Integral sections of elliptic surfaces and degenerated (2,3) torus decompositions of a 3-cuspidal quartic

Khulan Tumenbayar and Hiro-o Tokunaga

(Received June 30, 2015; Revised September 4, 2015)

Abstract. In this note, we consider when a plane curve given by a polynomial of the form

$$x^{3} + a_{1}(t)x^{2} + a_{2}(t)x + a_{3}(t) = 0,$$

where $\deg_t a_i(t) \leq id$ (d: even), has degenerated (2,3) torus decompositions by using arithmetic properties of elliptic surfaces and show that a 3-cuspidal quartic has infinitely many degenerated (2,3) torus decompositions.

AMS 2010 Mathematics Subject Classification. 14J27, 14H50.

Key words and phrases. Elliptic surface, integral section, degenerated (2,3) decomposition.

§1. Introduction

In this note, all varieties are defined over the field of complex numbers \mathbb{C} . Let d be an even positive integer and let $p(t,x) \in \mathbb{C}[t,x]$ be a polynomial of the form

$$x^3 + a_1(t)x^2 + a_2(t)x + a_3(t) = 0,$$

where $\deg_t a_i(t) \leq id$. Our aim of this note is to consider when p(t,x) has a decomposition of the form

(*)
$$p(t,x) = (x - x_o(t))^3 + (c_0(t)x + c_1(t))^2$$
, $x_o(t), c_0(t), c_1(t) \in \mathbb{C}[t]$.

The right hand side of (*) is called a (2,3) torus decomposition of the affine curve given by p(t,x)=0. Such decompositions have been considered in, for example, [13, 14, 5, 3] from viewpoint of the topology of the complements to $\{p(t,x)=0\}$. In this note we add another remark to this problem. In order to state our criterion, we need to introduce some notation.

Let E be an elliptic curve defined over the rational function field of one variable $\mathbb{C}(t)$ given by

$$E: y^2 = p(t, x),$$

and we denote the set of $\mathbb{C}(t)$ -rational points and the point at infinity O by $E(\mathbb{C}(t))$. It is well-known that $E(\mathbb{C}(t))$ becomes an abelian group, O being the zero element. Now our first statement is as follows:

Proposition 1. Assume that both of plane curves given by

$$p(t,x) = 0$$
 and $s^{3d}p(1/s, x'/s^d) = 0$

have at worst simple singularities (see [2] for simple singularities) in both of (t,x) and (s,x') planes. Then p(t,x) has a decomposition as in (*) if and only if $E(\mathbb{C}(t))$ has a point P of order 3. The polynomial $x_o(t)$ is given by the x-coordinate of P.

As an application of Proposition 1, we have the following theorem:

Theorem 1. Let Q be a quartic with 3 cusps and choose a smooth point z_o on Q. There exists a unique irreducible conic C as follows:

- (i) C is tangent to Q at z_o and passes through three cusps of Q.
- (ii) Let $F_{\mathcal{Q}}$, $F_{\mathcal{C}}$, and L_{z_o} be defining equations of \mathcal{Q} , \mathcal{C} and the tangent line \mathcal{L}_{z_o} of \mathcal{Q} at z_o , respectively. Then there exists a homogeneous polynomial G of degree 3 such that

$$(**) \quad L_{z_o}^2 F_{\mathcal{Q}} = F_{\mathcal{C}}^3 + G^2.$$

- **Remark 1.** Following [10], we call the decomposition of $F_{\mathcal{Q}}$ as in (**) a degenerated (2,3) torus decomposition of projective plane curves. The statement of Theorem 1 can be found in [10, 5.3.2]. We, however, consider that our point of view explains geometry behind the statement, and hope that it is worthwhile mentioning.
 - The 5 (2,3) torus decompositions given in [5] can also be found by Proposition 1. In the terminology of [5], our statement can be rephrased:
 Q has infinitely many invisible (2,3) torus decompositions.
 - Let z_o be one of 3 cusps of Q and \mathcal{L}_{\max,z_o} is the tangent line at z_o . Then we also have a degenerated (2,3) decomposition by using \mathcal{L}_{\max,z_o} . This is informed the authors by M. Kawashima. In fact, it is enough to

check the statement for one explicit example as any 3-cuspidal quartic is projectively equivalent to each other. For example, we have:

$$Z^{2}(3T^{4} - 2T^{3}X - 3T^{2}Z^{2} + X^{2}Z^{2} + Z^{4}) = (XZ^{2} - T^{3})^{2} - (T^{2} - Z^{2})^{3},$$

where [T, X, Z] denote homogeneous coordinates. Note that [0, 1, 0] is a cusp and Z = 0 is the maximal tangent line, \mathcal{L}_{\max, z_o} . This statement can also be found in [10, 5.3.2]

§2. Preliminaries

2.1. Existence of C

We first show that the conic \mathcal{C} in Theorem 1 exists. Let [T, X, Z] be homogeneous coordinates of \mathbb{P}^2 .

- **Lemma 2.1.** (i) Let C be a conic tangent to $\{T=0\}, \{X=0\}$ and $\{Z=0\}$ in \mathbb{P}^2 . Let Q be the standard quadratic transformation (or the standard Cremona transformation) with respect to $\{T=0\}, \{X=0\}$ and $\{Z=0\}$. Then Q(C) is a quartic whose singularities are only 3 cusps at [0,0,1], [0,1,0] and [1,0,0].
 - (ii) Let L be the line tangent to C at a point $P = [T_0, X_0, Z_0] \in C$. If L is different from $\{T = 0\}, \{X = 0\}$ and $\{Z = 0\}$, then Q(L) is a conic tangent to Q(C) at $Q(P) = [X_0Z_0, T_0Z_0, T_0X_0]$ and passes through [0, 0, 1], [0, 1, 0] and [1, 0, 0].
- (iii) Conversely any conic such that it is tangent to a smooth point of a 3-cuspidal quartic Q and passes through the 3 cusps of Q can be obtained as above.

Since both of these statements are well-known, we omit their proofs. Let $\mathcal{L}_{Q(P)}$ be the tangent line to Q(C) at Q(P) and let Φ be a coordinate change such that $\mathcal{L}_{Q(P)}$ is transformed into the line Z=0 and Q(P) is mapped to [0,1,0].

Then $\Phi(Q(C))$ has an affine equation of the form $x^3 + b_1(t)x^2 + b_2(t)x + b_3(t) = 0$, where t = T/Z, x = X/Z, $b_i(t) \in \mathbb{C}[t]$ and $\deg_t b_i(t) \leq i + 1$. Also $\Phi(Q(L))$ is given by an equation of the form $x - x_o(t) = 0$, where $x_o(t) \in \mathbb{C}[t]$ and $\deg_t x_o(t) = 2$.

2.2. Elliptic Surfaces

As for details on the results in this subsection, we refer to [6], [7], [8], [12], [16] and [1].

2.2.1. Some terminologies

Throughout this article, an elliptic surface always means a smooth projective surface S with a fibration $\varphi: S \to C$ over a smooth projective curve, C, as follows:

- (i) There exists non empty finite subset $\operatorname{Sing}(\varphi) \subset C$ such that $\varphi^{-1}(v)$ is a smooth curve of genus 1 for $v \in C \setminus \operatorname{Sing}(\varphi)$, while $\varphi^{-1}(v)$ is not a smooth curve of genus 1 for $v \in \operatorname{Sing}(\varphi)$.
- (ii) There exists a section $O: C \to S$ (we identify O with its image in S).
- (iii) there is no exceptional curve of the first kind in any fiber.

In this note, we only consider an elliptic surface over \mathbb{P}^1 , $\varphi: S \to \mathbb{P}^1$.

We call $F_v = \varphi^{-1}(v)(v \in \operatorname{Sing}(\varphi))$ a singular fiber over v. In order to describe the type of singular fibers, we use notation given in Kodaira ([6]). We denote the irreducible decomposition of F_v by

$$F_v = \Theta_{v,0} + \sum_{i=1}^{m_v - 1} a_{v,i} \Theta_{v,i},$$

where m_v is the number of irreducible components of F_v and $\Theta_{v,0}$ is the irreducible component with $\Theta_{v,0}O = 1$. We call $\Theta_{v,0}$ the identity component. We also define a subset $\text{Red}(\varphi)$ of $\text{Sing}(\varphi)$ to be $\text{Red}(\varphi) := \{v \in \text{Sing}(\varphi) \mid F_v \text{ is reducible}\}$. For $s \in \text{MW}(S)$, s is said to be integral if sO = 0. It is known that any torsion element in MW(S) is integral (cf.[7]).

Let $\mathrm{MW}(S)$ be the set of sections of $\varphi: S \to \mathbb{P}^1$. By our assumption, $\mathrm{MW}(S) \neq \emptyset$. On a smooth fiber F of φ , by regarding $F \cap O$ as the zero element, we can consider the abelian group structure on F. Hence for $s_1, s_2 \in \mathrm{MW}(S)$, one can define the addition $s_1 \dotplus s_2$ or the multiplication-by-m map $[m]s_1$ on $\mathbb{P}^1 \setminus \mathrm{Sing}(\varphi)$. By [6, Theorem 9.1], $s_1 \dotplus s_2$ and $[m]s_1$ can be extended over \mathbb{P}^1 , and we can consider $\mathrm{MW}(S)$ as an abelian group. On the other hand, we can regard the generic fiber $E := S_{\eta}$ of S as a curve of genus 1 over $\mathbb{C}(\mathbb{P}^1)$, the rational function field of \mathbb{P}^1 . The restriction of O to E gives rise to a $\mathbb{C}(\mathbb{P}^1)$ -rational point of E, and one can regard E as an elliptic curve over $\mathbb{C}(\mathbb{P}^1) \cong \mathbb{C}(t)$, O being the zero element. By considering the restriction to the generic fiber for each section, $\mathrm{MW}(S)$ can be identified with the set of $\mathbb{C}(t)$ -rational points $E(\mathbb{C}(t))$. Conversely, any element $P \in E(\mathbb{C}(t))$ gives rise to a section determined by P, which we denote by s_P . We also denote the addition and the multiplication-by-m map on $E(\mathbb{C}(t))$ by \dotplus and [m], respectively.

In [12], Shioda introduced a \mathbb{Q} -valued bilinear form on $E(\mathbb{C}(t))$ called the height pairing. We denote it by $\langle \, , \, \rangle$. For our later use, we give two basic properties of $\langle \, , \, \rangle$:

- $\langle P, P \rangle \ge 0$ for $\forall P \in E(\mathbb{C}(t))$ and the equality holds if and only if P is an element of finite order in $E(\mathbb{C}(t))$.
- An explicit formula for $\langle P_1, P_2 \rangle$ $(P_1, P_2 \in E(\mathbb{C}(t)))$ is given as follows:

$$\langle P_1, P_2 \rangle = \chi(\mathcal{O}_S) + s_{P_1}O + s_{P_2}O - s_{P_1}s_{P_2} - \sum_{v \in \text{Red}(\varphi)} \text{Contr}_v(s_{P_1}, s_{P_2}),$$

where s_{P_i} (i = 1, 2) denote the sections in MW(S) determined by P_i (i = 1, 2), and $Contr_v(s_{P_1}, s_{P_2})$ is determined at which component s_{P_1} and s_{P_2} meet at F_v . As for explicit values of $Contr_v(s_{P_1}, s_{P_2})$, we refer to [12, (8.16)]. Note that since $s_{P_i}^2 = -\chi(\mathcal{O}_S)$, we have

$$\langle P_1, P_1 \rangle = 2\chi(\mathcal{O}_S) + 2s_{P_1}O - \sum_{v \in \text{Red}(\varphi)} \text{Contr}_v(s_{P_1}, s_{P_1}),$$

2.2.2. Double cover construction of elliptic surfaces and their Weierstrass equations

Let Σ_d (d: even) be the Hirzebruch surface of degree d. We first give a method in constructing elliptic surfaces over \mathbb{P}^1 as double covers of Σ_d as follows:

Let Δ_0 and Δ denotes sections of Σ_d with $\Delta_0^2 = -d$, $\Delta^2 = d$ and $\Delta_0 \cap \Delta = \emptyset$. Note that $\Delta \sim \Delta_0 + d\mathfrak{f}$, where \mathfrak{f} denotes a fiber of $\Sigma_d \to \mathbb{P}^1$ and \sim means the linear equivalence of divisors. Let \mathcal{T} be a reduced divisor on Σ_d such that

- (i) $\mathcal{T} \sim 3\Delta \ (\sim 3(\Delta_0 + d\mathfrak{f}))$, and
- (ii) \mathcal{T} has at worst simple singularities (see [2] for simple singularities).

Let $f': S' \to \Sigma_d$ be the double cover with branch locus $\Delta_{f'} = \Delta_0 + \mathcal{T}$ (cf. [2, III, §7]). We denote the diagram of the canonical resolution by

$$S' \xleftarrow{\mu} S$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$\Sigma_d \xleftarrow{q} \widehat{\Sigma}_d.$$

(see [4]). Namely, μ is the minimal resolution of singularities and q is a composition of blowing-ups so that the branch locus of f becomes smooth. Then the induced morphism $\varphi: S \to \Sigma_d \to \mathbb{P}^1$ gives rise to an elliptic fibration over \mathbb{P}^1 .

Conversely it is known that any elliptic surface $\varphi:S\to\mathbb{P}^1$ is obtained in this way.

We next consider a Weierstrass equation of the generic fiber of S. Choose affine open sets U_1 and U_2 of Σ_d as in [1, 2.2.3]. Namely $U_i \cong \mathbb{C}^2$ (i = 1, 2) with coordinates (t, x) (resp. (s, x')) on U_1 (resp. U_2) with relations $t = 1/s, x = x'/s^d$. With these coordinates, \mathcal{T} is given by equations of the form

$$p_{\mathcal{T}}(t,x) = x^3 + a_1(t)x^2 + a_2(t)x + a_3(t), \quad a_i \in \mathbb{C}[t], \deg a_i \le id.$$

on U_1 and $s^{3d}p_{\mathcal{T}}(1/s, x'/s^d) = 0$ on U_2 . Over $U_1, S'|_{f'^{-1}(U_1)}$ is given by

$$y^2 - p_{\mathcal{T}}(t, x) = 0 \subset \mathbb{C}^3,$$

and the covering morphism f' is given by the restriction of the projection $(t, x, y) \mapsto (t, x)$. The covering transformation $\sigma_{f'}$ is given by $(t, x, y) \mapsto (t, x, -y)$. Thus we infer that the generic fiber of $\varphi : S \to \mathbb{P}^1$ is an elliptic curve E over $\mathbb{C}(t)$ given by the above Weierstrass equation. Note that if $s \in \mathrm{MW}(S)$ is integral, then the corresponding point $P_s \in E(\mathbb{C}(t))$ has polynomial coordinate components whose degrees are at most d (resp. 3d/2) for the x-coordinate (resp. the y-coordinate). In what follows, we say P = (x(t), y(t)) is integral if $x(t), y(t) \in \mathbb{C}[t], \deg x(t) \leq d, \deg y(t) \leq 3d/2$,

Let $P_o = (x_o(t), y_o(t)) \in E(\mathbb{C}(t))$ be an integral point of the elliptic curve E as in Introduction. Assume $y_o(t) \neq 0$ and let

$$y = l(t, x), \quad l(t, x) = m(t)(x - x_o(t)) + y_o(t)$$

be the tangent line at P_o and put $[2]P_o = (x_1(t), y_1(t))$.

Lemma 2.2. If $[2]P_0$ is also an integral point, then $m(t) \in \mathbb{C}[t]$.

Proof. From the definition of addition, we have

$$p_{\mathcal{T}}(t,x) - \{l(t,x)\}^2 = (x - x_o(t))^2 (x - x_1(t)).$$

By comparing the coefficients of x^2 of the above equality, we have

$$a_1 - \{m(t)\}^2 = -2x_o(t) - x_1(t).$$

This implies $m(t) \in \mathbb{C}[t]$

Corollary 2.1. Under the assumption of Lemma 2.2, p(t,x) has a decomposition

$$p_{\mathcal{T}}(t,x) = (x - x_o(t))^2 (x - x_1(t)) + \{l(t,x)\}^2.$$

Since any element of finite order in $E(\mathbb{C}(t))$ is always integral under our assumption, we have

Corollary 2.2. If P is an element of finite order in $E(\mathbb{C}(t))$, p(t,x) has a decomposition

$$p_{\mathcal{T}}(t,x) = (x - x_o(t))^2 (x - x_1(t)) + \{l(t,x)\}^2.$$

In particular, if P is an element of order three, as the x-coordinates of [2]P and -P are the same, we have

$$p_{\mathcal{T}}(t,x) = (x - x_o(t))^3 + \{l(t,x)\}^2.$$

Proof of Proposition 1. The half of Proposition 1 follows form Corollary 2.2, as the degree of l(t,x) with respect to x is equal to 1. Conversely, if $p_{\mathcal{T}}(t,x)$ has the decomposition described in Proposition 1, $(x_o(t), \pm (c_0(t)x_o(t) + c_1(t)))$ are 3-torsions of $E(\mathbb{C}(t))$. Thus we have Proposition 1.

§3. Rational elliptic surface S_{Q,z_o}

An elliptic surface is said to be rational if it is a rational surface. Any rational elliptic surface obtained as a double cover of Σ_2 described in §1. Let \mathcal{Q} be a 3-cuspidal quartic as before and let z_o be a smooth point on \mathcal{Q} . Likewise in the second author's article (e.g., [15, 1.3]), we associate a rational elliptic surface with \mathcal{Q} and z_o , which we denote by $\varphi: S_{\mathcal{Q},z_o} \to \mathbb{P}^1$. The tangent line l_{z_o} gives rise to a singular fiber of φ whose type is determined by how l_{z_o} intersects with \mathcal{Q} as follows:

Table 1: l_{z_o} and the corresponding singular fiber

(i)	I_2	l_{z_o} meets \mathcal{Q} with two other distinct points.	
(ii)	III	l_{z_o} is a 3-fold tangent point.	
(iii)	I ₃	l_{z_o} is a bitangent line.	
(iv)	IV	l_{z_o} is a 4-fold tangent point.	
(v)	I_5	l_{z_o} passes through a cusp of \mathcal{Q}	

By [8, Table 6.2] and Table 1 as above, possible configurations of singular fibers of $S_{\mathcal{Q},z_0}$ are as follows:

Table 2: Possible configurations of singular fibers of $S_{\mathcal{Q},z_o}$

	Singular fibers	the position of l_{z_o}
Case 1	$3I_3,I_2,I_1$	(i)
Case 2	$IV, 2I_3, I_2$	(ii)
Case 3	$3 I_3, III$	(ii)
Case 4	4 I ₃	(iii)
Case 5	$3 I_3, IV$	(iv)
Case 6	$I_5, 2 I_3, I_1$	(v)

The Table 2 give us possible cases, but by [11], the Cases 3, 5 and 6 in Table 2 do not occur. Let $\mathcal C$ be the conic described in Theorem 1. Note that $\mathcal C$ exists by Lemma 2.1. Then by our construction of $S_{\mathcal Q,z_o}$, $\mathcal C$ gives rise to two sections, $s_{\mathcal C}^\pm$, which meets singular fibers as in the following figures if we label irreducible components of singular fibers suitably. Let $P_{\mathcal C^+}$ and $P_{\mathcal C^-}$ be the corresponding rational points to $s_{\mathcal C^+}$ and $s_{\mathcal C^-}$, respectively. Then we have $\langle P_{\mathcal C^\pm}, P_{\mathcal C^\pm} \rangle = 0$ and $P_{\mathcal C^\pm}$ are torsions and their orders are 3 by [11] or [9].

Figure 1: Case 1

Figure 2: Case 2

Figure 3: Case 4

§4. Proof of Theorem 1

Choose homogeneous coordinates [T, X, Z] of \mathbb{P}^2 such that $l_{z_o}: Z = 0$ and $z_o = [0, 1, 0]$. Then $F_{\mathcal{Q}}$ and $F_{\mathcal{C}}$ are of the form

$$F_{\mathcal{Q}}(T, X, Z) = X^{3}Z + b_{2}(T, Z)X^{2} + b_{3}(T, Z)X + b_{4}(T, Z),$$

$$F_{\mathcal{C}}(T, X, Z) = XZ - c_{0}T^{2} - c_{1}TZ - c_{2}Z^{2}, c_{i} \in \mathbb{C}(i = 0, 1, 2), c_{0} \neq 0$$

where b_i (i = 2, 3, 4) are homogeneous polynomial of degree $\leq i$. Put $p_{\mathcal{Q}}(t, x) = F_{\mathcal{Q}}(t, x, 1)$ and $x_o(t) = c_0 t^2 + c_1 t + c_2$. Then the elliptic curve $E_{\mathcal{Q}}$ given by $y^2 = p_{\mathcal{Q}}(t, x)$ has a 3 torsion point $P_{\mathcal{C}^+}$ in $E_{\mathcal{Q}}(\mathbb{C}(t))$ and $x_o(t)$ is its x-coordinate. Hence by Proposition 1, we have

$$F_{\mathcal{Q}}(t,x,1) = (x - c_0t^2 - c_1t - c_2)^3 + \{m(t)(x - c_0t^2 - c_1t - c_2) + y_o(t)\}^2,$$

where $y_o(t)$ is the y-coordinate of $P_{\mathcal{C}^+}$ and $y = m(t)(x - c_0t^2 - c_1t - c_2) + y_o(t)$ is the tangent line at $P_{\mathcal{C}^+}$. By comparing the coefficients of both hand side with respect to x, we have

$$b_2(t,1) = \{m(t)\}^2 - 3(c_0t^2 + c_1t + c_2),$$

$$b_4(t,1) = \{-m(t)(c_0t^2 + c_1t + c_2) + y_o(t)\}^2 - (c_0t^2 + c_1t + c_2)^3.$$

Hence, we infer that $\deg m(t) \leq 1, \deg y_o(t) \leq 3$, and we have

$$Z^{2}F_{\mathcal{Q}}(T,X,Z) = F_{\mathcal{C}}(T,X,Z)^{3} + \{Zm(T/Z)F_{\mathcal{C}}(T,X,Z) + Z^{3}y_{o}(T/Z)\}^{2}.$$

This implies Theorem 1.

Remark 4.1. (i) Note that we also obtain a rational elliptic surface $S_{\mathcal{Q}_1,z_o}$ from a reduced quartic \mathcal{Q}_1 , which is not concurrent 4 lines, and a distinguished smooth point. A 3-cuspidal quartic and a quartic consisting

of a cuspidal cubic and its unique inflectional tangent line are the only ones so that $MW(S_{Q_1,z_o})$ has a 3-torsion point for a general z_o . This explains why a 3-cuspidal quartic is so special and we have Theorem 1. We hope this point of view is new.

(ii) As for the case of a cuspidal cubic and its unique inflectional tangent line, the configurations of singular fibers of S_{Q_1,z_o} is either $I_6, I_3, I_2, I_1, IV^*, I_3, I_1$, or IV^*, IV .

§5. Example

Now let us consider an explicit example. Let $C: T^2 - XZ = 0$ and Q is the standard quadratic transformation with respect to $\{-2T + X + Z = 0\}, \{2T + X + Z = 0\}$ and $\{Z = 0\}$.

If $P = [a, a^2, 1], a \in \mathbb{C}, a \neq \pm 1$, then tangent line at P is $-2aT + x + a^2Z = 0$. Hence Q(C), Q(L) and Q(P) are given as follows:

$$\begin{split} F_{Q(C)} &= 16T^2X^2 - 8T^2XZ + T^2Z^2 - 8TX^2Z - 2TXZ^2 + X^2Z^2, \\ F_{Q(L)} &= 2a^2TX + (1+a)XZ + (1-a)ZT - 2TX, \\ Q(P) &= [(a+1)^2, (a-1)^2, (a+1)^2(a-1)^2]. \end{split}$$

The tangent line, $L_{Q(P)}$, to Q(C) at Q(P) has the following equation:

$$(a-1)^3T - (a+1)^3X + 2Z = 0.$$

Let Φ be a coordinate change such that $L_{Q(P)}$ is transformed into the line Z=0 and Q(P) is mapped to [0,1,0]. Then $\Phi(Q(C))$ and $\Phi(Q(L))$ are given as follows in the affine equations:

$$\begin{split} F_{\Phi(Q(C))} &= x^3 + \left(\frac{3(a+1)}{2(a-1)}t^2 + \frac{3}{2}t - \frac{(a+3)^2}{8(a^2-1)}\right)x^2 + \\ &\quad + \left(\frac{2a(a+1)}{(a-1)^2}t^3 - \frac{3(a+1)}{(a-1)^2}t^2 + \frac{a+3}{(a-1)^2(a+1)}t\right)x \\ &\quad - \frac{2(a+1)}{(a-1)^3}t^4 + \frac{4}{(a-1)^3}t^3 - \frac{2}{(a-1)^3(a+1)}t^2 = 0, \\ F_{\Phi(Q(L))} &= x + \frac{2(a+1)}{a-1}t^2 - \frac{2}{a-1}t = 0, \end{split}$$

where t = T/Z and x = X/Z.

Then we have

$$F_{\Phi(Q(C))} = F_{\Phi(Q(L))}^3 + l_a(t, x)^2,$$

$$l_a(t, x) = \frac{6(a+1)t - (a+3)}{\sqrt{-8(a-1)(a+1)}}x + \frac{4(a+1)^2t^3 - 6(a+1)t^2 + 2t}{\sqrt{-2(a-1)^3(a+1)}}.$$

If we first homogenize these equations, then apply Φ^{-1} , we have the following degenerated (2,3) torus decomposition:

$$L_a^2 F_{Q(C)} = -8F_{Q(L)}^3 + G^2,$$

$$L_a = -(a-1)^3 T + (a+1)^3 X - 2Z,$$

$$G = 4(a-1)^3 T^2 X - (a-1)^3 T^2 Z + 4(a+1)^3 T X^2 - (a+1)^3 X^2 Z + 2a(a^2-9)TXZ + 2TZ^2 - 2XZ^2.$$

References

- [1] S. Bannai and H. Tokunaga: Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements, Geom. Dedicata 178 (2015), 219-237
- [2] W. Barth, K. Hulek, C.A.M. Peters and A. Van de Ven: Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 4 2nd Enlarged Edition, Springer-Verlag (2004).
- [3] J.-I. Cogolludo-Agustín and A. Libgober: Mordell-Weil groups of elliptic three-folds and the Alexander module of plane curves, J. reine angew. Math. 697 (2014), 15-55.
- [4] E. Horikawa: On deformation of quintic surfaces, Invent. Math. 31 (1975), 43-85.
- [5] M. Kawashima and K. Yoshizaki: On (2,3) decompositions of QL-configurations, SUT J. Math. 46 (2010), 93-117.
- [6] K. Kodaira: On compact analytic surfaces II, III, Ann. of Math. 77 (1963), 563-626; 78 (1963), 1-40.
- [7] R. Miranda: *Basic Theory of Elliptic surfaces*, Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, 1989.
- [8] R. Miranda and U. Persson: On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537-558.
- [9] K. Oguiso and T. Shioda: The Mordell-Weil lattice of Rational Elliptic surface, Comment. Math. Univ. St. Pauli 40 (1991), 83-99.

- [10] M. Oka: Tangential Alexander polynomials and non-reduced degeneration, Singularities in geometry and topology, 669-704, World Sci. Publ., Hackensack, NJ, 2007.
- [11] U. Persson: Configurations of Kodaira fibers on rational elliptic surfaces, Math.
 Z. 205 (1990), 1-49.
- [12] T. Shioda: On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
- [13] H. Tokunaga: Irreducible plane curves with the Albanese dimension 2, Proc. AMS. 127 (1999) 1935-1940.
- [14] H. Tokunaga: (2,3) torus sextic curves and the Albanese images of 6-fold cyclic multiple planes, Kodai Math. J. **22** (1999), 222-242.
- [15] H. Tokunaga: Geometry of irreducible plane quartics and their quadratic residue conics, J. of Singularities 2 (2010), 170-190.
- [16] H. Tokunaga: Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers, J. Math. Soc. of Japan 66 (2014), 613-640.

Khulan Tumenbayar Department of Mathematics and Information Sciences Graduate School of Science and Engineering, Tokyo Metropolitan University 1-1 Minami-Ohsawa, Hachiohji 192-0397 JAPAN E-mail: hulangaaa@yahoo.com

Hiro-o Tokunaga Department of Mathematics and Information Sciences Graduate School of Science and Engineering, Tokyo Metropolitan University 1-1 Minami-Ohsawa, Hachiohji 192-0397 JAPAN E-mail: tokunaga@tmu.ac.jp