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Abstract. For square contingency tables with ordered categories, Tomizawa
(1995a) considered the generalized marginal homogeneity model. The present
paper proposes a measure which represents the degree of departure from general-
ized marginal homogeneity. The proposed measure is expressed by the weighted
sum of the Cressie-Read power-divergence or Patil-Taillie diversity index. This
measure would be useful for measuring the degree of departure from generalized
marginal homogeneity toward the maximum departure from it. The relation-
ship between the measure and the further generalized marginal homogeneity
model is shown by simulation studies.
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8§1. Introduction

Consider an R x R square contingency table with the same row and column
classifications. Let p;; denote the probability that an observation will fall in
the ith row and jth column of the table (i =1,...,R;j=1,..., R).

The marginal homogeneity (MH) model (Stuart, 1955) is defined by

pi.=p,; fori=1,... R,
where p;. = Zf‘zlpit and p; = 25“:1 Dsi
For square contingency tables with ordered categories, Tomizawa (1984)
proposed the extended marginal homogeneity (EMH) model, defined by
op;. + pii +p; = 0p; +pu+pl for i=1,... R,
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where ¢ is unspecified and

i—1 R R i—1
Py =Y pits PY= D by D= D Dsir PE= Dsi
t=1 s=1

t=i+1 s=i+1

A special case of this model obtained by putting § = 1 is the MH model.
Let X and Y denote the row and column variables, respectively. Let

ZZpst =Pr(X <i,Y >i+1)],

s=1t=i+1

and

1)_222?“ =Pr(X >i+1,Y <i),
s=i+1 t=1
fori=1,...,R—1.
Tomizawa (1995a) proposed the generalized marginal homogeneity (GMH)
model, defined by

Gy = A0 'Gyyy for i=1,...,R—1.

This model indicates that the cumulative probability that an observation will
fall in row category i or below and column category i + 1 or above, is A@~!
times higher than the cumulative probability that the observation falls in
column category ¢ or below and row category i+1 or above fori =1,..., R—1.
A special case of this model obtained by putting © = 1 is equivalent to the
EMH model. Also the GMH model with A = © =1 is equivalent to the MH
model.

For square contingency tables with nominal categories, Tomizawa (1995b)
proposed two kinds of measures (based on unconditional marginal probabilities
and conditional marginal probabilities) to represent the degree of departure
from MH, which are expressed by using the Kullback-Leibler information (or
the Shannon entropy) and the Pearson’s chi-squared type discrepancy (or the
Gini concentration). Tomizawa and Makii (2001) considered generalization
of Tomizawa’s (1995b) measures, which are expressed by using Cressie and
Read’s (1984) power-divergence (or Patil and Taillie’s (1982) diversity index).

For square contingency tables with ordered categories, measures which
represent the degree of departure from MH were proposed by Tomizawa,
Miyamoto and Ashihara (2003), and Tahata, Iwashita and Tomizawa (2006).
Yamamoto, Furuya and Tomizawa (2007) proposed a measure which repre-
sents the degree of departure from EMH. Each of these measures is useful
to represent what degree the departure from the corresponding model is to-
ward the maximum departure from it. Note that measures in Tomizawa et al.
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(2003), in Tahata et al. (2006), and in Yamamoto et al. (2007) are based on
the Cressie-Read power-divergence (including the Kullback-Leibler informa-
tion as a special case) and Patil-Taillie diversity index (including the Shannon
entropy as a special case).

We point out that the test statistic (e.g., Pearson’s chi-squared statistic or
likelihood ratio statistic) is used for testing the goodness-of-fit of the model
and the measure is used for measuring the degree of departure from the model.
Also, each of above measures is independent of the dimension R and sample
size. The measure may be useful for comparing the degrees of departure
from the model toward the maximum departure from it in several tables.
Therefore, when the GMH model does not hold, we are interested in measuring
the degree of departure from GMH (not the MH and the EMH models) toward
the maximum departure from it.

The purpose of the present paper is to propose a power-divergence type
measure which represents the degree of departure from GMH (although Ya-
mamoto et al. (2007) proposed the power-divergence type measure represent-
ing the degree of departure from EMH).

8§2. Measure

This section proposes a measure for representing the degree of departure from
GMH.
The GMH model may be expressed as

¢ =d; fori=1,...,R—2,

where
o = GGy o G Gag
7 C ) ? D ’
R—2 R-2
C= Z G11Ga@iv1), D= Z G1(i4+1)G2(i)
i=1 i=1

with C > 0 and D > 0. Namely the GMH model indicates that there is a
structure of homogeneity between {¢;} and {d;} fori=1,..., R — 2.

The power-divergence between two discrete probability distributions {a;}
and {¢;} for i =1,..., R — 2, is defined by

R-2 A
™ ({ai} i {a:}) = )\(}\14_1) [ai { <ZZ> - 1}] (o0 < A < 0),

=1

where the values at A = 0 and A = —1 are taken to be the continuous limits
as A — 0 and A — —1, respectively. For instance, the power-divergence
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includes the Kullback-Leibler information when A = 0, and the Pearson’s
chi-squared type discrepancy when A\ = 1. For more details of the power-
divergence I (-; ), see Cressie and Read (1984), and Read and Cressie (1988,
p. 15).
Let
q = Ci—gdi for i=1,...,R—2.
Assume that ¢; +d; > 0fori=1,..., R—2, consider a measure defined by

(2.1) <1>“’—§((2§+_1))[ V(fedi {ah) + 19 {di} i {ad)] > ).

Note that (i) I™ (-;-) is the power-divergence and (ii) if A < —1 in (2.1), then
®W) becomes diverging. Also note that a real value X is chosen by user. When
A =0, we see

0 —

(1O (e} {a)) + 1O ({d} s )]

210g2

where
O ({a;};{a:}) = TZ;Q%' log <Z> .

Note that I (-;.) is the Kullback-Leibler information. When A = 1, we see

oW = 1O ({e;d {gh) + ID ({di} 1 {a)),

where
R— 2 2

e (ai} i {a}) =

l\.')\r—l

=1

Note that I (-;.) is Pearson’s chi-squared type discrepancy.

Let d
Ci i .
=\ df'= fi =1,...,R—2.
i ¢ +d; ' ¢+ d; ort

Note that {¢} +d = 1}. The GMH model can be expressed as

s =d; (z ;) for i=1,...,R—2.

Then the measure ) may be expressed as

:U

AMA+1) = 3
oM = 2T N (¢4 dy) I
2020 — 1) &

%

()‘ > _1)7
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where

o1
i T

c:f{(ffz)k— 1} +df{(1d/?2>A_ 1}] |

Therefore, the measure ®*) would represent the weight sum of the power-
divergence Ii()‘). When A\ = 0, we see

= "
(0) _ E : . N 70
® 2log2 pat (¢i + di) I,

where

(0) _ | < . dy
I;”7 = [Czlog<1/ >+dzlog<1/ ﬂ

When A =1, we see
R—2

o0 =3 (e a1

where

(g -3)" (0 —3)
JiS- [ 2 +( %2) .

For A > —1, the Patil-Taillie diversity index of degree X for {c},d}}, is
defined by

H(/\) — l [1 . (Cﬁ'k))\“r]. - (d:))\Jrl} ’

where the value at A = 0 is taken to be the continuous limit as A — 0. For
instance, the diversity index includes the Shannon entropy when A = 0, and
the Gini concentration when \ = 1.

Moreover, the ®) may also be expressed by using the diversity index as

=

)
(¢; +di) H]
=1

22
2(2* — 1)

A)

N =1 — (A > —1).

Therefore, the measure ®*) would represent the weight sum of the diversity
index HZ-(/\). When A = 0, we see

R-2

1 (0)
1— +d;) H”,
210g2;(c + i) H;

0 —

where
qY = —cj logcy — d; logd;.

)
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When A =1, we see

R—2
oM =13 (c; +dy) HLY,
=1

where

We obtain the following theorem.

Theorem 1. For each A (> —1),

(i) the measure N lies between 0 and 1,

(ii) @™ = 0 if and only if the GMH model holds, namely {c; = d} = 1}, and
(iii) ®WN) =1 if and only if the degree of departure from GMH is the largest in
the sense that ¢ =0 (then df =1) or df =0 (then ¢ = 1) [namely, ¢; =0
(then d; > 0) or d; =0 (then ¢; >0)] fori=1,...,R—2.

Proof. For each A (> —1), the minimum value of HZ-()‘) is 0 when ¢ = 0 (then
df = 1) or df =0 (then ¢} = 1), and the maximum value of it is (2* —1)/(\2*)
(when X # 0), or log2 (when A = 0) when ¢ =df = 1 fori=1,...,R—2.

Therefore, we obtain (i) to (iii). O

For analyzing the degree of departure from GMH, we first should check
whether or not the GMH model holds by using the test statistic. Then, if it
is judged that there is not a structure of GMH, the next step would be to

measure the degree of departure from GMH by using the estimated measure
dM (Section 3).

83. Approximate confidence interval for measure

Let n;; denote the observed frequency in the 7th row and jth column of the
table (1 = 1,...,R;j = 1,..., R). Assuming that a multinomial distribution
applies to the R x R table, we shall consider an approximate standard error
and large-sample confidence interval for the measure ®), using the delta
method, of which descriptions are given by e.g., Bishop, Fienberg and Holland
(1975, Sec. 14.6). The sample version of ®W, i.e., 8V is given by & with
{pij} replaced by {p;;}, where p;; = n;;/n and n =) > n;;. Using the delta
method, \/n(®® —®W) has asymptotically (as n — o) a normal distribution
with mean zero and variance o2[®™M]. The value of 62[®M)] is

o2 [dWV] = Z Z {pkl (Vk(lA))z + Pik (WZ(I:\))Q} 7
k<l
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where for A > —1; A # 0,

<.
Il

R-2
A 2>\ * *
N = sy A + Fa) (@ + @) -1)
O D) (Fugayd; — Frigaed) () = @)*) },
(N 2* = AL A1
W' = 22— 1) Z{(FQZ(lk) + Fairy) (( DT (AT 1)
O+ D) (B — Fuianed) () = (@)*) .
and for A =0,
R-2
(0) — 1 Z (F]_ Kl log C’,k —+ F3. kl log d*)
kl 210g2 — i(kl) 7 i(kl) v/
R—2
) = 1 Z (FQ 1k IOgC* + F4' lk logd*)
Lk 210g2 — i(lk) 7 i(lk) 1)
where
R-2
1 .
Fli(kl) = 6 (5(k < l < l — 1)G2(’L+1) C; Z (S(k S ¥ S l — 1)G2(]+1)) s
j=1
R-2
FQzlk) ]{?<Z+1<l—1)—01 Gl(])(g(k§]+1§l—1) y
j=1
R-2
F37,(kl k‘ <i+1<I[-— 1)G2(7,) d; (S(]f <j+1<Z1- 1)G2(j) ,
1

By
o

Frian = 5 (Gl(z+1)5(k <i<l—1)—d;
1

<.
Il

Gij+1)0(k <j<Il— 1)) ;
and the indicator function 4(+).

Let 52[®W)] denote o2[®@M] with {pij} replaced by {p;;}. Then s[®@MN]//n
is an approximate standard error for ®, and ™ + 2 /20[<I>(/\)}/\/ﬁ is an

approximate 100(1 — p) percent confidence interval for N where z p/2 is the
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percentage point from the standard normal distribution corresponding to a
two-tailed probability equal to p.

We consider comparison between the degrees of departure from GMH in

Tables A and B (with sample sizes ng and np). For Tables A and B, the
measures ) are denoted by <I>(AA) and @g‘), respectively. Then an estimate of

the difference between (f[)g) and @g‘) is given by the sample version difference

(i)g\) _ (i)g\)
a normal distribution with standard error \/&2 [@S)]/nA + 62[13%\)]/713. An

approximate large-sample confidence interval for <I>1(4)‘) — @g‘) is (@Ej‘) — @g‘)) +

223210 g + 5200 /.

. When ny and np are large, this difference has approximately

§84. Examples

Consider the data in Table 1, taken from Hashimoto (2003, pp. 144-145).
These data describe the cross-classification of father’s and son’s (or daughter’s)
occupational status categories in Japan which were examined in 1995.

We are interested in applying the GMH model. For the data in Table 1a,
this model indicates that for father-son pair, the cumulative probability that
the father’s occupational status is ¢ or below and his son’s occupational status
is i + 1 or above, is A©*"! times higher than the cumulative probability that
the father’s occupational status is ¢ + 1 or above and his son’s occupational
status is ¢ or below, for i = 1,..., R — 1. When the GMH model is applied to
the data in Tables 1la and 1b, the values of likelihood ratio statistic are 16.24
and 169.01, respectively, with 2 degrees of freedom. Therefore, we see that
the GMH model fits the data in Tables 1a and 1b poorly.

Next, we shall measure what degree the departure from the GMH model
is toward the maximum departure from it, using measure ®®, because it
is impossible to measure it by the test statistic. For instance, when A = 0,
the estimated measures ®© equal 0.0195 and 0.1585 for Tables la and 1b,
respectively (see Table 2). Thus, the degrees of departure from GMH are
estimated to be 1.95 and 15.85 percent of the maximum degree of departure
from GMH for Tables 1a and 1b, respectively.

In addition, we shall compare the degrees of departure from GMH in Tables

la and 1b using the confidence intervals for (P%) —(?)52). For any given A (> —1),

the values in the confidence interval for <I>(12) — @)}’ are negative (see Table 3).
Thus the degree of departure from GMH in Table 1b is greater than that in
Table 1a.
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§5. Simulation studies

Tahata and Tomizawa (2008) considered the further extension of GMH model
(say, EGMH), defined by
Gip = A0V Gy for i=1,... R—1
1(3) 1 D) 2(14) or 1 yeeey .
A special case of this model obtained by putting ©2 = 1 is equivalent to the
GMH model.

In terms of simulation studies, Table 4 gives summary statistics of esti-
mated measure O applied to 5 x 5 square contingency tables of sample size
10000 which are obtained by generating 10000 times by using multinomial
distribution random number based on the structure of probability of EGMH
model having given parameters. When the GMH model holds, (i.e., EGMH
model with ©3 = 1), we see from Table 4 that the mean of estimated measure
d™ is close to 0. Also, when the GMH model does not hold, (i.e., EGMH
model with Oy # 1), we see that the mean of estimated measure () increases
as Oy becomes greater (or smaller) than 1. Although the details are omitted,
we can obtain similar results in other given parameters. Therefore, W) may
be appropriate for measuring the degree of departure from GMH.

86. Concluding remarks

The measure &) always ranges between 0 and 1 independent of the dimension
R and sample size n. Therefore, ®) may be useful for comparing the degrees
of departure from GMH in several tables.

We shall compare the estimated measure &) with the test statistic (e.g.,
likelihood ratio statistic). First, we consider the artificial data in Table 5.
When the GMH model is applied to the data in Tables 5a and 5b, the values
of likelihood ratio statistic are 9.18 and 91.77, respectively, with 1 degree of
freedom. On the other hand, for any fixed A (> —1), the value of PN g
equal to for Table 5a and for Table 5b (see Table 6). In terms of {é;/d;}
(see Table 5), it seems natural to conclude that the degree of departure from
GMH for Table 5a is equal to that for Table 5b. Therefore, when we want to
compare the degrees of departure from GMH in several tables, we should use
the estimated measure ®*) rather than the test statistic.

Next, we consider the artificial data in Table 7, having same sample size.
When the GMH model is applied to the data in Tables 7a and 7b, the values
of likelihood ratio statistic are 82.73 and 87.58, respectively, with 1 degree
of freedom. On the other hand, for any fixed A\ (> —1), the value of ()
is greater for Table 7a than for Table 7b (see Table 8). In terms of {&/d;}
(see Table 7), it seems natural to conclude that the degree of departure from
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GMH is greater for Table 7a than for Table 7b, because {c¢;/d;} are equal to
1 when the GMH model holds. Therefore, N would be preferable to the
test statistic for measuring the degree of departure from GMH toward the
maximum departure from it.

Finally, we point out that the measure ®© can be expressed as

1
0) — i ©) (fo1- IR (0) (R
61) @0 = g smin 10 (fed; () + 1O ({4 (B)]
where
R-2
> Ei=1 and E;>0.
=1

We note that g; in dM) is the value of E; such that the sum of Kullback-Leibler
(KL) distance (i.e., the KL distance between {¢;} and {E;} with a structure
of GMH and the KL distance between {d;} and {F;}) is a minimum. We note
that the readers may be interested in (6.1) with I(9) replaced by the power-
divergence I™V; however, it is difficult to obtain the values of {E;} such that
the sum of the corresponding power-divergence is a minimum, and difficult to
obtain the maximum value of such a measure.

The readers may also be interested in which value of X is preferred for a
given table. However, it would be difficult to discuss it. For the analysis of
data, it seems to be important and safe that for measuring the degrees of
departure from GMH in several tables, the user calculates the values of W
for various values of A and discusses the degree of departure from GMH in
terms of them, rather than calculating dW for only one specified value of .
However, if the analyst wants to choose one value of A, the case of A =0, i.e.,
®(©) may be recommended in terms of expression (6.1).
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Table 1: The cross-classification of father’s and son’s (or daughter’s) occupa-
tional status categories in Japan which were examined in 1995 from Hashimoto
(2003, pp. 143-144).

(a) For father-son pairs

Father’s Son’s status
status (1) (2) (3) (4) (5) Total

(1) 68 48 36 23 1 176
(2) 33 191 102 33 3 362
(3) 25 147 229 34 2 437
(4) 48 119 146 129 5 447

(5) 40 126 192 82 88 528
Total 214 631 705 301 99 1950

(b) For father-daughter pairs
Father’s Daughter’s status

status (1) (2) (3) (4) (5) Total
@ 30 8 61 27 1 127
(2) 17 58 186 42 3 306
3) 18 36 250 44 8 356
4) 22 35 179 81 8 325
(5) 16 25 207 55 80 383

Total 103 162 883 249 100 1497

Note: Status (1) is Capitalist, (2) New Middle, (3) Working, (4)
Self-employed, (5) Farming.
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Table 2: Estimate of ®, approximate standard error for ®, and approxi-
mate 95% confidence interval for ®*) applied to Tables la and 1b.

(a) For Table 1a
Values of A Estimated Standard Confidence

measure error interval
—-0.4 0.0135 0.0069 (0.0001, 0.0270)
0 0.0195 0.0098 (0.0004, 0.0386)
0.6 0.0249 0.0122 (0.0009, 0.0488)
1.0 0.0266 0.0130 (0.0011, 0.0521)
1.6 0.0272 0.0133 (0.0012, 0.0532)

(b) For Table 1b
Values of A Estimated Standard Confidence

measure error interval
—0.4 0.1157 0.0173  (0.0817, 0.1497)
0 0.1585 0.02290  (0.1137, 0.2034)
0.6 0.1928 0.0269  (0.1401, 0.2454)
1.0 0.2027 0.0279  (0.1480, 0.2574)
1.6 0.2058 0.0282  (0.1504, 0.2612)

Table 3: Estimate of difference measure @g:\l) — @gz), approximate standard

error for @gz) — i)g/;), and approximate 95% confidence interval for @81) — CID%‘),

applied to Tables la and 1b.

Values of A Estimated Standard Confidence
difference measure error interval
—-0.4 —0.1021 0.0187 (—0.1387, —0.0656)
0 —0.1390 0.0249 (—0.1878, —0.0903)
0.6 —0.1679 0.0295 (—0.2258, —0.1100)
( )
( )

1.0 —0.1761 0.0308 —0.2365, —0.1157
1.6 —0.1786 0.0312 —0.2398, —0.1175
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Table 4: Summary statistics of estimated measure PN applied to 5 x 5 con-
tingency tables of sample size 10000 which are obtained by generating 10000
times by using multinomial distribution random number based on the struc-
ture of probability of EGMH model having given parameters.

(a) A=0.5,0; =0.5 and O3 =0.5

Values of A Min 25% Median  Mean 5% Max
—04 0.02451 0.04472 0.05055 0.05073 0.05658 0.08981
0 0.03457 0.06112 0.06862 0.06920 0.07671 0.12150
0.6 0.04329 0.07559 0.08456 0.08533 0.09436 0.14730
1.0 0.04602 0.08018 0.08962 0.09039 0.09990 0.15500
1.6 0.04693 0.08170 0.09131 0.09206 0.10170 0.15740
(b) A = 0.5, ©; = 0.5 and O = 0.67
Values of A Min 25% Median  Mean 5% Max
—0.4 0.00946 0.02169 0.02481 0.02515 0.02826 0.05653
0 0.01366 0.03108 0.03545 0.03583 0.04018 0.07471
0.6 0.01748 0.03951 0.04488 0.04529 0.05066 0.09354
1.0 0.01873 0.04220 0.04792 0.04830 0.05399 0.09943
1.6 0.01915 0.04309 0.04895 0.04931 0.05512 0.10140

(¢) A=05,0;=05and O, =1
Values of A Min 25% Median  Mean 75% Max
—04 0.00000 0.00005 0.00013 0.00018 0.00025 0.00179

0 0.00000 0.00008 0.00018 0.00026 0.00037 0.00261
0.6 0.00000 0.00010 0.00024 0.00034 0.00048 0.00336
1.0 0.00000 0.00011 0.00025 0.00036 0.00051 0.00361
1.6 0.00000 0.00011 0.00026 0.00037 0.00053 0.00370

(d) A =05, 0, =05 and Oy = 1.5
Values of A Min 25% Median  Mean 75% Max
—-0.4 0.03403 0.04252 0.04442 0.04446 0.04636 0.05920

0 0.04886  0.06084 0.06351 0.06356 0.06624 0.08413
0.6 0.06214 0.07711 0.08042 0.08048 0.08381 0.10590
1.0 0.06639 0.08227 0.08579 0.08584 0.08938 0.11270
1.6 0.06782 0.08400 0.08757 0.08763 0.09123 0.11490

() A=0.5,0; =0.5and Oy =2
Values of A Min 25% Median  Mean 75% Max
—-0.4 0.07888 0.09460 0.09815 0.09821 0.10160 0.11780

0 0.11070  0.13170 0.13640 0.13640 0.14090 0.16090
0.6 0.13770  0.16250 0.16790 0.16790 0.17300 0.19640
1.0 0.14590 0.17170 0.17730 0.17730 0.18260 0.20700

1.6 0.14850 0.17460 0.18030 0.18030 0.18560 0.21030
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Table 4: (Continued.)
(f) A=1.5,0; =05 and O, =0.5

Values of A Min 25% Median  Mean 75% Max

—-0.4 0.03583 0.05503 0.06023 0.06070 0.06602 0.09661

0 0.05157 0.07763 0.08393 0.08430 0.09058 0.13110
0.6 0.06576 0.09711 0.10460 0.10500 0.11240 0.16080
1.0 0.07033 0.10320 0.11110 0.11150 0.11930 0.16990
1.6 0.07188 0.10520 0.11320 0.11370 0.12160 0.17290

(g) A=1.5,0; =05 and O3 = 0.67

Values of A Min 25% Median  Mean 75% Max

—-04 0.01557 0.02547 0.02803 0.02814 0.03066 0.04663

0 0.02258 0.03658 0.04016 0.04028 0.04378 0.06445
0.6 0.02898 0.04655 0.05095 0.05110 0.05544 0.08107
1.0 0.03105 0.04974 0.05441 0.05456 0.05918 0.08630
1.6 0.03176  0.05082 0.05557 0.05572 0.06041 0.08804

(h) A=1.5,0;=05and O, =1

Values of \ Min 25% Median  Mean 75% Max

—-04 0.00000  0.00003 0.00007 0.00010 0.00014 0.00104

0 0.00000 0.00004 0.00010 0.00015 0.00020 0.00152
0.6 0.00000  0.00005 0.00013 0.00019 0.00026 0.00196
1.0 0.00000 0.00006 0.00014 0.00020 0.00028 0.00211
1.6 0.00000 0.00006 0.00014 0.00021 0.00029 0.00216

(i) A=1.5,0; =0.5and O =1.5

Values of \ Min 25% Median  Mean 75% Max

—-04 0.03044 0.03903 0.04083 0.04090 0.04268 0.05305

0 0.04372  0.05586 0.05838 0.05847 0.06096 0.07542
0.6 0.05562 0.07080 0.07393 0.07403 0.07713 0.09495
1.0 0.05943 0.07554 0.07886 0.07897 0.08225 0.10110
1.6 0.06071 0.07713 0.08051 0.08061 0.08395 0.10310

() A=15,0;=05and Oy =2

Values of \ Min 25% Median  Mean 75% Max

—-0.4 0.06882 0.08353 0.08679 0.08692 0.09023 0.10540

0 0.09772 0.11690 0.12120 0.12120 0.12560 0.14370
0.6 0.12290  0.14500 0.14990 0.15010 0.15510 0.17530
1.0 0.13080 0.15360 0.15870 0.15880 0.16410 0.18510

1.6 0.13340 0.15640 0.16150 0.16160 0.16700 0.18830




114

S. ANDO, K. TAHATA AND S. TOMIZAWA

Table 4: (Continued.)

(k) A= 0.5, @1 = 1.5 and @2 =0.5

Values of A Min 25% Median ~ Mean 5% Max
—0.4 0.05650 0.07303 0.07676 0.07693 0.08068 0.10040
0 0.07987 0.10260 0.10750 0.10770 0.11250 0.13970
0.6 0.10010 0.12790 0.13370 0.13380 0.13960 0.17280
1.0 0.10640 0.13580 0.14180 0.14190 0.14800 0.18290
1.6 0.10850 0.13840 0.14440 0.14460 0.15070 0.18620
(1) A= 0.57 @1 = 1.5 and @2 =0.67
Values of A Min 25% Median ~ Mean 75% Max
—0.4 0.02711  0.03493 0.03696 0.03702 0.03896 0.05029
0 0.03902 0.05003 0.05286 0.05293 0.05566 0.07133
0.6 0.04977 0.06347 0.06699 0.06705 0.07044 0.08964
1.0 0.05323 0.06776 0.07148 0.07154 0.07512 0.09536
1.6 0.05440 0.06919 0.07298 0.07304 0.07667 0.09724
(m) A=05,0;=15and O, =1
Values of A Min 25% Median ~ Mean 75% Max
—0.4 0.00000 0.00002 0.00005 0.00007 0.00010 0.00066
0 0.00000 0.00003 0.00007 0.00011 0.00015 0.00096
0.6 0.00000 0.00004 0.00009 0.00014 0.00019 0.00124
1.0 0.00000 0.00004 0.00010 0.00015 0.00020 0.00133
1.6 0.00000 0.00004 0.00010 0.00015 0.00021 0.00136
(n) A=0.5,0;=15and ©; =15
Values of A Min 25% Median ~ Mean 75% Max
—0.4 0.01972 0.03028 0.03254 0.03266 0.03491 0.04671
0 0.02852 0.04343 0.04655 0.04672 0.04986 0.06602
0.6 0.03654 0.05518 0.05903 0.05921 0.06311 0.08271
1.0 0.03915 0.05893 0.06300 0.06319 0.06730 0.08791
1.6 0.04004 0.06018 0.06432 0.06452 0.06871 0.08962
(0) A=0.5,0; =15and O =2
Values of A Min 25% Median ~ Mean 75% Max
—0.4 0.04773 0.06406 0.06808 0.06843 0.07240 0.09556
0 0.06799 0.09055 0.09584 0.09604 0.10130 0.12770
0.6 0.08587 0.11340 0.11980 0.11990 0.12620 0.15800
1.0 0.09154 0.12050 0.12720 0.12740 0.13400 0.16800
1.6 0.09343 0.12290 0.12970 0.12980 0.13650 0.17130
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Table 5: Artificial data (n is sample size).

(a) n =930

100 100 70 30
10 100 50 30
20 10 100 100
50 40 20 100

~ 62

Note: <L —1.279. 2 — 0.791.
d, do

(b) n = 9300

1000 1000 700 300
100 1000 500 300
200 100 1000 1000
500 400 200 1000

Note: <& =1.279, 2 = 0.791.
d, ds

Table 6: The values of &) applied to Tables ba and 5b.

Values of A Table 5a Table 5b

—-0.4 0.0071 0.0071

0 0.0103 0.0103
0.6 0.0133 0.0133
1.0 0.0143 0.0143

1.6 0.0146 0.0146
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Table 7: Artificial data (n is sample size).

(a) n =430

20 100 10 10
10 20 10 10
10 10 20 100
50 10 10 30

~ A~

Note: & —3.429. 2 — 0.292.
d, do

(b) n =430

10 100 10 10
10 10 10 10
10 10 10 100
100 10 10 10

Note: & =3.250, 2 = 0.308.
dq do

Table 8: The values of &) applied to Tables 7a and 7b.

Values of A Table 7a Table 7b

—-0.4 0.1639 0.1517

0 0.2294 0.2129
0.6 0.2842 0.2646
1.0 0.3007 0.2803

1.6 0.3060 0.2853
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