21 ∆22

)
=

(
Σ11 Σ−1

11 Σ12

Σ21Σ
−1
11 Σ22·1

)
,

where Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12. We note that (η,∆) are in one-to-one cor-

respondence to (µ,Σ). After multiplying the observation vector xj by the
transformation matrix

A =

(
Ip1 O

−∆21 Ip2

)
on the left side, the log likelihood function is derived, and the results can then
be obtained by differentiation.

We consider the following hypothesis test when the data set is of a two-step
monotone pattern.

H0 : µ = µ0, Σ = Σ0 vs. H1 : not H0.(2.3)

Without loss of generality, we can assume that µ = 0 and Σ = Ip. Then, from
the MLEs in (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. Suppose that the data have a two-step monotone pattern that
is missing observations and that λ1 is the likelihood ratio (LR) in the case of
the two-step monotone missing data. Then, the LR of the hypothesis test (2.3)
is given by

λ1 = |Σ̂11|
N
2 |Σ̂22·1|

N1
2

etr

−1

2

N∑
j=1

x1jx
′
1j

 etr

−1

2

N1∑
j=1

x2jx
′
2j


exp

(
−1

2
Np1

)
exp

(
−1

2
N1p2

) .

Further, the LR can be expressed as

λ1 =
( e

N

) 1
2
Np1

|W(1)11 +W(2)|
1
2
N

× etr

[
−1

2

{
W(1)11+W(2) +

1

N
(N1x(1)1+N2x(2))(N1x(1)1+N2x(2))

′
}]

×
(

e

N1

) 1
2
N1p2

|W(1)22·1|
1
2
N1etr

{
−1

2
(W(1)22 +N1x(1)2x

′
(1)2)

}
.
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The result in Theorem 2.1 coincides with the result in Hao and Krishnamoor-
thy (2001). We note that under H0, −2 log λ1 is asymptotically distributed as
a χ2 distribution with f = p(p + 3)/2 degrees of freedom when N1, N → ∞
with N1/N → δ ∈ (0, 1]. However, when the sample size is not large, the χ2

distribution is not a good approximation to the upper percentile of −2 log λ1.
Further, it is not easy to find the exact distribution of the LRT statistic
−2 log λ1. In the next section, we give an approximate upper percentile of
−2 log λ1 and propose modified LRT statistics whose upper percentile is close
to that of the χ2 distribution even for small samples.

§3. The modified LRT statistics and an approximate upper
percentile of the LRT statistic

In this section, we propose an approximate upper percentile of the null distri-
bution of −2 log λ1 using linear interpolation based on an asymptotic expan-
sion of the modified LRT statistic in the case of a complete data set. Further,
as another approach, we give the modified LRT statistics using the coefficient
of the modified LRT statistic for the complete data.

3.1. Modified coefficient approximation procedure

We first consider the LR in the case of a complete data set. Let x1,x2, . . . ,xN

∼ Np(µ,Σ), and let λc,N be the LR for the complete data set. Then, the LR
is given by

λc,N =
( e

N

)Np
2 |V |

N
2 etr

{
−1

2
(V +Nxx′)

}
,

where

x =
1

N

N∑
i=1

xi, V =

N∑
i=1

(xi − x)(xi − x)′.

Further, the modified LRT statistic is given by −2ρc,N log λc,N , where ρc,N =
1− (2p2+9p+11)/ {6N(p+ 3)}, and its cumulative distribution function can
be expanded as

Pr(−2ρc,N log λc,N ≤ x) = Gf (x)+
γ

M2
{Gf+4(x)−Gf (x)}+O(M−3),(3.1)

where

M = ρc,NN, γ =
p

288(p+ 3)
(2p4 + 18p3 + 49p2 + 36p− 13),
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and Gf (x) and Gf+4(x) are the cumulative distribution functions of the χ2

distribution with f(= p(p+3)/2) and f +4 degrees of freedoms, respectively.

This result was derived by Davis (1971) (see Muirhead ((1982), p. 370) and
Srivastava ((2002), p. 494)). This means that if the χ2 distribution is used as
an approximation to the distribution of −2ρc,N log λc,N , the error involved is
not of order M−1 but of order M−2.

If we denote the coefficients of the modified LRT statistics in the case of
complete data sets N and N1 by ρc,N and ρc,N1

, respectively, then it may
be noted that ρmiss is between ρc,N and ρc,N1

, where ρmiss is the coefficient of
the modified LRT statistic −2ρmiss log λ1. From the linear interpolation, we
propose an approximation to the modified LRT statistic in the case of two-
step monotone missing data. Calculating the approximate coefficient ρL =
(p1ρc,N + p2ρc,N1

)/p, we can obtain an approximate modified LRT statistic
−2ρL log λ1, where

ρL = 1− 1

N

(
1 +

N2p2
N1p

)
2p2 + 9p+ 11

6(p+ 3)
.

3.2. Asymptotic expansion approximation procedure

In this subsection, we give an approximate upper percentile of −2 log λ1 when
the data have a two-step monotone pattern that is missing observations. First,
in the case of a complete data set, we obtain the following lemma.

Lemma 3.1. Suppose that x1,x2, . . . ,xN are distributed as Np(µ,Σ). Then,
under the null hypothesis H0 in (2.3), the upper percentile of the modified LRT
statistic, −2ρc,N log λc,N , can be expanded as

qMLR·c(α) = χ2
f (α) +

1

M2

2γ

f(f + 2)
χ2
f (α)

{
χ2
f (α) + f + 2

}
+ o(M−2),

where

M = ρc,NN, ρc,N = 1− 2p2 + 9p+ 11

6N(p+ 3)
, f =

1

2
p(p+ 3),

and χ2
f (α) is the upper percentile of the χ2 distribution with f degrees of free-

dom.

Proof. Putting the upper percentile of −2ρc,N log λc,N with

qMLR·c(α) = χ2
f (α) +

1

M2
h+ o(M−2),



SIMULTANEOUS TESTING OF MEAN VECTOR AND COVARIANCE MATRIX 89

where h is a constant, we have

1− α = Gf (qMLR·c(α))− gf (χ
2
f (α))

1

M2
h+ o(M−2),(3.2)

where Gf (x) and gf (x) are, respectively, the cumulative distribution function
and the density function of the χ2 distribution with f degrees of freedom. On
the other hand, from (3.1), we can write

1− α = Pr {−2ρc,N log λc,N ≤ qMLR·c(α)}

= Gf (qMLR·c(α)) +
γ

M2
{Gf+4(qMLR·c(α))−Gf (qMLR·c(α))}(3.3)

+ o(M−2).

Therefore, using Gf+2j(x) = −2gf+2j(x) + Gf+2(j−1)(x), j = 0, 1, 2 and
comparing (3.2) with (3.3), we obtain

h =
2γ

f(f + 2)
χ2
f (α)

{
χ2
f (α) + f + 2

}
+ o(M−2).

From Lemma 3.1 and M−2 = N−2 + O(N−3), we can expand the upper
percentile of −2 log λc,N as

qLR·c(α) = χ2
f (α) +

ν

N
χ2
f (α) +

1

N2
χ2
f (α)

{
ν2+

2γ

f
+

2γ

f(f + 2)
χ2
f (α)

}
+o(N−2),

where

ν =
2p2 + 9p+ 11

6(p+ 3)
.

From the linear interpolation, letting qLR·m(α) be the upper percentile of
−2 log λ1, an approximate upper percentile of −2 log λ1 can be obtained as

q∗LR·m(α) = χ2
f (α) +

1

N

(
p1 +

1

c1
p2

)
ν

p
χ2
f (α)

+
1

N2

(
p1 +

1

c21
p2

)
χ2
f (α)

p

{
ν2 +

2γ

f
+

2γ

f(f + 2)
χ2
f (α)

}
+ o(N−2),

where c1 = N1/N.
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3.3. The LRT statistic’s decomposition procedure

In this section, we give other modified LRT statistics by the decomposition of
λ1. We first consider the following test problem for Σ.

H01 : Σ = Σ0 = I vs. H11 : Σ ̸= I.

Hao and Krishnamoorthy (2001) derived the modified LRT statistic λ∗
Σ in the

case of two-step monotone missing data, which is given by

λ∗
Σ =

( e
n

) 1
2
np1 ∣∣W(1)11 +W(2)

∣∣ 12n exp{−1

2
tr(W(1)11 +W(2))

}
×
(

e

n1

) 1
2
n1p2 ∣∣W(1)22·1

∣∣ 12n1 exp

{
−1

2
trW(1)22·1

}
× exp

{
−1

2
tr(W(1)21W

−1
(1)11W(1)12)

}
,

where n = N − 1, n1 = N1 − p1 − 1. We note that the modified LRT statistic
−2 log λ∗

Σ is an unbiased test statistic (see Hao and Krishnamoorthy (2001)
and Chang and Richards (2010)). Further, after modifying and rearranging
some terms, Hao and Krishnamoorthy (2001) expressed the modified LR for
H0 in (2.3) as λ∗

Σω1ω2, where

ω1 = exp

{
− 1

2N
(N1x(1)1 +N2x(2))

′(N1x(1)1 +N2x(2))

}
,

ω2 = exp

{
−1

2
N1x

′
(1)2x(1)2

}
.

If we denote

ω3 =
( e

N

) 1
2
Np1

|W(1)11 +W(2)|
1
2
N exp

{
−1

2
tr(W(1)11 +W(2))

}
,

ω4 =

(
e

N1

) 1
2
N1p2

|W(1)22·1|
1
2
N1 exp

{
−1

2
trW(1)22·1

}
,

ω5 = exp

{
−1

2
tr(W(1)21W

−1
(1)11W(1)12)

}
,

we can express λ1 =
∏5

i=1 ωi. Since ω1ω3 and ω2ω4 are of the form of LR
for H0 under non-missing normality, we can give the modified LRT statistics,
−2ρ13 logω1ω3 and −2ρ24 logω2ω4, respectively, where

ρ13 = 1− 2p21 + 9p1 + 11

6N(p1 + 3)
, ρ24 = 1− 2p22 + 9p2 + 11

6N1(p2 + 3)
.
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Thus, we propose a new modified LRT statistic given by −2 log τ , where

τ = (ω1ω3)
ρ13(ω2ω4)

ρ24ω5 .

In addition, we denote

ω∗
3 =

( e
n

) 1
2
np1

|W(1)11 +W(2)|
1
2
n exp

{
−1

2
tr(W(1)11 +W(2))

}
,

ω∗
4 =

(
e

n1

) 1
2
n1p2

|W(1)22·1|
1
2
n1 exp

{
−1

2
trW(1)22·1

}
.

Then, since ω∗
3 and ω∗

4 are of the form of LR for H01 under non-missing nor-
mality, we can propose the modified LRT statistic −2 logφ∗, where

φ∗ = ω1ω2(ω
∗
3)

ρ∗3(ω∗
4)

ρ∗4ω5

and

ρ∗3 = 1− 2p21 + 3p1 − 1

6n(p1 + 1)
, ρ∗4 = 1− 2p22 + 3p2 − 1

6n1(p2 + 1)
.

§4. Simulation studies

We evaluate the accuracy and the asymptotic behaviors of the χ2 approxima-
tions by Monte Carlo simulation (106 runs).
In Table 1, we provide the simulated upper 100α percentiles of −2 log λ1

and −2ρL log λ1 and the approximate upper percentiles of −2 log λ1, that is,
q∗LR·m(α) for (p1, p2) = (8, 4); α = 0.05, 0.01; and for the following three cases
of (N1, N2),

(N1, N2) =


(m,m), m = 20, 40, 80, 160, 320,
(2m,m), m = 10, 20, 40, 80, 160,
(m, 2m), m = 20, 40, 80, 160.

In Table 2, we provide the same upper percentiles as those given in Table 1 for
(p1, p2) = (8, 4); α = 0.05, 0.01; (N1, N2) = (m1,m2),m1 = 40, 80, 160, 320,
m2 = 10, 30, 60, 120, where the sets of (N1, N2) are combinations of m1 and
m2.
It may be noted from Tables 1 and 2 that the simulated values are closer

to the upper percentile of the χ2 distribution when the sample size becomes
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large. In addition, it can be seen from both tables that the upper percentile of
−2ρL log λ1 is considerably better than that of −2 log λ1 even for small sample
sizes. Further, Tables 1 and 2 list the actual type I error rates for the upper
percentiles of −2 log λ1 and −2ρL log λ1 as well as q∗LR·m(α), which are given
by

α1 = Pr
{
−2 log λ1 > χ2

f (α)
}
,

αρL = Pr
{
−2ρL log λ1 > χ2

f (α)
}
,

and

αq∗LR·m
= Pr {−2 log λ1 > q∗LR·m(α)} ,

respectively. It appears from the simulated results that the approximate value
q∗LR·m(α) based on the asymptotic expansion is good for all cases, even when
N1 < N2. Therefore, it can be concluded that our approximation procedures
are very accurate for most of the cases.
In Tables 3 and 4, we provide the simulated upper percentiles of −2 log τ

and −2 logφ∗ for the same cases as those in Tables 1 and 2. It may also be
noted that the upper percentiles of −2 logφ∗ are considerably good even for
small sample sizes. Tables 3 and 4 list the actual type I error rates for the
upper percentiles of −2 log τ and −2 logφ∗, which are given by

ατ = Pr
{
−2 log τ > χ2

f (α)
}

and
αφ∗ = Pr

{
−2 logφ∗ > χ2

f (α)
}
,

respectively. The results for actual type I error rates also show that our
modified LRT statistic −2 logφ∗ yields considerably good χ2 approximations
for cases in which the sample size is small.
In conclusion, we have developed the approximate upper percentiles of the

LRT statistic −2 log λ1 and some modified LRT statistics for simultaneous
testing of the mean vector and the covariance matrix for the case of two-step
monotone missing data. The null distribution of the modified LRT statistic
−2 logφ∗ proposed in this paper has considerably good approximation to the
χ2 distribution even when the sample size is small.
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Table 1: The simulated values for −2 log λ1 and −2ρL log λ1, and the approx-
imate value for −2 log λ1, and the type I error rates when (p1, p2) = (8, 4)

Sample Size Upper Percentile Type I Error Rate

N1 N2 −2 log λ1 −2ρL log λ1 q∗LR·m(α) α1 αρL αq∗LR·m

α = 0.05

20 20 148.24 125.89 134.65 0.562 0.180 0.162

40 40 126.08 116.58 122.79 0.190 0.076 0.073

80 80 119.01 114.52 117.69 0.099 0.059 0.059

160 160 115.92 113.74 115.35 0.071 0.054 0.054

320 320 114.48 113.40 114.23 0.059 0.052 0.052

20 10 150.21 123.79 138.65 0.596 0.152 0.137

40 20 127.02 115.85 124.50 0.203 0.070 0.067

80 40 119.38 114.14 118.47 0.104 0.057 0.056

160 80 116.11 113.55 115.72 0.073 0.053 0.053

320 160 114.61 113.35 114.41 0.060 0.051 0.051

20 40 146.54 128.13 130.99 0.531 0.212 0.189

40 80 125.28 117.41 121.16 0.177 0.084 0.080

80 160 118.60 114.87 116.93 0.095 0.062 0.062

160 320 115.67 113.86 114.98 0.069 0.055 0.055

α = 0.01

20 20 163.40 138.77 147.80 0.328 0.061 0.052

40 40 138.45 128.01 134.71 0.063 0.018 0.017

80 80 130.49 125.57 129.11 0.025 0.013 0.012

160 160 127.20 124.80 126.53 0.016 0.011 0.011

320 320 125.63 124.44 125.31 0.013 0.011 0.011

20 10 165.49 136.39 152.21 0.360 0.048 0.041

40 20 139.43 127.17 136.60 0.069 0.016 0.015

80 40 130.92 125.16 129.97 0.027 0.012 0.012

160 80 127.23 124.43 126.94 0.016 0.011 0.010

320 160 125.67 124.29 125.51 0.013 0.010 0.010

20 40 161.66 141.35 143.76 0.300 0.077 0.065

40 80 137.56 128.92 132.93 0.057 0.020 0.019

80 160 130.07 125.99 128.27 0.024 0.013 0.013

160 320 126.86 124.86 126.13 0.015 0.011 0.011

Note. The closest to α in the values α1, αρL , and αq∗
LR·m

of each low is in bold.

χ2
f (0.05) = 113.145, χ2

f (0.01) = 124.116.
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Table 2: The simulated values for −2 log λ1 and −2ρL log λ1, and the approx-
imate value for −2 log λ1, and the type I error rates when (p1, p2) = (8, 4)

Sample Size Upper Percentile Type I Error Rate

N1 N2 −2 log λ1 −2ρL log λ1 q∗LR·m(α) α1 αρL αq∗LR·m

α = 0.05

40 10 127.69 115.18 125.92 0.214 0.064 0.061

80 10 119.81 113.54 119.55 0.109 0.053 0.052

160 10 116.45 113.29 116.35 0.075 0.051 0.051

320 10 114.78 113.19 114.75 0.061 0.050 0.050

40 30 126.47 116.26 123.51 0.196 0.074 0.070

80 30 119.49 113.97 118.76 0.105 0.056 0.055

160 30 116.28 113.34 116.12 0.074 0.051 0.051

320 30 114.70 113.17 114.68 0.061 0.050 0.050

40 60 125.61 117.09 121.80 0.182 0.081 0.077

80 60 119.14 114.33 118.02 0.101 0.058 0.057

160 60 116.16 113.48 115.86 0.073 0.052 0.052

320 60 114.70 113.25 114.60 0.061 0.051 0.051

40 120 124.90 117.84 120.38 0.172 0.088 0.084

80 120 118.72 114.70 117.23 0.097 0.061 0.060

160 120 115.95 113.61 115.51 0.071 0.053 0.053

320 120 114.61 113.29 114.48 0.061 0.051 0.051

α = 0.01

40 10 140.21 126.48 138.17 0.075 0.014 0.013

80 10 131.45 124.57 131.15 0.029 0.011 0.010

160 10 127.73 124.26 127.63 0.017 0.010 0.010

320 10 125.85 124.10 125.87 0.013 0.010 0.010

40 30 138.67 127.47 135.51 0.066 0.017 0.016

80 30 131.24 125.17 130.28 0.028 0.012 0.012

160 30 127.53 124.31 127.38 0.017 0.010 0.010

320 30 125.76 124.09 125.81 0.013 0.010 0.010

40 60 137.82 128.47 133.63 0.060 0.019 0.018

80 60 130.74 125.46 129.47 0.026 0.012 0.012

160 60 127.43 124.48 127.09 0.016 0.011 0.011

320 60 125.79 124.20 125.72 0.013 0.010 0.010

40 120 137.08 129.34 132.07 0.055 0.021 0.020

80 120 130.35 125.93 128.60 0.024 0.013 0.013

160 120 127.22 124.65 126.71 0.016 0.011 0.011

320 120 125.60 124.15 125.58 0.013 0.010 0.010

Note. The closest to α in the values α1, αρL , and αq∗
LR·m

of each low is in bold.

χ2
f (0.05) = 113.145, χ2

f (0.01) = 124.116.
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Table 3: The simulated values for −2 log τ and −2 logφ∗, and the type I error
rates when (p1, p2) = (8, 4)

Sample Size Upper Percentile Type I Error Rate

N1 N2 −2 log τ −2 logφ∗ ατ αφ∗

α = 0.05

20 20 138.73 113.43 0.397 0.052

40 40 122.40 113.16 0.139 0.050

80 80 117.25 113.12 0.083 0.050

160 160 115.12 113.15 0.064 0.050

320 320 114.09 113.15 0.056 0.050

20 10 138.91 113.56 0.400 0.053

40 20 122.49 113.22 0.140 0.050

80 40 117.36 113.21 0.084 0.050

160 80 115.12 113.12 0.064 0.050

320 160 114.06 113.13 0.056 0.050

20 40 138.59 113.35 0.395 0.051

40 80 122.38 113.20 0.139 0.050

80 160 117.27 113.12 0.083 0.050

160 320 115.07 113.12 0.064 0.050

α = 0.01

20 20 152.69 124.43 0.189 0.011

40 40 134.29 124.05 0.040 0.010

80 80 128.61 124.07 0.020 0.010

160 160 126.33 124.18 0.014 0.010

320 320 125.24 124.18 0.012 0.010

20 10 153.09 124.62 0.192 0.011

40 20 134.44 124.22 0.041 0.010

80 40 128.74 124.18 0.020 0.010

160 80 126.30 124.11 0.014 0.010

320 160 125.20 124.14 0.012 0.010

20 40 152.57 124.45 0.188 0.010

40 80 134.26 124.16 0.040 0.010

80 160 128.62 124.07 0.020 0.010

160 320 126.28 124.18 0.014 0.010

Note. The closer to α in the values ατ and αφ∗ of each low is in bold.

χ2
f (0.05) = 113.145, χ2

f (0.01) = 124.116.
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Table 4: The simulated values for −2 log τ and −2 logφ∗, and the type I error
rates when (p1, p2) = (8, 4)

Sample Size Upper Percentile Type I Error Rate

N1 N2 −2 log τ −2 logφ∗ ατ αφ∗

α = 0.05

40 10 122.57 113.28 0.141 0.051

80 10 117.35 113.16 0.083 0.050

160 10 115.12 113.14 0.064 0.050

320 10 114.11 113.14 0.057 0.050

40 30 122.45 113.22 0.140 0.050

80 30 117.32 113.17 0.083 0.050

160 30 115.13 113.15 0.064 0.050

320 30 114.14 113.17 0.057 0.050

40 60 122.37 113.20 0.139 0.050

80 60 117.25 113.11 0.083 0.050

160 60 115.11 113.11 0.064 0.050

320 60 114.13 113.17 0.057 0.050

40 120 122.39 113.19 0.139 0.050

80 120 117.24 113.11 0.082 0.050

160 120 115.18 113.18 0.065 0.050

320 120 114.19 113.24 0.057 0.051

α = 0.01

40 10 134.47 124.24 0.041 0.010

80 10 128.76 124.17 0.020 0.010

160 10 126.29 124.12 0.014 0.010

320 10 125.09 124.07 0.012 0.010

40 30 134.45 124.20 0.041 0.010

80 30 128.76 124.19 0.020 0.010

160 30 126.23 124.15 0.014 0.010

320 30 125.29 124.25 0.012 0.010

40 60 134.33 124.18 0.040 0.010

80 60 128.59 124.00 0.020 0.010

160 60 126.25 124.05 0.014 0.010

320 60 125.17 124.15 0.012 0.010

40 120 134.31 124.19 0.040 0.010

80 120 128.65 124.08 0.020 0.010

160 120 126.38 124.22 0.014 0.010

320 120 125.21 124.15 0.012 0.010

Note. The closer to α in the values ατ and αφ∗ of each low is in bold.

χ2
f (0.05) = 113.145, χ2

f (0.01) = 124.116.
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