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Abstract. In this paper, we show the existence of the wave operators for
the Schrödinger equation with time-dependent variable coefficients by using the
method introduced by the author and K. Kato [14] and give characterizations
of their ranges by wave packet transform similar to those in [14].
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§1. Introduction

In this paper, we prove the existence of the wave operators for the Schrödinger
equation with time-dependent variable coefficients

H(t) = A(t) + V (t)

with unperturbed system H0 ≡ −1/2∆ in the Hilbert space H = L2(Rn) and
characterize their ranges. Here A(t) is the differential operator defined by

A(t) = −1

2

n∑
j,k

∂xkajk(t, x)∂xj

and V (t) is the multiplication operator of a function V (t, x) and the domain
D(A(t)) = H2(Rn) is the Sobolev space of order two.

In the case that ajk(t, x) ≡ δjk, H. Kitada and K. Yajima [11] have char-
acterized the ranges of the wave operators. In the previous paper [14], the
author and K. Kato have proved the existence of the wave operators and have
characterized their ranges by using the wave packet transform.

We assume that ajk(t, x) and V (t, x) satisfy the following conditions:
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Assumption (A). (i) (ajk) is symmetric, that is, ajk = akj and in C∞(Rt ×
Rnx;R) for j, k = 1, . . . , n.
(ii) There exists a positive constant ρ for any multi-index α such that

|∂αx (ajk(t, x)− δjk)| ≤ Cα(1 + |x|)−1−ρ,(1.1)

for any (t, x) ∈ R× Rn, where δjk is the Kronecker delta.
(iii) V (t, x) is a real-valued Lebesgue measurable function on (t, x) ∈ R×Rn.
(iv) There exists a positive constant ρ̃ such that

|V (t, x)| ≤ C(1 + |x|)−1−ρ̃(1.2)

for any (t, x) ∈ R× Rn.

We assume the existence of the propagator generated by H(t).

Assumption (B). There exists a family of unitary operators (U(t, τ))(t,τ)∈R2

in H satisfying the following conditions.

(i) For f ∈ H , U(t, τ)f is strongly continuous function with respect to t
and satisfies

U(t, τ ′)U(τ ′, τ) = U(t, τ), U(t, t) = I for all t, τ ′, τ ∈ R,

where I is the identity operator on H .
(ii) For f ∈ H2(Rn), U(t, τ)f is strongly continuously differentiable in H

with respect to t and satisfies

∂

∂t
U(t, τ)f = −iH(t)U(t, τ)f for all t, τ ∈ R.

Remark 1. H = A + V is self-adjoint operator on H if A = A(t) and
V = V (t) do not depend on t and det(ajk) ̸= 0. Then Assumption (B) is
satisfied by the Stone theorem.

Theorem 1. Suppose that (A) and (B) be satisfied. Then the wave operators

WA
± (τ) = s-lim

t→±∞
U(t, τ)∗e−i(t−τ)H0

exist for any τ ∈ R, where ∗ denotes the adjoint of the operator.

Let S be the Schwartz space of all rapidly decreasing functions on Rn and
S ′ be the space of tempered distributions on Rn. For positive constants a

and R, we put Γa,R = {(x, ξ) ∈ Rn × Rn
∣∣∣ |x| ≥ R or |ξ| ≤ a or |ξ| ≥ R}.
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Definition 1 (Wave packet transform). Let φ ∈ S \{0} and f ∈ S ′. We de-
fine the wave packet transform Wφf(x, ξ) of f with the wave packet generated
by a function φ as follows:

Wφf(x, ξ) =

∫
Rn

φ(y − x)f(y)e−iyξdy for (x, ξ) ∈ Rn × Rn.

Its inverse is the operator W−1
φ which is defined by

W−1
φ F (x) =

1

(2π)n∥φ∥2H

∫ ∫
R2n

φ(x− y)F (y, ξ)eixξdydξ

for x ∈ Rn and a function F (x, ξ) on Rn × Rn. This transform is introduced
by Córdoba and C. Fefferman ([2]).

Definition 2. Let τ ∈ R and Φ ∈ S0 ≡
{
Φ ∈ S

∣∣∣ ∥Φ∥H = 1 and Φ̂(0) ̸= 0
}

and we put Φ(t) = e−itH0Φ. We define D̃A
±,Φ
scat(τ) by the set of all functions in

H such that

lim
t→±∞

∥∥χΓa,R
(x− (t− τ)ξ, ξ)WΦ(t−τ)[U(t, τ)f ](x, ξ)

∥∥
L2(Rn

x×Rn
ξ )

= 0

for some positive constants a and R, where χA(x) is the characterization func-
tion of a measurable set A, which is defined by χA(x) = 1 on A and χA(x) = 0

otherwise. For τ ∈ R, DA
±,Φ
scat(τ) is defined by the closure of D̃A

±,Φ
scat(τ) in the

topology of H .

Theorem 2. Suppose that (A) and (B) be satisfied. Then the ranges of
the wave operators R(WA

± (τ)) coincide with DA
±,Φ
scat(τ) for any Φ ∈ S0. In

particular, DA
±,Φ
scat(τ) is independent of Φ.

We use the following notations throughout the paper. i =
√
−1, n ∈ N.

For a subset Ω in Rn or in R2n, the standard inner product and the stan-
dard norm on L2(Ω) are denoted by (f, g)L2(Ω) =

∫
Ω fḡdx and ∥f∥L2(Ω) =

(f, f)
1/2
L2(Ω)

for f, g ∈ L2(Ω), respectively. We write ∂xj = ∂/∂xj , ∂t = ∂/∂t,

L2
x,ξ = L2(Rnx × Rnξ ), (·, ·) = (·, ·)L2

x,ξ
, ∥ · ∥ = ∥ · ∥L2

x,ξ
, ⟨t⟩ = 1 + |t|, ∥f∥Σ(l) =∑

|α+β|=l ∥xβ∂αx f∥H and Wφu(t, x, ξ) = Wφ[u(t)](x, ξ). ∥ · ∥B(X) denotes the

operator norm on the Hilbert space X. F and F−1 are the Fourier transform
and the inverse Fourier transform defined by Ff(ξ) = f̂(ξ) =

∫
Rn e

−ix·ξf(x)dx
and F−1f(ξ) = (2π)−n

∫
Rn e

ix·ξf(ξ)dξ, respectively. We often write {ξ = 0} as
{(x, ξ) ∈ R2n| ξ = 0}. For sets A and B, A\B denotes the set {a ∈ A| a /∈ B}.
F (· · · ) denotes the multiplication operator of a function χ{x∈Rn|··· }(x).

The idea of the proofs of the main theorems is as follows. Splitting the
principal part H(t) into (A(t)−H0) + (H0 + V (t)), applying the wave packet
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transform to the equation and estimating the terms including A(t)−H0 and
H0 + V (t) by using the wave packet transform, we prove the existence of the
wave operators and characterize their ranges. In order to estimate the term
including A(t) − H0, we use the duality argument and Lemma 3. That is,
taking f ∈W−1

Φ [C∞
0 (R2n \ {ξ = 0})], we have

∥(A(t)−H0)e
−itH0f∥H ≤ ∥(A(t)−H0)e

−itH0W−1
Φ χΓc

a,R
∥B(H )∥WΦf∥H

(1.3)

for some positive numbers a and R. Lemma 3 shows that

∥(A(t)−H0)e
−itH0W−1

Φ χΓc
a,R

∥B(H ) ≤ C⟨t⟩−1−ρ,(1.4)

which is the key of the proofs of the main theorems. The term including
H0 + V (t) can be estimated by the same argument as in [14]. The existence
of the wave operators and the characterizations of their ranges are obtained
by (1.3), (1.4) and the Cook-Kuroda method ([1], [12]).

In the case that the coefficients depend only on x, R. Melrose [13], J.
Wunsch and A. Hassell [5] and K. Ito and S. Nakamura [8], study the microlocal
singularity with the solution of the equation. In [13], they characterize the
scattering operator, which is defined by the wave operator and its adjoint
operator. In [5], they use the same modifier as the modified wave operator in
[3]. In [8], they represent the wave operators by the Fourier integral operator
which is introduced by L. Hörmander [6]. All the above works do not treat
the characterization of the ranges of the wave operators.

The plan of the paper is as follows. In section 2, we recall properties of
the wave packet transform and prove a propagation estimate using the wave
packet transform. In section 3, we give a proof of the existence of the wave
operators (Theorem 1) and characterize the ranges of them (Theorem 2).

§2. Preliminaries

In this section, we recall the representation via the wave packet transform
which is used in the proofs of the main theorems and give a propagation
estimate via the wave packet transform.

Proposition 1. Let φ,ψ ∈ S \ {0} and f ∈ S ′. Then the wave packet
transform Wφf(x, ξ) has the following properties:
(i) Wφf(x, ξ) ∈ C∞(Rnx × Rnξ ).
(ii) If f, g ∈ H , we have

(Wφf,Wψg) = (φ,ψ)H (f, g)H = (ψ,φ)H (f, g)H .(2.1)
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(iii) If (ψ,φ)H ̸= 0, the inversion formula

(ψ,φ)−1
H W−1

ψ [Wφf ] = f

holds for f ∈ S ′.

Proof. See [4].

Let φ0 ∈ S \ {0}, φ̃(t, t0, x) = e−i(t−t0)H0φ0(x) and ψ ∈ H for t, t0 ∈ R.
Since

W φ̃(t,t0)[H0u](t, x, ξ)

=WH0φ̃(t,t0)u(t, x, ξ)− iξ · ∇xWφ̃(t,t0)u(t, x, ξ) +
1

2
|ξ|2Wφ̃(t,t0)u(t, x, ξ)

and

Wφ̃(t,t0)[i∂tu](t, x, ξ) = i∂tWφ̃(t,t0)u(t, x, ξ) +Wi∂tφ̃(t,t0)u(t, x, ξ)

for u ∈ C(R;S ), i∂tU(t, t0)ψ = H(t)U(t, t0)ψ is transformed to(
i∂t + iξ · ∇x −

1

2
|ξ|2
)
Wφ̃(t,t0)[U(t, t0)ψ](t, x, ξ) = G̃(t, t0, x, ξ, U(t, t0)ψ)

for t, t0 ∈ R, where G̃(t, t0, x, ξ, ψ) = Wφ̃(t,t0) [H0 − (A(t)− V (t))ψ] (x, ξ). We
have by the method of characteristic curve that

Wφ̃(t,t0)[U(t, t0)ψ](x, ξ) =e
−i 1

2
(t−t0)|ξ|2Wφ0ψ(x− (t− t0)ξ, ξ)(2.2)

− i

∫ t

t0

e−i
1
2
(t−s)|ξ|2G̃(s, t0, x− (t− s)ξ, ξ, U(s, t0)ψ)ds.

In particular, we have

Wφ̃(t,0)[e
−itH0ψ](x+ tξ, ξ) = e−i

1
2
t|ξ|2Wφ0ψ(x, ξ).(2.3)

Taking V ≡ 0, t = 0, t0 = t and φ0 as e−itH0φ0, we obtain the following
representation of eitH0 :

Wφ0 [e
itH0ψ](x, ξ) = ei

1
2
t|ξ|2Wφ̃(t,0)ψ(x+ tξ, ξ).(2.4)

Substituting ψ in (2.2) for e−it
′H0ψ and φ0 as e−it

′H0φ0, we have for t, t′ ∈ R

Wφ(t)[U(t, t′)e−it
′H0ψ](x+ tξ, ξ)

(2.5)

=e−i
1
2
(t−t′)|ξ|2Wφ(t′)[e

−it′H0ψ](x+ t′ξ, ξ)

+ i

∫ t′

t
e−i

1
2
(t−s)|ξ|2G(s, x+ sξ, ξ, U(s, t′)e−it

′H0ψ)ds.

=e−i
1
2
t|ξ|2Wφ0ψ(x, ξ) + i

∫ t′

t
e−i

1
2
(t−s)|ξ|2G(s, x+ sξ, ξ, U(s, t′)e−it

′H0ψ)ds,



186 T. YONEYAMA

where φ(t, x) = φ̃(t, 0, x), G(s, x, ξ, ψ) = G̃(s, 0, x, ξ, ψ). Integration by parts
and the fact that ∇e−itH0 = e−itH0∇ yield that

− 2G(t, x, ξ, ψ)

(2.6)

=

∫
φ(t, y − x)(∆− 2A(t)− 2V (t))ψ(y)e−iξydy

=

n∑
j,k=1

∫
φ(t, y − x)

{
∂yk(δjk − ajk(t, y))∂yj − 2V (t, y)

}
ψ(y)e−iξydy

=
∑

|α|=2,|α2|≤1
α=α1+α2+α3

∫
(∂α1
y φ) (t, y − x)∂α2

y (δjk − ajk(t, y))

× ψ(y)e−iξy(−iξ)α3e−iξydy − 2

∫
φ(t, y − x)V (t, y)ψ(y)e−iξydy.

The following well-known lemma is used in the proof of Lemma 3.

Lemma 2. Let L1, L2 be positive constants and f ∈ S . Suppose that
supp f̂ ⊂ {ξ ∈ Rn|L1 < |ξ| < L2}. Then for any non-negative integer l,
there exists a positive constant Cl such that∣∣∣∣(∣∣∣∣F (|x| < L1

2
t

)∣∣∣∣+ |F (|x| > 2L2t)|
)
e−itH0f(x)

∣∣∣∣ ≤ Cl(1+|x|+|t|)−l∥f∥Σ(l)

for any t > 0 and x ∈ Rn.

Proof. See [7].

The following propagation estimate plays an important role in the proof of
the main theorems.

Lemma 3. Suppose that (A) be satisfied. Let a and R be positive constants.
Then for any multi-index α, β, a constant L ∈ (0, a/6] and φ0 ∈ S \ {0}
with supp φ̂0 ⊂ {ξ ∈ Rn|L/2 < |ξ| < L}, there exists a positive constant C
satisfying∥∥ξβWφ(s) [∂

α(ajk(s)− δjk)ψ] (x+ sξ, ξ)
∥∥
L2(R2n\Γa,R)

≤ C⟨s⟩−1−ρ∥ψ∥H(2.7)

for any s ≥ 0 and any ψ ∈ H .

Proof. Let σ = a/6 and let l be an integer satisfying l ≥ ρ + 1 + (n + 1)/2.
We put ζσ(t, x) = χ0(

1
σ⟨t⟩x){∂

α
x (ajk(t, x)− δjk)} where χ0 ∈ C∞(Rn) satisfies
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χ0(x) = 1 for |x| ≥ 1 and χ0(x) = 0 for |x| ≤ 1/2. Thus by (1.1) for any multi-
index α, there exists a positive constant Cα such that |ζσ(t, x)| ≤ Cα⟨t⟩−1−ρ

for any (t, x) ∈ R× Rn.
For (x, ξ) ∈ R2n \ Γa,R, we put O1 ≡ {y ∈ Rn||y − (x + sξ)| ≤ as/3} and

O2 ≡ {y ∈ Rn||y− (x+ sξ)| > as/3}. If (x, ξ) ∈ R2n \Γa,R, s ≥ max{3R/a, 3}
and y ∈ O1, we have

|y| ≥ (as−R)− as

3
≥ σ⟨s⟩.(2.8)

Since ζσ(s, y) = ∂αy (ajk(s, y) − δjk) for |y| ≥ σ⟨s⟩, we have by Plancherel’s
theorem and (2.8)∥∥∥∥ξβ ∫

y∈O1

e−isH0φ0(y − (x+ sξ))∂αy (ajk(s, y)− δjk)ψ(y)e
−iξydy

∥∥∥∥
L2(R2n\Γa,R)

≤R|β|
∥∥∥∥∫

y∈O1

e−isH0φ0(y − (x+ sξ))ζσ(s, y)ψ(y)e
−iξydy

∥∥∥∥
L2(R2n\Γa,R)

≤R|β|
∥∥∥e−isH0φ0(y − x)ζσ(s, y)ψ(y)

∥∥∥
L2(Rn

x×Rn
y )

≤C⟨s⟩−1−ρ∥ψ∥H .

On the other hand, Lemma 2 shows that∥∥∥∥ξβ ∫
y∈O2

e−isH0φ0(y − (x+ sξ))∂αy (ajk(s, y)− δjk)ψ(y)e
−iξydy

∥∥∥∥
≤R|β|

∥∥∥(F (|y − x| > as

3

)
e−isH0φ0(y − x)

)
∂αy (ajk(s, y)− δjk)ψ(y)

∥∥∥
L2(R2n

x,y)

≤C⟨s⟩−l+(n+1)/2∥φ0∥Σ(l)

∥∥∥⟨y − x⟩−(n+1)/2∂αy (ajk(s, y)− δjk)ψ(y)
∥∥∥
L2(R2n

x,y)

≤C⟨s⟩−1−ρ∥ψ∥H ,

since supp φ̂0 ⊂ {ξ ∈ Rn| 0 < |ξ| < a/6}.

The following lemma is obtained in [14].

Lemma 4. Suppose that (A) be satisfied. Let a and R be positive constants.
Then for any L ∈ (0, a/6] and φ0 ∈ S \ {0} with supp φ̂0 ⊂ {ξ ∈ Rn|L/2 <
|ξ| < L}, there exists a positive constant C satisfying∥∥Wφ(s) [V (s)ψ] (x+ sξ, ξ)

∥∥
L2(R2n\Γa,R)

≤ C⟨s⟩−1−ρ̃∥ψ∥H(2.9)

for any s ≥ 0 and any ψ ∈ H.

Proof. See [14].
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§3. Proofs of main theorems

In this section, we prove Theorem 1 and 2 by using Lemma 3 and the rep-
resentation via the wave packet transform which are proved in the previous
section. We give a proof only for the case that V ≡ 0 since the last term of
(2.6) can be estimated by Lemma 4.

Proof of Theorem 1. Substituting A(t) for A(t−τ), it suffices to show the case
τ = 0. We prove the existence in the case t→ +∞ only.

Let Φ ∈ S0 and u0 ∈ H . In order to apply the Cook-Kuroda method, we
shall prove

∥(A(t)−H0)e
−itH0u0∥H ≤ C⟨t⟩−1−ρ(3.1)

for t ≥ 0 and u0 ∈W−1
Φ [C∞

0 (R2n \ {ξ = 0})].
Let a and R be positive constants satisfying

suppWΦu0 ⊂ R2n \ Γa,R(3.2)

and φ0 ∈ S \ {0} satisfying

supp φ̂0 ⊂
{
ξ ∈ Rn

∣∣∣ L
2
< |ξ| < L

}
with 0 < L ≤ a

6
, CΦ,φ0 ≡ (Φ, φ0)H ̸= 0.

(3.3)

By (2.1) and (2.4), we have for t ≥ 0

((A(t)−H0)e
−itH0u0, ψ)H =

(
u0, e

itH0(A(t)−H0)ψ
)
H

(3.4)

= C−1
Φ,φ0

(
WΦu0,Wφ0 [e

itH0(A(t)−H0)ψ]
)

= C−1
Φ,φ0

(
WΦu0, e

it|ξ|2/2G(t, x+ tξ, ξ, ψ)
)
.

Lemma 3, (2.6) and (3.3) show that for t′ ≥ t > 0

|(WΦu0, e
it|ξ|2/2G(t, x+ tξ, ξ, ψ))|

≤ ∥WΦu0∥∥G(t, x+ tξ, ξ, ψ)∥L2(R2n\Γa,R)

≤ C∥u0∥H ⟨t⟩−1−ρ∥ψ∥H

≤ C⟨t⟩−1−ρ∥u0∥H ∥ψ∥H .

The above inequality and (3.4) imply (3.1).

Hence we obtain the existence of WA
+ (0)u0 since W−1

Φ (C∞
0 (R2n \ {ξ = 0}))

is dense in H .
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Proof of Theorem 2. From the same reason in the proof of Theorem 1, it suf-
fices to show the case τ = 0 and t → +∞ only. Let Φ ∈ S0. We abbreviate

W+ = WA
+ (0), D+

scat = DA
+,Φ
scat(0) and D̃+

scat = D̃A
+,Φ
scat(0) until the end of the

proof.

The part that R(W+) ⊂ D+
scat can be proved by the same argument in

Proposition 6 of [14]. That is, for g ∈W−1
Φ (C∞

0 (R2n \ {ξ = 0})), we can prove
W+g ∈ D̃+

scat.

Thus for completing the proof of Theorem 2, we shall prove the other part
that

R(W+) ⊃ D+
scat.(3.5)

Since D±
scat is the closure of D̃±

scat and U is a bounded operator on H ,
it suffices to prove the existence of the inverse wave operator W−1

+ u0 =

limt→+∞ eitH0U(t, 0)u0 for u0 ∈ D̃+
scat.

Let u0 ∈ D̃+
scat and let a and R be positive constants satisfying

lim
t→∞

∥χΓa,R
(x− tξ, ξ)WΦ(t)[U(t, 0)u0]∥ = 0.(3.6)

We abbreviate Γ = Γa,R and Γc = R2n \ Γ until the end of the proof. Taking
φ0 ∈ S \ {0} satisfying (3.3), we have for t′ ≥ t > 0

(
eitH0U(t, 0)u0 − eit

′H0U(t′, 0)u0, ψ
)

H

(3.7)

=C−1
Φ,φ0

(
χΓ(x− tξ, ξ)WΦ(t)[U(t, 0)u0],Wφ(t)[e

−itH0ψ − U(t, t′)e−it
′H0ψ]

)
+ C−1

Φ,φ0

(
WΦ(t)[U(t, 0)u0], χΓc(x− tξ, ξ)

(
Wφ(t)[e

−itH0ψ − U(t, t′)e−it
′H0ψ]

))
.

Using (3.6), we obtain

sup
∥ψ∥H =1

|(the first term of the right hand side in (3.7))|
(3.8)

≤ sup
∥ψ∥H =1

∥χΓ(x− tξ, ξ)WΦ(t)[U(t, 0)u0]∥∥Wφ(t)[e
−itH0ψ − U(t, t′)e−it

′H0ψ]∥

≤ 2∥φ0∥H ∥χΓ(x− tξ, ξ)WΦ(t)[U(t, 0)u0]∥ → 0 as t→ ∞.
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By Lemma 3, (2.3), (2.5), (2.6) and (3.3), we have for t′ ≥ t > 0

|(the second term of the right hand side in (3.7))|

(3.9)

=

∣∣∣∣∣
(
WΦ(t)[U(t, 0)u0](x+ tξ, ξ),

χΓc

∫ t′

t
e−i

1
2
(t−s)|ξ|2G(s, x+ sξ, ξ, U(s, t′)e−it

′H0ψ)ds

)∣∣∣∣∣
≤C∥u0∥H

∫ t′

t

∥∥∥G(s, x+ sξ, ξ, U(s, t′)e−it
′H0ψ)

∥∥∥
L2(Γc)

ds

≤C∥u0∥H

∫ t′

t
⟨s⟩−1−ρds∥ψ∥H .

(3.5) follows from (3.8) and (3.9).
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