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Enumeration of unlabeled graphs such that both
the graph and its complement are 2-connected
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Abstract. It is well-known that the complement of a disconnected graph is
connected, that is, the number of disconnected unlabeled graphs whose com-
plement is also disconnected is zero. By this fact, we can easily express the
number of connected unlabeled graphs whose complement is also connected, by
the numbers of graphs and connected graphs. The generating functions of them
are obtained by Harary [5]. In this paper, we express the number of unlabeled
graphs such that both the graph and its complement are 2-connected, by the
numbers of graphs whose generating functions are known.
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§1. Introduction

In this paper, we consider finite simple unlabeled graphs, which have neither
loops nor multiple edges. For terminology and notation not defined in this
paper, we refer the readers to [4]. We denote by V (G) and E(G) the vertex
set and the edge set of G, respectively. For n ≥ 1, let Gn, Dn, Cn, Sn and
Bn be the sets of graphs, disconnected graphs, connected graphs, graphs with
connectivity one and 2-connected graphs of order n, respectively. For a graph
G, G denotes the complement of G. For sets Hn and Kn of graphs, we let
HKn = {G ∈ Hn | G ∈ Kn}.

Ramsey theory discusses graphs in which either the graph or its complement
has a specified property. As a variation, in 1979–1981, Akiyama and Harary
[1, 2, 3] have researched graphs such that both the graph and its complement
have a common specified property. In this paper, we focus the connectivity as
the specified property, and enumerate such graphs. It is well-known that the
complement of a disconnected graph is connected, that is, |DDn| = 0. By this
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fact, it is easy to obtain the number of graphs such that both the graph and
its complement are connected.

Proposition 1.1. |CCn| = 2|Cn| − |Gn| holds for n ≥ 1.

Proof. Since |DDn| = 0 and |Dn| = |Gn| − |Cn|, we have |CDn| = |DCn| =
|Dn| − |DDn| = |Dn| = |Gn| − |Cn|. Since |CCn| = |Cn| − |CDn|, it follows that
|CCn| = 2|Cn| − |Gn|.

The numbers of graphs and connected graphs are obtained by Harary [5].
By this theorem, we can obtain the following table.

n 1 2 3 4 5 6 7 8 9

|CCn| 1 0 0 1 8 68 662 9888 247492

In this paper, we enumerate graphs such that both the graph and its com-
plement are 2-connected. To do it, we need to obtain the cardinalities of SDn

and SSn. In 1979, Akiyama and Harary obtained a necessary and sufficient
condition for a graph to belong to SDn and SSn. (In 2002, Kawarabayashi,
Nakamoto, Oda, Ota, Tazawa and Watanabe rediscovered this result.) For a
graph G and v ∈ V (G), NG(v) and degG(v) denote the neighborhood and the
degree of a vertex v in G, respectively. Moreover, G − v denotes the graph
obtained from G by deleting v and the edges incident with v.

Theorem 1.2 (Akiyama and Harary [1], Kawarabayashi et al. [7]). Let G be
a separable graph with a cut vertex u.

(i) G is disconnected if and only if degG(u) = |V (G)| − 1.

(ii) G is separable if and only if either (a) or (b) holds:

(a) degG(u) = |V (G)| − 2.

(b) degG(u) ≤ |V (G)| − 3 and G has a vertex v such that NG(v) = {u}
and G− v has a spanning complete bipartite subgraph.

By using this theorem, we determine the cardinalities of SDn and SSn.
We first determine the structure of SDn and obtain the cardinality of it. Let
S0
n be the set of graphs G of order n such that G has exactly one cut vertex

u and degG(u) = n− 1 (see Figure 1). Then by Theorem 1.2 (i), it is easy to
see that SDn = S0

n. Moreover, it is easily observed that there exists a one-
to-one correspondence between S0

n and Dn−1. Hence we obtain the following
proposition.
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Figure 1: The structure of graphs in S0
n.

Proposition 1.3. |SDn| = |Dn−1| holds for n ≥ 3.

We next determine the structure of SSn and obtain the cardinality of it.
Let S1

n be the set of graphs G of order n such that G has exactly one cut
vertex v and degG(v) = n − 2 (see Figure 2 (i)). Let S2

n be the set of graphs
G of order n such that G has exactly two cut vertices u1 and u2 such that
degG(u1) = n − 2 and degG(u2) = n − 2, moreover and G has a vertex vi
(i = 1, 2) such that NG(vi) = {ui} (see Figure 2(ii)). Note that G ∈ S2

n has
no cut vertex except for u1 and u2. Let S3

n be the set of graphs G of order n
with a cut vertex u such that G and u satisfy Theorem 1.2 (ii)-(b) (see Figure
2(iii)).

Figure 2: The structures of graphs in S1
n, S2

n and S3
n

Theorem 1.4. Let n be an integer with n ≥ 5. Then SSn = S1
n ∪ S2

n ∪ S3
n,

and Si
n ∩ Sj

n = ∅ for 1 ≤ i < j ≤ 3.

Here we show the relationship among S1
n, S2

n and S3
n, and obtain the car-

dinalities of S1
n and S2

n. For a set H of graphs let H := {H : H ∈ H}. A
rooted graph is a graph in which one vertex has been distinguished as the root.
Let Dr

n be the set of rooted disconnected graphs of order n. The generating
functions of rooted graphs and rooted connected graphs have been obtained
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by Harary [5] (see [6] p.100 for the detail). Notice that the number of rooted
disconnected graphs of order n is equal to the difference between the number
of rooted graphs of order n and that of rooted connected graphs of order n.

Theorem 1.5. (i) S1
n = S3

n and |S1
n| = |Dr

n−1| − |Dr
n−2| − |Gn−2| holds for

n ≥ 3.

(ii) S2
n = S2

n and |S2
n| = |Gn−4| holds for n ≥ 5.

We postpone the proofs of Theorems 1.4 and 1.5 to the next section. By
Theorems 1.4 and 1.5, we can obtain the cardinality of SSn.

Theorem 1.6. |SSn| = 2(|Dr
n−1| − |Dr

n−2| − |Gn−2|) + |Gn−4| holds for n ≥ 5.

By Proposition 1.3 and Theorem 1.6, we obtain the cardinality of BBn. The
generating function of 2-connected graphs is obtained by Robinson [8] (see [6]
p.187 for the detail).

Theorem 1.7. For n ≥ 5, the following equality holds.

|BBn| = 2|Bn| − |Gn|+ 2(|Dn−1|+ |Dr
n−1| − |Dr

n−2| − |Gn−2|) + |Gn−4|.

Proof. Note that |Sn| = |Cn| − |Bn|. By Proposition 1.3 and Theorem 1.6, we
deduce

|BBn| = |Bn| − |BSn| − |BDn|
= |Bn| − (|Sn| − |SSn| − |SDn|)− (|Dn| − |DSn| − |DDn|)
= |Bn| − (|Cn| − |Bn|)− |Dn|+ 2|SDn|+ |SSn|
= 2|Bn| − |Gn|+ 2(|Dn−1|+ |Dr

n−1| − |Dr
n−2| − |Gn−2|) + |Gn−4|.

By this theorem, we can obtain the following table.

n 1 2 3 4 5 6 7 8 9

|BBn| 0 0 0 0 1 8 126 3287 125838

§2. Proofs of Theorems 1.4 and 1.5.

In this section, we give proofs of Theorem 1.4 and Theorem 1.5. Before that,
we prepare some notation. Let G be a graph, and let u, v, w and x be vertices
with u ̸∈ V (G), v, w, x ∈ V (G), vw ̸∈ E(G) and vx ∈ E(G). We denote by



ENUMERATION OF UNLABELED GRAPHS 45

G+u, G− v, G+ vw, G− vx and G∨u the graph obtained from G by adding
u, the graph obtained from G by deleting v and all the edges of v, the graph
obtained from G by adding vw, the graph obtained from G by deleting vx,
and the graph obtained from G by adding u and by joining u and all vertices
of V (G), respectively.

We first give a proof of Theorem 1.5.

Proof of Theorem 1.5. (i) We first show that S1
n = S3

n. Suppose that G ∈
S1
n (see Figure 2(i)). Let v be the unique cut vertex of G. Since G − v is a

disconnected graph, G− v has a spanning complete bipartite subgraph. Let
u be the vertex with NG(v) = V (G) \ {u, v}. Then note that NG(v) = {u},
and hence u is a cut vertex in G. Since G has exactly one cut vertex, we have
degG(u) ≥ 2, and hence degG(u) ≤ n − 3. Therefore G ∈ S3

n. Conversely,
suppose that G ∈ S3

n (see Figure 2(iii)). Since degG(v) = 1, it follows that
degG(v) = n − 2. Since G − v has a spanning complete bipartite subgraph,
G− v is a disconnected graph. Hence v is a cut vertex of G. Since degG(u) ≤
n−3, we have degG(u) ≥ 2. Hence G has no cut vertex except for v. Therefore
G ∈ S1

n.

We next show that |S1
n| = |Dr

n−1| − |Dr
n−2| − |Gn−2|. Let Dr(≥2)

n be the set
of rooted disconnected graphs of order n in which the degree of the root is at
least 2.

Claim 1. There exists a one-to-one correspondence between S1
n and Dr(≥2)

n−1 .

Proof. Suppose that G ∈ S1
n. Let v be the unique cut vertex of G. Let

H = G − v. Let u be the vertex with NG(v) = V (G) \ {u, v}. Then H is
disconnected and degH(u) = degG(u) ≥ 2. Therefore if we regard u as the

root of H then H ∈ Dr(≥2)
n−1 . Conversely, suppose that H ∈ Dr(≥2)

n−1 . Let u be
the root of H with degH(u) ≥ 2. Let v be a vertex with v ̸∈ V (H), and let
G = (H ∨ v) − uv. Since degG(u) = degH(u) ≥ 2, v is the unique cut vertex
of G. Therefore, we obtain G ∈ S1

n.

By this claim, it suffices to enumerate the order of Dr(≥2)
n−1 . Let Dr(0)

n and

Dr(1)
n be the sets of rooted disconnected graphs of order n in which the degree

of the root is 0 and 1, respectively. Then it is obvious that

(2.1) |Dr(≥2)
n−1 | = |Dr

n−1| − |Dr(0)
n−1| − |Dr(1)

n−1|.

Claim 2. There exists a one-to-one correspondence between Dr(0)
n−1 and Gn−2.
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Proof. Suppose that G ∈ Dr(0)
n−1. Let x be the root of G. Then G− x ∈ Gn−2.

Conversely, suppose that H ∈ Gn−2. Let x be a vertex with x ̸∈ V (H). Then

if we regard x as the root of H + x, then H + x ∈ Dr(0)
n−1.

Claim 3. There exists a one-to-one correspondence between Dr(1)
n−1 and Dr

n−2.

Proof. Suppose that G ∈ Dr(1)
n−1. Let x be the root of G, let y be the vertex

with NG(x) = {y} and let H = G − x. If we regard y as the root of H, then
H ∈ Dr

n−2. Conversely, suppose that H ∈ Dr
n−2. Let y be the root of H, let x

be a vertex with x ̸∈ V (H), and let G = (H + x) + xy. If we regard x as the

root of G, then G ∈ Dr(1)
n−1.

By the equality (2.1) and Claims 1–3, we deduce

|S1
n| = |Dr(≥2)

n−1 |

= |Dr
n−1| − |Dr(0)

n−1| − |Dr(1)
n−1|

= |Dr
n−1| − |Gn−2| − |Dr

n−2|.

(ii) We show that S2
n = S2

n. Suppose that G ∈ S2
n. Let u1 and u2 be the cut

vertices such that degG(u1) = degG(u2) = n− 2. Let v1 and v2 be the vertices
such that NG(v1) = {u1} and NG(v2) = {u2}. Note that NG(u1) = {v2},
NG(u2) = {v1} and degG(v1) = degG(v2) = n − 2. Furthermore, the other
vertices are not cut vertices and have degree at most n−3 in G. Hence G ∈ S2

n.
We show that |S2

n| = |Gn−4|. Suppose that G ∈ S2
n. We construct a graph H

from (G−u1)−u2 by deleting vertices v1 and v2. Then H ∈ Gn−4. Conversely,
suppose that H ∈ Gn−4. Let P4 = v1u1u2v2 be a path of order 4. We construct
a graph G from H and P4 by joining each of u1 and u2 to all vertices of H.
Then G ∈ S2

n. Therefore |S2
n| = |Gn−4|.

We next prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.5, we obtain S1
n ∪ S2

n ∪ S3
n ⊆ SSn.

Suppose that G ∈ SSn. If there exists a cut vertex u with degG(u) ≤ n − 3,
then Theorem 1.2 (ii) implies G ∈ S3

n. Hence, by Theorem 1.2, we may assume
that degG(u) = n − 2 for each cut vertex u. If G has exactly one cut vertex,
then G ∈ S1

n. Therefore, we may assume that G has at least two cut vertices.

Let u1 be a cut vertex in G. Since degG(u1) = n− 2, there exists a vertex
v2 such that NG(u1) = V (G) \ {u1, v2}. Since G has at least two cut vertices,
there exists a vertex u2 with NG(v2) = {u2}, and u2 is the unique cut vertex
except for u1. Since degG(u2) = n − 2, there exists a vertex v1 such that
NG(u2) = V (G) \ {u2, v1}. Since u1 is a cut vertex, we have NG(v1) = {u1}.
Therefore G ∈ S2

n.
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