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links

Vincent Blanlœil and Mutsuo Oka

(Received November 11, 2014; Revised February 18, 2015)

Abstract. We consider a canonical S1 action on S3 which is defined by
(ρ, (z1, z2)) 7→ (z1ρ

p, z2ρ
q) for ρ ∈ S1 and (z1, z2) ∈ S3 ⊂ C2. We consider

a link consisting of finite orbits of this action, where some of the orbits are
reversely oriented. Such a link appears as a link of a certain type of mixed
polynomials. We study the space of such links and show smooth degeneration
relations.
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§1. Introduction

Complex hypersurface singularities have been studied by many authors since
Milnor proposed so called Milnor fibration theorem ([6]). However for the
complement of real algebraic links of real codimension two, the existence of
the fibration structure on the complement is not always the case. Second
author proposed to study this type of links from complex singularity point of
view in [8]. Under a certain strongly non-degenerate condition on the Newton
boundary, he proved the existence of the fibration. The class of links which
come from mixed polynomials contains many interesting links which never
comes from complex analytic links.

We consider a mixed polynomial f(z, z̄) =
∑

ν,µ cν,µz
ν z̄µ where z = (z1,

. . . , zn), z̄ = (z̄1, . . . , z̄n), z
ν = zν11 · · · zνnn for ν = (ν1, . . . , νn) (respectively

z̄µ = z̄µ1
1 · · · z̄µn

n for µ = (µ1, . . . , µn)).

Definition 1. We say f(z, z̄) is a mixed weighted homogeneous polynomial of
radial weight type (q1, . . . , qn; dr) and of polar weight type (p1, . . . , pn; dp) if

n∑
j=1

qj(νj + µj) = dr,
n∑

j=1

pj(νj − µj) = dp, if cν,µ ̸= 0.
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Let f be a mixed weighted homogeneous polynomial. Using a polar coor-
dinate (r, η) of C∗ where r > 0 and η ∈ S1 with S1 = {η ∈ C | |η| = 1}, we
define a polar C∗-action on Cn by

(r, η) ◦ z = (rq1ηp1z1, . . . , r
qnηpnzn), (r, η) ∈ R+ × S1

(r, η) ◦ z̄ = (r, η) ◦ z = (rq1η−p1 z̄1, . . . , r
qnη−pn z̄n).

More precisely, it is a R+×S1-action. Then f satisfies the functional equality

f((r, η) ◦ (z, z̄)) = rdrηdpf(z, z̄).(1.1)

This notion was introduced by Ruas-Seade-Verjovsky [12] and Cisneros-Molina
[3].

A mixed polynomial f(z, z̄) is called strongly polar weighted homogeneous
if the polar weight and the radial weight coincide, i.e., pj = qj , 1 ≤ j ≤ n.

In this case, the C∗ action is simply defined by

ζ ◦ z = (z1ζ
p1 , . . . , znζ

pn), ζ ∈ C∗.

In this paper, we study the geometry of the links defined by strongly polar
weighted homogeneous mixed polynomials.

§2. Cobordism of links

First of all we have to point out that the topology of mixed links is very
particular and we recall some classical results and definitions in the case of
knots and algebraic links.

Let K be a closed (2k−1)-dimensional manifold embedded in the (2k+1)-
dimensional sphere S2k+1. We suppose that K is (k − 2)-connected if k ≥ 2.
When K is orientable, we further assume that it is oriented. Then we call K
or its (oriented) isotopy class an 2k − 1-knot.

First, recall that a manifold with boundary Y embedded in a manifold X
with boundary is said to be properly embedded if ∂Y = ∂X ∩ Y and Y is
transverse to ∂X, then we define

Definition 2. Two (2k − 1)-knots K0 and K1 in S2k+1 are said to be cobor-
dant if there exists a properly embedded (2k)-dimensional manifold X of
S2k+1 × [0, 1] such that

(1) X is diffeomorphic to K0 × [0, 1], and

(2) ∂X = (K0 × {0}) ∪ (K1 × {1}).
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Sn+2 × [0, 1]

Figure 1: A cobordism between K0 and K1

rK0 rK1

Figure 2: A cobordism which is not an isotopy

The manifold X is called a cobordism between K0 and K1. When the knots are
oriented, we say that K0 and K1 are oriented cobordant (or simply cobordant)
if there exists an oriented cobordism X between them such that

∂X = (−K0 × {0}) ∪ (K1 × {1}),

where −K0 is obtained from K0 by reversing the orientation.

It is clear that isotopic knots are always cobordant. However, the converse
is not true in general (see Fig. 2).

For a classification of high dimensional knots up to cobordism we refer to
[2].

Let us study one example of dimensional one links. We denote by T+ and
T− respectively the one dimensional right and the left trefoil knots (which are
both mixed links). We know that T+ and T− are cobordant, see [11] p. 219 ;
but let us give here the idea of the proof.

Precisely, we denote by S3
+ (resp. S3

−) the upper (resp. lower) hemisphere
of the unit 3-sphere ∂D4 = S3 ↪→ R4. Set E be the equatorial hyperplane of
D4, and let π : R4 → E the orthogonal projection onto E .

One can suppose that T+ and T−, which is the mirror image of T+, are
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- T+

� T−

E

S3

Figure 3: The connected sum of the trefoil knot and its inverse in S3

embedded in S3
+ and S3

− respectively such that

T− = −
(
π(T+)× [0, 1]

)
∩ S3

−.

(In the last formula, the sign is necessary to have the right orientation.)
Then we construct the connected sum O = T+#T− of T+ and T− in S3;

we illustrate this construction in Fig. 3.
Set T̃+ (resp. T̃−) the intersection T̃+ = O∩S3

+ (resp. T̃ = O∩S3
−). One

can assume that the connected sum O is made in order to have

T̃− = −
(
π(T̃+)× [0, 1]

)
∩ S3

−.

Now, if we denote

D =
(
π(T̃+)× [0, 1]

)
∩D4,

then D is homeomorphic to a 2-disk since π(T̃+) is a 1-disk. Moreover ∂D =
O = T+#T−. Since the knots T+ and T− are homeomorphic to a sphere, then
to prove that they are cobordant it is sufficient to prove that their connected
sum bounds a disk [5]. But O bounds a 2-disk embedded in D4 then O is null
cobordant, and, T+ and T− are cobordant.

In [4] D. T. Lê proved that the Alexander polynomial determines the topo-
logical type of the link of an isolated singularity of a complex analytic curve
and moreover he proved that cobordant links are isotopic since the product of
their Alexander polynomials is a square.

In the case of mixed links things are different. For example the two trefoil
knots T+ and T− are cobordant but not isotopic mixed links. Recall that they
are not isotopic since they have distinct Jones polynomials.

Remark 3. Moreover, since the trivial knot O is a mixed link, then the
connected sum of mixed one dimensional links can be a mixed link contrary
to the classical case as proved by N. A’Campo [1].
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§3. Strongly polar weighted homogeneous links

Hereafter we consider strongly polar weighted homogeneous polynomial f(z, z̄)
of two variables i.e., n = 2 with weight vector P = t(p, q). Here we assume
that gcd(p, q) = 1. We assume that f is convenient and non-degenerate so that
the link L = f−1(0) ∩ S3 is smooth. Let M(P ; dp) be the space of strongly
polar weighted homogeneous mixed polynomials of the polar degree dp, which
is non-degenerate convenient and let L(P ; dp) be the associated oriented links.
Hereafter we denote simply M,L for M(P ; dp) and L(P ; dp) respectively. We
have a canonical mapping π : M → L defined by π(f) the link defined by
f−1(0) ∩ S3. A difficulty in the mixed polynomial situation is that for a fixed
link, there exist an infinitely many mixed polynomials which define the link.

Let dr, dp be the radial and polar degrees respectively. As f is assumed to

be convenient, f contains monomials za11 z̄b11 and za22 z̄b22 such that

p(a1 + b1) = q(a2 + b2) = dr, p(a1 − b1) = q(a2 − b2) = dp.

Therefore
p

q
=

a2
a1

=
b2
b1

and we see that p|a2, b2 and q|a1, b1 and thus pq|dr, dp. As our link is S1

invariant, its component is a finite union of orbits of the action. Recall that
the associated S1-action is defined by

S1 × S3 → S3, (ρ, (z1, z2)) 7→ (z1ρ
p, z2ρ

q), ρ ∈ S1

Let P = (p, q) be the primitive weight vector of f . P is fixed throughout this
paper. Note that L is stable under the action, by the Euler equiality

f(ρ ◦ z) = ρdpf(z).

Two orbit z1 = 0 and z2 = 0 are singular but by the covenience assumption,
our link has only regular orbits.

3.1. Coordinates of the orbits

Take a regular orbit L. We can take a point X = (β1, β2) ∈ L ⊂ S3 ⊂ C2

such that β1 is a positive number. β1 and |β2| are unique by L but β2 is not
unique. The umbiguity is the action of Z/pZ. Thus |β2| =

√
1− β2

1 and the
argument of β2 is unique mudulo 2π/p. Thus the space of the regular orbits
is isomorphic to the punctured disk ∆∗ := {ξ = rρ ∈ C | 0 < r < 1, ρ ∈ S1},
by the correspondence β2 7→ βp

2 ∈ ∆∗. For u = rp eiθ ∈ ∆∗
p, we associate the

regular orbit

K(u) := {(ρp
√

1− r2, ρqreiθ/p) | ρ ∈ S1}, u = reiθ ∈ ∆∗.(3.1)
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Consider a strongly polar weighted homogeneous polynomial for arbitrary non-
negative integer k:{

ℓu,k(z) := zq+kq
1 z̄kq1 − αu,kz

p+kp
2 z̄kp2 = zq1∥z

q
1∥2k − αu,kz

p
2∥z

p
2∥2k

ℓ̄u,k(z) := z̄q1∥z
q
1∥2k − αu,kz̄

p
2∥z

p
2∥2k where

(3.2)

αu,k = (1−r2)q(1/2+k)

rp(1+2k)eiθ
.(3.3)

Note that the polar degrees of αu,k are pq but the radial degrees are different
and they are given as

rdeg ℓu,k = (2k + 1)pq.

Observation 1. The polynomials ℓu,k define K(u) and ℓ̄u,k defines K(u) with
reversed orientation for any k = 0, 1, . . .

Hereafter we simply use the notation:

ℓu(z) := ℓu,0(z) = zq1 −
(1− r2)q/2

rpeiθ
zp2 , u = rp eiθ.

Let L(P ; dpq, r) be the subspace of L(P ; dpq) which has d + 2r components
where r components are negatively oriented. First we prepare the next lemma:

Lemma 2. The moduli space L(P ; dpq, r) is connected and therefore any two
links of this moduli has the same topology.

Proof. Note that L(P ; dpq, r) are parametrized by

Md,r := (∆∗)d+2r \ Ξ

where Ξ = {u = (u1, . . . , ud+2r) ∈ ∆∗(d+2r) |ui = uj (∃i, j, i ̸= j)}. Thus it
is easy to see that Md+2r is connected. u corresponds to the link ∪d+2r

i=1 K(ui)
where K(uj) are reversely oriented for j = d+ r + 1, . . . , d+ 2r.

3.2. Typical degeneration

We consider an important degeneration of links L(t), t ∈ C which is defined
by the family of strongly polar weighted homogeneous polynomials:

f(z, z̄, t) = −2z2p2 z̄p2 + z2q1 z̄q1 + tz2p2 z̄q1.

Using Proposition 1 ([7]), we see that the degeneration locus is given as the
following real semi-algebraic variety

Σ := {t ∈ C | t = 2s− 1

s2
, ∃s ∈ S1}

Figure 1 shows the graph of Σ. Let Ω be the bounded region surrounded by
Σ. By Example 59 in [8], we can see the following.
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Proposition 3. For any t ∈ Ω, L(t) has one link component, while for t ∈
C \ Ω̄(= the outside of Σ), L(t) has three components.

Proof. Let us consider the weighted projective space P1(P ) := C2 \ {O}/C∗

by the above C∗-action. For U := P1(P ) ∩ {z1z2 ̸= 0}, it is easy to see that
u := zp2/z

q
1 is a coordinate function. Our link corresponds to the solutions

(=zero points) of
−2u2ū+ tu2 + 1 = 0

and there exists one solution (respectively 3 solutions) for each t ∈ Ω (resp.
t /∈ Ω̄). See Example 59, [8] or [9].

We consider the point −3 ∈ Σ which is a smoot point of Σ. There are
two components for L(−3) (u = 1/2 and u = −1) and the component passing
through (1, eiπ/p) is a doubled component. Here we are considering the link
on the sphere of radius

√
2, S√

2 for simplicity. Let us consider the variety:

W = {(z1, z2, t) ∈ S√
2 × R | − 3− ε ≤ t ≤ −3 + ε, f(z, z̄, t) = 0}, ε ≪ 1.

The following is the key assertion.

Lemma 4. W is a smooth manifold with boundary L(−3− ε) ∪−L(−3 + ε).

Proof. Let f(z, z̄, t) = g(z, z̄, t) + i h(z, z̄, t). We assert that W is a complete
intersection variety. For this purpose, we show that three 1-forms dg, dh, dρ
are independent on L(−3), where ρ(z) = ∥z∥2. As the polynomial f is strongly
polar weighted homogeneous, it is enough to check the assertion on a point
z̃0 = (1, α,−3) ∈ W where α = eiπ/p. For the calculation’s simplicity, we use
the base {dz1, dz̄1, dz2, dz̄2, dt} of the complexified cotangent space. Using the
equalities g = (f + f̄)/2, h = (f − f̄)/(2i), we get

dg(z̃0)
dh(z̃0)
dρ(z̃0)

 = A


dz1
dz̄1
dz2
dz̄2
dt

 where

A =


0 0 0 0 1

−2 iq 2 iq 2 ipᾱ −2 ipα 0

1 1 ᾱ α 0


Thus it is easy to see that rankA = 3.
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Figure 4: Σ

3.3. Milnor fibrations

Take u = (u1, . . . , ud+2r) ∈ Md,r and consider the corresponding link L(u) =
∪d+2r
j=1 K(uj) with d+2r components and the last r components are negatively

oriented. Let f(z) be a strongly polar weighted homogeneous polynomial
which defines L(u) with pdeg f = dpq and rdeg f = (d + 2s)pq with s ≥ r.
For example, we can take

g(z) = ℓu1,s−r(z)
d+r∏
j=2

ℓuj (z)
d+2r∏

j=d+r+1

ℓ̄uj (z).

Let F be the Milnor fiber of f : F = {z ∈ S3 | f(z) > 0}. As we assume that
L(u) has no singular orbit, f(z) is a convenient mixed polynomial. Thus it

contains monomials z
(d+s)q
1 z̄qs1 and z

(d+s)p
2 z̄ps2 . The monodromy h : F → F is

defined by h(z) = e2πi/dpq ◦z and it is the restriction of S1-action to Zdpq ⊂ S1.
Thus we have a commutative diagram:

F ↪→ S3 \ L(u)
↘ ξ

yπ
P1(P ) \W

where W is d + 2r points corresponding to the components of L(u) and π, ξ
are canonical quotient mapping by S1 and Zdpq respectively. As F is a Zdpq

cyclic covering over P1 \ W , with two singular points (0, 1) and (1, 0). Over
these two points, the corresponding fibers are q, p points respectively. Thus
we have

Proposition 5. (cf. Theorem 65,[8]) The Euler charactersitic of F is given
as

χ(F ) = −(d+ 2r)dpq + p+ q
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Note that χ(F ) depends on the number of components d + 2r but it does
not depend on the radial degree (d + 2s)pq. Thus we see that, under fixed
polar and radial degrees, there are s+1 different topologies among their Milnor
fibrations. The components types can be d+ 2r, r = 0, . . . , s.

§4. Main result

Consider a smooth family of strongly polar weighted homogeneous links L(t) ∈
L(P ; dpq), 0 ≤ t ≤ 1 with weight P = t(p, q) such that

(1) the variety W = {(z, t) ∈ S3 × [0, 1] | z ∈ L(t)} is a smooth variety of
codimension two.

(2) There exists t0 such that 0 < t0 < 1 and{
L(t) ∈ L(P ; dpq, r − 1) t < t0

L(t) ∈ L(P ; dpq, r) t > t0

The link L(t0) is singular. One component is the limit of two components with
opposite orientations. We call such a family a smooth elimination of a pair of
links.

Theorem 6. For any link L ∈ L(P ; dpq, r) with r > 0, there exists a smooth
elimination family L(t) of a pair of links with L(0) = L and L(1) ∈ L(P ;
dpq, r − 1).

Proof. First represent L by an explicit mixed polynomial described in §3.3.
Choose two positive components and one negative component. By the con-
nectivity of the moduli space, we may assume that these three components
are descrived by L(−3) in the explicit family L(t) in §3.2. So we can write
L = L′ ∪ L(−3). We apply the degenration process using L(t). For this
purpose, we may assume that other components in L′ does not take any com-
ponents of L(t) for −3 ≤ t ≤ 0. Then it is easy to see that L = L′ ∪ L(−3)
degenerate into L′ ∪ L(0) in which two components has disappeared.

Corollary 7. For any link L ∈ L(P ; dpq, r) with r > 0, r pairs of links with
opposite orientations can be eliminated successively to a link L′ ∈ L(P ; dpq, 0)
of positive link. L′ is isomorphic to a holomorphic torus link defined by

zqd1 − zpd2 = 0.
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