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Abstract. In this note, we consider when a plane curve given by a polynomial
of the form

x3 + a1(t)x
2 + a2(t)x+ a3(t) = 0,

where degt ai(t) ≤ id (d: even), has degenerated (2, 3) torus decompositions
by using arithmetic properties of elliptic surfaces and show that a 3-cuspidal
quartic has infinitely many degenerated (2, 3) torus decompositions.
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§1. Introduction

In this note, all varieties are defined over the field of complex numbers C. Let
d be an even positive integer and let p(t, x) ∈ C[t, x] be a polynomial of the
form

x3 + a1(t)x
2 + a2(t)x+ a3(t) = 0,

where degt ai(t) ≤ id. Our aim of this note is to consider when p(t, x) has a
decomposition of the form

(∗) p(t, x) = (x− xo(t))
3 + (c0(t)x+ c1(t))

2, xo(t), c0(t), c1(t) ∈ C[t].

The right hand side of (∗) is called a (2, 3) torus decomposition of the affine
curve given by p(t, x) = 0. Such decompositions have been considered in, for
example, [13, 14, 5, 3] from viewpoint of the topology of the complements to
{p(t, x) = 0}. In this note we add another remark to this problem. In order
to state our criterion, we need to introduce some notation.
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Let E be an elliptic curve defined over the rational function field of one
variable C(t) given by

E : y2 = p(t, x),

and we denote the set of C(t)-rational points and the point at infinity O by
E(C(t)). It is well-known that E(C(t)) becomes an abelian group, O being
the zero element. Now our first statement is as follows:

Proposition 1. Assume that both of plane curves given by

p(t, x) = 0 and s3dp(1/s, x′/sd) = 0

have at worst simple singularities (see [2] for simple singularities) in both of
(t, x) and (s, x′) planes. Then p(t, x) has a decomposition as in (∗) if and
only if E(C(t)) has a point P of order 3. The polynomial xo(t) is given by the
x-coordinate of P .

As an application of Proposition 1, we have the following theorem:

Theorem 1. Let Q be a quartic with 3 cusps and choose a smooth point zo
on Q. There exists a unique irreducible conic C as follows:

(i) C is tangent to Q at zo and passes through three cusps of Q.

(ii) Let FQ, FC, and Lzo be defining equations of Q, C and the tangent line
Lzo of Q at zo, respectively. Then there exists a homogeneous polynomial
G of degree 3 such that

(∗∗) L2
zoFQ = F 3

C +G2.

Remark 1. • Following [10], we call the decomposition of FQ as in (∗∗)
a degenerated (2, 3) torus decomposition of projective plane curves. The
statement of Theorem 1 can be found in [10, 5.3.2]. We, however, con-
sider that our point of view explains geometry behind the statement,
and hope that it is worthwhile mentioning.

• The 5 (2, 3) torus decompositions given in [5] can also be found by Propo-
sition 1. In the terminology of [5], our statement can be rephrased:

Q has infinitely many invisible (2, 3) torus decompositions.

• Let zo be one of 3 cusps of Q and Lmax,zo is the tangent line at zo.
Then we also have a degenerated (2, 3) decomposition by using Lmax,zo .
This is informed the authors by M. Kawashima. In fact, it is enough to
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check the statement for one explicit example as any 3-cuspidal quartic
is projectively equivalent to each other. For example, we have:

Z2(3T 4 − 2T 3X − 3T 2Z2 +X2Z2 + Z4) = (XZ2 − T 3)2 − (T 2 − Z2)3,

where [T,X,Z] denote homogeneous coordinates. Note that [0, 1, 0] is a
cusp and Z = 0 is the maximal tangent line, Lmax,zo . This statement
can also be found in [10, 5.3.2]

§2. Preliminaries

2.1. Existence of C

We first show that the conic C in Theorem 1 exists. Let [T,X,Z] be homoge-
neous coordinates of P2.

Lemma 2.1. (i) Let C be a conic tangent to {T = 0}, {X = 0} and
{Z = 0} in P2. Let Q be the standard quadratic transformation (or the
standard Cremona transformation) with respect to {T = 0}, {X = 0}
and {Z = 0}. Then Q(C) is a quartic whose singularities are only 3
cusps at [0, 0, 1], [0, 1, 0] and [1, 0, 0].

(ii) Let L be the line tangent to C at a point P = [T0, X0, Z0] ∈ C. If
L is different from {T = 0}, {X = 0} and {Z = 0}, then Q(L) is a
conic tangent to Q(C) at Q(P ) = [X0Z0, T0Z0, T0X0] and passes through
[0, 0, 1], [0, 1, 0] and [1, 0, 0].

(iii) Conversely any conic such that it is tangent to a smooth point of a 3-
cuspidal quartic Q and passes through the 3 cusps of Q can be obtained
as above.

Since both of these statements are well-known, we omit their proofs. Let
LQ(P ) be the tangent line to Q(C) at Q(P ) and let Φ be a coordinate change
such that LQ(P ) is transformed into the line Z = 0 and Q(P ) is mapped to
[0, 1, 0].

Then Φ(Q(C)) has an affine equation of the form x3 + b1(t)x
2 + b2(t)x +

b3(t) = 0, where t = T/Z, x = X/Z, bi(t) ∈ C[t] and degt bi(t) ≤ i + 1. Also
Φ(Q(L)) is given by an equation of the form x− xo(t) = 0, where xo(t) ∈ C[t]
and deg xo(t) = 2.

2.2. Elliptic Surfaces

As for details on the results in this subsection, we refer to [6], [7], [8], [12], [16]
and [1].
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2.2.1. Some terminologies

Throughout this article, an elliptic surface always means a smooth projective
surface S with a fibration φ : S → C over a smooth projective curve, C, as
follows:

(i) There exists non empty finite subset Sing(φ) ⊂ C such that φ−1(v) is
a smooth curve of genus 1 for v ∈ C ∖ Sing(φ), while φ−1(v) is not a
smooth curve of genus 1 for v ∈ Sing(φ).

(ii) There exists a section O : C → S (we identify O with its image in S).

(iii) there is no exceptional curve of the first kind in any fiber.

In this note, we only consider an elliptic surface over P1, φ : S → P1.
We call Fv = φ−1(v)(v ∈ Sing(φ)) a singular fiber over v. In order to

describe the type of singular fibers, we use notation given in Kodaira ([6]).
We denote the irreducible decomposition of Fv by

Fv = Θv,0 +

mv−1∑
i=1

av,iΘv,i,

where mv is the number of irreducible components of Fv and Θv,0 is the ir-
reducible component with Θv,0O = 1. We call Θv,0 the identity component.
We also define a subset Red(φ) of Sing(φ) to be Red(φ) := {v ∈ Sing(φ) |
Fv is reducible}. For s ∈ MW(S), s is said to be integral if sO = 0. It is
known that any torsion element in MW(S) is integral (cf.[7]).

Let MW(S) be the set of sections of φ : S → P1. By our assumption,
MW(S) ̸= ∅. On a smooth fiber F of φ, by regarding F∩O as the zero element,
we can consider the abelian group structure on F . Hence for s1, s2 ∈ MW(S),
one can define the addition s1+̇s2 or the multiplication-by-m map [m]s1 on
P1 \ Sing(φ). By [6, Theorem 9.1], s1+̇s2 and [m]s1 can be extended over
P1, and we can consider MW(S) as an abelian group. On the other hand, we
can regard the generic fiber E := Sη of S as a curve of genus 1 over C(P1),
the rational function field of P1. The restriction of O to E gives rise to a
C(P1)-rational point of E, and one can regard E as an elliptic curve over
C(P1) ∼= C(t), O being the zero element. By considering the restriction to the
generic fiber for each section, MW(S) can be identified with the set of C(t)-
rational points E(C(t)). Conversely, any element P ∈ E(C(t)) gives rise to a
section determined by P , which we denote by sP . We also denote the addition
and the multiplication-by-m map on E(C(t)) by +̇ and [m], respectively.

In [12], Shioda introduced a Q-valued bilinear form on E(C(t)) called the
height pairing. We denote it by ⟨ , ⟩. For our later use, we give two basic
properties of ⟨ , ⟩:
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• ⟨P, P ⟩ ≥ 0 for ∀P ∈ E(C(t)) and the equality holds if and only if P is
an element of finite order in E(C(t)).

• An explicit formula for ⟨P1, P2⟩ (P1, P2 ∈ E(C(t))) is given as follows:

⟨P1, P2⟩ = χ(OS) + sP1O + sP2O − sP1sP2 −
∑

v∈Red(φ)

Contrv(sP1 , sP2),

where sPi (i = 1, 2) denote the sections in MW(S) determined by Pi

(i = 1, 2), and Contrv(sP1 , sP2) is determined at which component sP1

and sP2 meet at Fv. As for explicit values of Contrv(sP1 , sP2), we refer
to [12, (8.16)]. Note that since s2Pi

= −χ(OS), we have

⟨P1, P1⟩ = 2χ(OS) + 2sP1O −
∑

v∈Red(φ)

Contrv(sP1 , sP1),

2.2.2. Double cover construction of elliptic surfaces and their
Weierstrass equations

Let Σd (d: even) be the Hirzebruch surface of degree d. We first give a method
in constructing elliptic surfaces over P1 as double covers of Σd as follows:

Let ∆0 and ∆ denotes sections of Σd with ∆2
0 = −d,∆2 = d and ∆0∩∆ = ∅.

Note that ∆ ∼ ∆0 + df, where f denotes a fiber of Σd → P1 and ∼ means the
linear equivalence of divisors. Let T be a reduced divisor on Σd such that

(i) T ∼ 3∆ (∼ 3(∆0 + df)), and

(ii) T has at worst simple singularities (see [2] for simple singularities).

Let f ′ : S′ → Σd be the double cover with branch locus ∆f ′ = ∆0 + T (cf.
[2, III, §7]). We denote the diagram of the canonical resolution by

S′ µ←−−−− S

f ′
y yf

Σd ←−−−−
q

Σ̂d.

(see [4]). Namely, µ is the minimal resolution of singularities and q is a com-
position of blowing-ups so that the branch locus of f becomes smooth. Then
the induced morphism φ : S → Σd → P1 gives rise to an elliptic fibration over
P1.

Conversely it is known that any elliptic surface φ : S → P1 is obtained in
this way.
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We next consider a Weierstrass equation of the generic fiber of S. Choose
affine open sets U1 and U2 of Σd as in [1, 2.2.3]. Namely Ui

∼= C2 (i = 1, 2) with
coordinates (t, x) (resp. (s, x′)) on U1 (resp. U2) with relations t = 1/s, x =
x′/sd. With these coordinates, T is given by equations of the form

pT (t, x) = x3 + a1(t)x
2 + a2(t)x+ a3(t), ai ∈ C[t], deg ai ≤ id.

on U1 and s3dpT (1/s, x
′/sd) = 0 on U2. Over U1, S

′|f ′−1(U1) is given by

y2 − pT (t, x) = 0 ⊂ C3,

and the covering morphism f ′ is given by the restriction of the projection
(t, x, y) 7→ (t, x). The covering transformation σf ′ is given by (t, x, y) 7→
(t, x,−y). Thus we infer that the generic fiber of φ : S → P1 is an elliptic
curve E over C(t) given by the above Weierstrass equation. Note that if s ∈
MW(S) is integral, then the corresponding point Ps ∈ E(C(t)) has polynomial
coordinate components whose degrees are at most d (resp. 3d/2) for the x-
coordinate (resp. the y-coordinate). In what follows, we say P = (x(t), y(t))
is integral if x(t), y(t) ∈ C[t], deg x(t) ≤ d, deg y(t) ≤ 3d/2, .

Let Po = (xo(t), yo(t)) ∈ E(C(t)) be an integral point of the elliptic curve
E as in Introduction. Assume yo(t) ̸= 0 and let

y = l(t, x), l(t, x) = m(t)(x− xo(t)) + yo(t)

be the tangent line at Po and put [2]Po = (x1(t), y1(t)).

Lemma 2.2. If [2]Po is also an integral point, then m(t) ∈ C[t].

Proof. From the definition of addition, we have

pT (t, x)− {l(t, x)}2 = (x− xo(t))
2(x− x1(t)).

By comparing the coefficients of x2 of the above equality, we have

a1 − {m(t)}2 = −2xo(t)− x1(t).

This implies m(t) ∈ C[t] □

Corollary 2.1. Under the assumption of Lemma 2.2, p(t, x) has a decompo-
sition

pT (t, x) = (x− xo(t))
2(x− x1(t)) + {l(t, x)}2.

Since any element of finite order in E(C(t)) is always integral under our
assumption, we have
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Corollary 2.2. If P is an element of finite order in E(C(t)), p(t, x) has a
decomposition

pT (t, x) = (x− xo(t))
2(x− x1(t)) + {l(t, x)}2.

In particular, if P is an element of order three, as the x-coordinates of [2]P
and −P are the same, we have

pT (t, x) = (x− xo(t))
3 + {l(t, x)}2.

Proof of Proposition 1. The half of Proposition 1 follows form Corollary 2.2,
as the degree of l(t, x) with respect to x is equal to 1. Conversely, if pT (t, x)
has the decomposition described in Proposition 1, (xo(t),±(c0(t)xo(t)+c1(t)))
are 3-torsions of E(C(t)). Thus we have Proposition 1. □

§3. Rational elliptic surface SQ,zo

An elliptic surface is said to be rational if it is a rational surface. Any rational
elliptic surface obtained as a double cover of Σ2 described in §1. Let Q be
a 3-cuspidal quartic as before and let zo be a smooth point on Q. Likewise
in the second author’s article (e.g., [15, 1.3]), we associate a rational elliptic
surface with Q and zo, which we denote by φ : SQ,zo → P1. The tangent
line lzo gives rise to a singular fiber of φ whose type is determined by how lzo
intersects with Q as follows:

Table 1: lzo and the corresponding singular fiber

(i) I2 lzo meets Q with two other distinct points.

(ii) III lzo is a 3-fold tangent point.

(iii) I3 lzo is a bitangent line.

(iv) IV lzo is a 4-fold tangent point.

(v) I5 lzo passes through a cusp of Q

By [8, Table 6.2] and Table 1 as above, possible configurations of singular
fibers of SQ,zo are as follows:

Table 2: Possible configurations of singular fibers of SQ,zo

Singular fibers the position of lzo
Case 1 3 I3, I2, I1 (i)

Case 2 IV, 2 I3, I2 (ii)

Case 3 3 I3, III (ii)

Case 4 4 I3 (iii)

Case 5 3 I3, IV (iv)

Case 6 I5, 2 I3, I1 (v)
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The Table 2 give us possible cases, but by [11], the Cases 3, 5 and 6 in
Table 2 do not occur. Let C be the conic described in Theorem 1. Note that
C exists by Lemma 2.1. Then by our construction of SQ,zo , C gives rise to
two sections, s±C , which meets singular fibers as in the following figures if we
label irreducible components of singular fibers suitably. Let PC+ and PC− be
the corresponding rational points to sC+ and sC− , respectively. Then we have
⟨PC± , PC±⟩ = 0 and PC± are torsions and their orders are 3 by [11] or [9].

s+C

O

Θ1,0

Θ∞,1

Θ1,1

Θ∞,0

Θ1,2

Θ2,1

Θ2,0

Θ2,2

Θ3,0

Θ3,1

Θ3,2 s−C

Figure 1: Case 1

s+C

O

Θ1,0

Θ∞,1

Θ1,1

Θ∞,0

Θ1,2

Θ2,1

Θ2,0

Θ2,2

Θ3,0

Θ3,1

Θ3,2 s−C

Figure 2: Case 2
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s+C

O

Θ1,0

Θ∞,2

Θ1,1

Θ∞,0

Θ1,2

Θ2,1

Θ2,0

Θ2,2

Θ3,0

Θ3,1

Θ3,2 s−C

Θ∞,1

Figure 3: Case 4

§4. Proof of Theorem 1

Choose homogeneous coordinates [T,X,Z] of P2 such that lzo : Z = 0 and
zo = [0, 1, 0]. Then FQ and FC are of the form

FQ(T,X,Z) = X3Z + b2(T,Z)X2 + b3(T,Z)X + b4(T,Z),

FC(T,X,Z) = XZ − c0T
2 − c1TZ − c2Z

2, ci ∈ C(i = 0, 1, 2), c0 ̸= 0

where bi (i = 2, 3, 4) are homogeneous polynomial of degree≤ i. Put pQ(t, x) =
FQ(t, x, 1) and xo(t) = c0t

2 + c1t + c2. Then the elliptic curve EQ given
by y2 = pQ(t, x) has a 3 torsion point PC+ in EQ(C(t)) and xo(t) is its x-
coordinate. Hence by Proposition 1, we have

FQ(t, x, 1) = (x− c0t
2 − c1t− c2)

3 + {m(t)(x− c0t
2 − c1t− c2) + yo(t)}2,

where yo(t) is the y-coordinate of PC+ and y = m(t)(x− c0t
2− c1t− c2)+yo(t)

is the tangent line at PC+ . By comparing the coefficients of both hand side
with respect to x, we have

b2(t, 1) = {m(t)}2 − 3(c0t
2 + c1t+ c2),

b4(t, 1) = {−m(t)(c0t
2 + c1t+ c2) + yo(t)}2 − (c0t

2 + c1t+ c2)
3.

Hence, we infer that degm(t) ≤ 1, deg yo(t) ≤ 3, and we have

Z2FQ(T,X,Z) = FC(T,X,Z)3 + {Zm(T/Z)FC(T,X,Z) + Z3yo(T/Z)}2.

This implies Theorem 1. □

Remark 4.1. (i) Note that we also obtain a rational elliptic surface SQ1,zo

from a reduced quartic Q1, which is not concurrent 4 lines, and a dis-
tinguished smooth point. A 3-cuspidal quartic and a quartic consisting
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of a cuspidal cubic and its unique inflectional tangent line are the only
ones so that MW(SQ1,zo) has a 3-torsion point for a general zo. This
explains why a 3-cuspidal quartic is so special and we have Theorem 1.
We hope this point of view is new.

(ii) As for the case of a cuspidal cubic and its unique inflectional tangent
line, the configurations of singular fibers of SQ1,zo is either I6, I3, I2, I1,
IV∗, I3, I1, or IV

∗, IV.

§5. Example

Now let us consider an explicit example. Let C : T 2 − XZ = 0 and Q
is the standard quadratic transformation with respect to {−2T + X + Z =
0}, {2T +X + Z = 0} and {Z = 0}.

If P = [a, a2, 1], a ∈ C, a ̸= ±1, then tangent line at P is−2aT+x+a2Z = 0.
Hence Q(C), Q(L) and Q(P ) are given as follows:

FQ(C) = 16T 2X2 − 8T 2XZ + T 2Z2 − 8TX2Z − 2TXZ2 +X2Z2,

FQ(L) = 2a2TX + (1 + a)XZ + (1− a)ZT − 2TX,

Q(P ) = [(a+ 1)2, (a− 1)2, (a+ 1)2(a− 1)2].

The tangent line, LQ(P ), to Q(C) at Q(P ) has the following equation:

(a− 1)3T − (a+ 1)3X + 2Z = 0.

Let Φ be a coordinate change such that LQ(P ) is transformed into the line
Z = 0 and Q(P ) is mapped to [0, 1, 0]. Then Φ(Q(C)) and Φ(Q(L)) are given
as follows in the affine equations:

FΦ(Q(C)) = x3 +

(
3(a+ 1)

2(a− 1)
t2 +

3

2
t− (a+ 3)2

8(a2 − 1)

)
x2 +

+

(
2a(a+ 1)

(a− 1)2
t3 − 3(a+ 1)

(a− 1)2
t2 +

a+ 3

(a− 1)2(a+ 1)
t

)
x

− 2(a+ 1)

(a− 1)3
t4 +

4

(a− 1)3
t3 − 2

(a− 1)3(a+ 1)
t2 = 0,

FΦ(Q(L)) = x+
2(a+ 1)

a− 1
t2 − 2

a− 1
t = 0,

where t = T/Z and x = X/Z.
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Then we have

FΦ(Q(C)) = F 3
Φ(Q(L)) + la(t, x)

2,

la(t, x) =
6(a+ 1)t− (a+ 3)√
−8(a− 1)(a+ 1)

x+
4(a+ 1)2t3 − 6(a+ 1)t2 + 2t√

−2(a− 1)3(a+ 1)
.

If we first homogenize these equations, then apply Φ−1, we have the follow-
ing degenerated (2, 3) torus decomposition:

L2
aFQ(C) = −8F 3

Q(L) +G2,

La = −(a− 1)3T + (a+ 1)3X − 2Z,

G = 4(a− 1)3T 2X − (a− 1)3T 2Z + 4(a+ 1)3TX2 − (a+ 1)3X2Z +

+ 2a(a2 − 9)TXZ + 2TZ2 − 2XZ2.
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