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Abstract. For square contingency tables with ordered categories, Tahata and
Tomizawa (2010) considered the double linear diagonals-parameter symmetry
(DLDPS) model. The present paper proposes the generalized DLDPS model,
which implies the structure of both asymmetry with represent to the main
diagonal and with respect to the reverse diagonal in the table. Also, the double
symmetry (DS) model is separated into the generalized DLDPS model and the
moment equality model. Also it is shown that the test statistic for the DS
model is asymptotically equivalent to the sum of those for separated models.
An example is given.
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§1. Introduction

For an r × r square contingency table with ordered categories, let pij denote
the probability that an observation will fall in the cell in row i and column
j (i = 1, . . . , r; j = 1, . . . , r). For the analysis of square contingency table,
the models, which indicate the structure of symmetry with respect to the
main diagonal of the table, have been proposed by many statisticians. For
example, Bowker (1948), Stuart (1955), Caussinus (1965), Agresti (1983), and
Tomizawa and Tahata (2007). On the other hand, the models, which indicate
the structure of point symmetry with respect to the center point of the table,
have also been proposed by, for example, Wall and Lienert (1976), Tomizawa
(1985a), and Tahata and Tomizawa (2008).

Tomizawa (1985b) considered the double symmetry (DS) model defined by

pij = pji = pi∗j∗ = pj∗i∗ (i = 1, . . . , r; j = 1, . . . , r),
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where i∗ = r + 1 − i and j∗ = r + 1 − j. This model indicates that the
probabilities are symmetric with respect to the main diagonal of the table and
also point-symmetric with respect to the center point of the table.

The double linear diagonals-parameter symmetry (DLDPS) model is de-
fined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji = ψi∗j∗ = ψj∗i∗ (Tahata and Tomizawa, 2010). This model
may be expressed as

pij
pji

= θj−i (i < j),

and
pj∗i∗

pij
= ηr+1−(i+j) (i+ j < r + 1).

Namely, this implies both of the structure of the linear diagonals-parameter
symmetry (LDPS) model (Agresti, 1983) with respect to the main diagonal
of the table and the structure of the LDPS model with respect to the reverse
diagonal of the table.

Let X and Y denote the row and column variables, respectively. Tahata
and Tomizawa (2010) also pointed out that the DS model holds if and only if
both the DLDPS and the double mean equalities (DME) models hold, where
the DME model is defined by

E(X) = E(Y ) =
r + 1

2
.

For the analysis of data, when the DLDPS model fits the data poorly, we are
interested in applying the extended models of DLDPS model.

In the present paper, Section 2 proposes new models. Section 3 gives the
decomposition of the DS model with the models. Section 5 shows relationship
between test statistics. Section 6 gives an example.

§2. Scaled double symmetry model

We propose a new model defined by, for a fixed k (k = 1, . . . , r − 1),

(2.1) pij =

(
k∏

l=1

αil

l β
jl

l

)
ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji = ψi∗j∗ = ψj∗i∗ . We shall refer to this model as the kth
scaled double symmetry (SDSk) model. A special case of this model obtained
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by putting {αl = βl = 1} is the DS model. When k = 1, the SDS1 model is
the DLDPS model. When k = 2, this model may be expressed as

pij
pji

= θj−i
2a θj

2−i2

2b (i < j),

and
pj∗i∗

pij
= η

r+1−(i+j)
2a θ

(j−i){r+1−(i+j)}
2b (i+ j < r + 1),

where θ2a = β1/α1, θ2b = β2/α2 and η2a = α1β1(α2β2)
r+1. Namely, this

indicates that (i) there is the structure of the extended LDPS model proposed
by Tomizawa (1991), and (ii) there is the structure of asymmetry with respect
to the reverse diagonal of the table. A special case of SDS2 model with θ2b = 1
is the DLDPS model. Also, when k = 3, the SDS3 model may be expressed as

pij
pji

= θj−i
3a θj

2−i2

3b θj
3−i3

3c (i < j),

and
pj∗i∗

pij
= η

T1(i,j)

3a η
T2(i,j)

3b θ
S2(i,j)

3b θ
S3(i,j)

3c (i+ j < r + 1),

where

T1(i,j) = r + 1− (i+ j),

T2(i,j) = (r + 1)3 − 3

2
(r + 1)2(i+ j) +

3

2
(r + 1)(j2 + i2)− (j3 + i3),

S2(i,j) = (j − i){r + 1− (i+ j)},

S3(i,j) =
3

2
(r + 1)(j − i){r + 1− (i+ j)},

and θ3a = β1/α1, θ3b = β2/α2, θ3c = β3/α3, η3a = α1β1(α2β2)
r+1 and η3b =

α3β3. Namely, this indicates that (i) there is the structure of the 3rd linear
asymmetry model proposed by Tahata and Tomizawa (2011), and (ii) there is
the structure of asymmetry with respect to the reverse diagonal of the table.
A special case of SDS3 model with η3b = θ3c = 1 is SDS2 model.

Tomizawa (1985b) also considered the quasi-double symmetry (QDS) model
defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji = ψi∗j∗ = ψj∗i∗ . Consider the log pij for the QDS model
and those for the SDSr−1 model. Then setting logαi by

∑r−1
s=0 i

s log νs for
i = 1, . . . , r and log βj by

∑r−1
s=0 j

s log ξs for j = 1, . . . , r. We see that two
sets {logα1, logα2, . . . , logαr} and {log ν0, log ν1, . . . , log νr−1} are in one-to-
one correspondence. Similarly, the set {log β1, log β2, . . . , log βr} and the set
{log ξ0, log ξ1, . . . , log ξr−1} are in one to one correspondence. Therefore we
pointed out that the SDSr−1 model is equivalent to the QDS model.
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§3. Decomposition of double symmetry model

For a fixed k (k = 1, . . . , r − 1), consider a model defined by

E
(
X l
)
= E

(
Y l
)
= E

(
X∗l

)
= E

(
Y ∗l
)

(l = 1, . . . , k).

Note that E
(
X∗l

)
= E

(
(r + 1−X)l

)
. We shall refer to this model as the kth

double moment equality (DMEk) model. When k = 1, the DME1 model is
equivalent to the DME model and when k = r − 1, the DMEr−1 is equivalent
to the marginal double symmetry (MDS) model, defined by

pi· = p·i = pi∗· = p·i∗ (i = 1, . . . , r),

where pi· =
∑r

t=1 pit, p·i =
∑r

s=1 psi (Tomizawa, 1985b). This model indicates
both of the marginal homogeneity and the marginal point-symmetry. Figure
1 gives the relationships among models.

We obtain the following theorem.

Theorem 3.1. For a fixed k (k = 1, . . . , r − 1), the DS model holds if and
only if both the SDSk and DMEk models hold.

Proof. For a fixed k, if the DS model holds, then both the SDSk and DMEk

models hold. Assuming that both the SDSk and DMEk models hold, then we

shall show that the DS model holds. Let
{
p
(1)
ij

}
denote the cell probabilities

which satisfy both the SDSk and DMEk models. Since the SDSk model holds,
we see

log p
(1)
ij =

k∑
l=1

il logαl +
k∑

l=1

jl log βl + logψij ,

where ψij = ψji = ψi∗j∗ = ψj∗i∗ . Let πij = c−1ψij with c =
∑r

i=1

∑r
j=1 ψij .

We note that
∑r

i=1

∑r
j=1 πij = 1 with 0 < πij < 1. Since the SDSk and DMEk

models hold,

(3.1) log

(
p
(1)
ij

πij

)
= log c+

k∑
l=1

il logαl +
k∑

l=1

jl log βl

and

(3.2) µl1(1) = µl2(1) = µ∗1
l
(1) = µ∗2

l
(1) (l = 1, . . . , k),

where

µl1(1) =

r∑
s=1

r∑
t=1

slp
(1)
st , µl2(1) =

r∑
s=1

r∑
t=1

tlp
(1)
st ,
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µ∗1
l
(1) =

r∑
s=1

r∑
t=1

(r + 1− s)lp
(1)
st , µ∗2

l
(1) =

r∑
s=1

r∑
t=1

(r + 1− t)lp
(1)
st .

Then we denote µl1(1)(= µl2(1) = µ∗1
l
(1) = µ∗2

l
(1)) by µ

l
0.

Consider the arbitrary cell probabilities
{
p
(2)
ij

}
satisfying

(3.3) µl1(2) = µl2(2) = µ∗1
l
(2) = µ∗2

l
(2) = µl0 (l = 1, . . . , k),

where

µl1(2) =

r∑
s=1

r∑
t=1

slp
(2)
st , µl2(2) =

r∑
s=1

r∑
t=1

tlp
(2)
st ,

µ∗1
l
(2) =

r∑
s=1

r∑
t=1

(r + 1− s)lp
(2)
st , µ∗2

l
(2) =

r∑
s=1

r∑
t=1

(r + 1− t)lp
(2)
st .

From (3.1), (3.2) and (3.3), we see

(3.4)
r∑

i=1

r∑
j=1

(
p
(2)
ij − p

(1)
ij

)
log

(
p
(1)
ij

πij

)
= 0.

From (3.4) we obtain

K
(
p(2), π

)
= K

(
p(1), π

)
+K

(
p(2), p(1)

)
where for two bivariate discrete probability distribution {aij} and {bij}

K(a, b) =

r∑
i=1

r∑
j=1

aij log

(
aij
bij

)
,

namely, K(·, ·) is the Kullback-Leibler information. Note that K(a, b) ≥ 0 and
the equality holds when only aij = bij . Since π is fixed, we see

min
p(2)

K
(
p(2), π

)
= K

(
p(1), π

)
and then

{
p
(1)
ij

}
uniquely minimizeK(p(2), π) (see Darroch and Ratcliff, 1972).

Let p
(3)
ij = p

(1)
ji for 1 ≤ i, j ≤ r. Then, noting that {πij = πji}, we obtain

min
p(2)

K
(
p(2), π

)
= K

(
p(3), π

)
,

and then
{
p
(3)
ij

}
uniquely minimize K(p(2), π). Therefore, we see p

(1)
ij = p

(3)
ij .

Thus, p
(1)
ij = p

(1)
ji for 1 ≤ i, j ≤ r.
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Let p
(4)
ij = p

(1)
i∗j∗ for 1 ≤ i, j ≤ r. Then, noting that {πij = πi∗j∗} and

µl0 =
∑r

s=1

∑r
t=1 s

∗lp
(1)
s∗t∗ =

∑r
s=1

∑r
t=1 t

∗lp
(1)
s∗t∗ , we obtain

min
p(2)

K
(
p(2), π

)
= K

(
p(4), π

)
.

Then
{
p
(4)
ij

}
uniquely minimize K(p(2), π). Therefore, we see p

(1)
ij = p

(4)
ij .

Thus, p
(1)
ij = p

(1)
i∗j∗ for 1 ≤ i, j ≤ r. Namely the DS model holds. The proof is

completed.

Note that (i) Theorem 3.1 with k = 1 is given by Tahata and Tomizawa
(2010) and (ii) Theorem 3.1 with k = r − 1 is given by Tomizawa (1985b).
Also, note that Tahata and Tomizawa (2006) discussed another decomposition
of double symmetry.

§4. Goodness-of-fit test

Assume that a multinomial distribution applies to the r× r table. The maxi-
mum likelihood estimates of expected frequencies under each model could be
obtained by using the Newton-Raphson method to the log-likelihood equations
or using the general iterative procedure for log-linear models.

Let nij and mij denote the observed frequency and the expected frequency
in the (i, j)th cell, respectively. Also let m̂ij denote the maximum likelihood
estimates ofmij under the model. Each model can be tested for goodness-of-fit
by, e.g., the likelihood ratio chi-squared statistic of model with the correspond-
ing degrees of freedom (df). The likelihood ratio chi-squared statistic for model
M is

G2(M) = 2

r∑
i=1

r∑
j=1

nij log

(
nij
m̂ij

)
.

Table 1 gives the numbers of df for models.

§5. Partition of test statistics

We get the following lemma.

Lemma 5.1. For a fixed k (k = 1, . . . , r−1), the SDSk model, which is defined
by equation (2.1) in Section 2, can be expressed as (i) when k is odd,

pij =

 k+1
2∏

s=1

δi
∗2s−1−i2s−1

2s−1

( k∏
l=1

βj
l−il

l

)
ωij (i = 1, . . . , r; j = 1, . . . , r),
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where ωij = ωji = ωi∗j∗ = ωj∗i∗, and (ii) when k is even,

pij =

 k
2∏

s=1

δi
∗2s−1−i2s−1

2s−1

( k∏
l=1

βj
l−il

l

)
ωij (i = 1, . . . , r; j = 1, . . . , r),

where ωij = ωji = ωi∗j∗ = ωj∗i∗.

Proof. Consider the case of (i). In equation (2.1), let

α2m−1 = β−1
2m−1

k+1
2∏

s=m

δ
γ2m−1(2s−1)

2s−1 ,

for m = 1, . . . , k+1
2 , and

α2m = β−1
2m

k+1
2∏

s=m+1

δ
γ2m(2s−1)

2s−1 ,

for m = 1, . . . , k−1
2 , where γs(l) are given such that for l = 2m − 1 (m =

1, 2, . . . , k+1
2 ),

i∗
l − il = (r + 1− i)l − il =

l∑
s=0

γs(l)i
s.

Also let,

ψij =

 k+1
2∏

m=1

δ
γ0(2m−1)

2m−1

ωij .
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Therefore the SDSk model may be expressed as

pij =

(
k∏

l=1

αi
l
l
βjl

l

)
ψij

=

 k+1
2∏

m=1

αi2m−1

2m−1

 k−1
2∏

n=1

αi2n

2n

( k∏
l=1

βj
l

l

)
ψij

=

k+1
2∏

m=1

β−1
2m−1

k+1
2∏

s=m

δ
γ2m−1(2s−1)

2s−1

i2m−1

×

k−1
2∏

n=1

β−1
2n

k+1
2∏

s=n+1

δ
γ2n(2s−1)

2s−1

i2n (
k∏

l=1

βj
l

l

) k+1
2∏

m=1

δ
γ0(2m−1)

2m−1

ωij

=

 k+1
2∏

s=1

δi
∗2s−1−i2s−1

2s−1

( k∏
l=1

βj
l−il

l

)
ωij .

Similarly, the case of (ii) is proved although the detail is omitted. The proof
is completed.

We get the following theorem.

Theorem 5.2. For a fixed k (k = 1, . . . , r − 1), the test statistic G2(DS) is
asymptotically equivalent to the sum of G2(SDSk) and G2(DMEk).

Proof. First, for a fixed k (k = 1, . . . , r− 1), consider the case of r being even
and k being odd. From Lemma 5.1, the SDSk model may be expressed as

(5.1) log pij =
k∑

l=1

(jl − il)ϵl +

k+1
2∑

s=1

(i∗2s−1 − i2s−1)ζ2s−1 + ϕij ,

where ϕij = ϕji = ϕi∗j∗ = ϕj∗i∗ . Let

p = (p11, . . . , p1r, p21, . . . , p2r, . . . , pr1, . . . , prr)
t,

x = (ϵ1, ϵ2, . . . , ϵk, ζ1, ζ3, . . . , ζk,γ)
t,

where “t” denotes the transpose, and

γ = (ϕ11, . . . , ϕ1r, ϕ22, . . . , ϕ2,r−1, ϕ33, . . . , ϕ3,r−3, . . . , ϕ r
2
, r
2
, ϕ r

2
, r
2
+1)

is the 1× r(r + 2)/4 vector. Then the SDSk model is expressed as

log p = Ax = (a1,a2, . . . ,ak, b1, b3, . . . , bk,C)x,
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where A is the r2 ×K matrix with K = r(r + 2)/4 + (3k + 1)/2 and

al = 1r ⊗ J l
r − J l

r ⊗ 1r; the r2 × 1 vector (l = 1, ..., k),

b2s−1 = (J∗2s−1
r − J2s−1

r )⊗ 1r; the r2 × 1 vector (s = 1, ..., (k + 1)/2) ,

and C is the r2 × r(r+2)/4 matrix of 1 or 0 elements determined from (5.1),
where 1r is the r×1 vector of 1 elements, J l

r = (1l, . . . , rl)t, J∗l
r = (rl, . . . , 1l)t,

and ⊗ denotes the Kronecker product. Note that the matrix A is full column
rank which is K. Also note that C1r(r+2)/4 = 1r2 . In a similar manner
to Haber (1985), we denote the linear space spanned by the columns of the
matrix A by S(A) with the dimensionK. Let U be an r2×d1 full column rank
matrix such that the linear space spanned by the column ofU , i.e., S(U), is the
orthogonal complement of the space S(A), where d1 = r(3r−2)/4−(3k+1)/2.
Thus, U tA = Od1,K where Od1,K is the d1 ×K zero matrix. Therefore the
SDSk model is expressed as h1(p) = 0d1 where 0d1 is the d1 × 1 zero vector
and h1(p) = U t log p. The DMEk model may be expressed as h2(p) = 0d2

where d2 = (3k + 1)/2 and h2(p) = Wp with

W =



a1
t

a2
t

...
ak

t

b1
t

b3
t

...
bk

t


; the

3k + 1

2
× r2 matrix.

Thus W t belongs to the space S(A), i.e., S(W t) ⊂ S(A). Hence WU =
Od2,d1 . From Theorem 3.1, the DS model may be expressed as h3(p) = 0d3 ,
where d3 = d1 + d2 = r(3r − 2)/4 with h3 = (ht

1,h
t
2)

t.
Let Hs, s = 1, 2, 3, denote the ds × r2 matrix of partial derivatives of

hs(p) with respect to p, i.e., Hs = ∂hs(p)/∂p
t. Let Σ = diag(p) − ppt,

where diag(p) denote a diagonal matrix with the ith component of p as the
ith diagonal component. Let p̂ denote p with pij replaced by p̂ij , where
p̂ij = nij/n with n =

∑∑
nij . Then

√
n(p̂− p) has asymptotically a normal

distribution with mean 0r2 and covariance matrix Σ. Using the delta method,√
n(h3(p̂) − h3(p)) has asymptotically a normal distribution with mean 0d3

and covariance matrix

H3ΣHt
3 =

[
H1ΣHt

1 H1ΣHt
2

H2ΣHt
1 H2ΣHt

2

]
.

Since H1p = U t1r2 = 0d1 , H1diag(p) = U t and H2 = W , we see

H1ΣHt
2 = U tW t = Od1,d2 .
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Thus ∆3(p̂) = ∆1(p̂) + ∆2(p̂) holds under h3(p) = 0, where

∆s(p̂) = nhs(p̂)
t
[
ĤsΣ̂Ĥt

s

]−1
hs(p̂).

Note that Ĥs and Σ̂ are given by Hs and Σ with pij replaced by p̂ij , re-
spectively. Under each hs(p) = 0ds (s = 1, 2, 3), the statistic ∆s(p̂) has
asymptotically a chi-squared distribution with ds degrees of freedom. Since
above equation holds and the asymptotic equivalence of the Wald statistic and
the likelihood ratio statistic (Rao, 1973, Sec.6e.3; Darroch and Silvey, 1963;
and Aitchison, 1962), we obtain the theorem. In a similar way, the other cases
are proved although the detail is omitted. The proof is completed.

Note that (i) Theorem 5.2 with k = 1 is given by Tahata and Tomizawa
(2010) and (ii) Theorem 5.2 with k = r− 1 is given by Yamamoto, Takahashi
and Tomizawa (2012).

§6. An example

Table 2, taken directly from Goodman (1981), is the cross-classification of fa-
ther’s and his son’s occupational status categories in Denmark. These data
are analyzed by many statisticians about association and marginal homogene-
ity. For example, Bishop, Fienberg and Holland (1975, p.100), Bartolucci and
Forcina (2002), and Tahata and Yoshimoto (2015).

The main diagonal cells indicate that the pairs of father and his son have
same occupational status, and the reverse diagonal cells mean the average of
sum of occupational status of father and his son. Therefore, we are interested
in applying the model that indicates the structure of symmetry (or asymmetry)
with respect to the main diagonal and the reverse main diagonal. Table 3 gives
the values of the likelihood ratio chi-square statistics G2 for models applied
to these data. We denote the move to son’s level j from his father’s level i by
“i→ j”. Namely pij is the probability of i→ j. The DS model fits these data
very poorly since the value of G2 is 893.23 with 16 df.

The SDS1 (i.e., DLDPS) model fits these data poorly (Table 3). On the
other hand, SDS2, SDS3 and SDS4 (QDS) models fit well. We shall consider
the hypothesis that the SDS2 model holds assuming that the SDS3 model
holds. Then we can use the test based on the difference between the likelihood
ratio chi-square statistics. This hypothesis is rejected at the 0.05 significance
level since the difference between two likelihood ratio chi-square values is 10.77
with 2 df. We also consider another hypothesis that the SDS3 model holds
assuming that the SDS4 (QDS) model holds. This hypothesis is accepted at
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the 0.05 significance level since the difference between two likelihood ratio chi-
square values is 0.64 with 1 df. Therefore the SDS3 model would be preferable
to each of the SDS2 and SDS4 (QDS) models for these data.

Under the SDS3 model, the MLEs of parameters, θ3a, θ3b, θ3c, η3a and
η3b are θ̂3a = 0.14, θ̂3b = 1.95, θ̂3c = 0.94, η̂3a = 0.91 and η̂3b = 1.03, re-
spectively. We can infer that the probability of i → j (i < j) is estimated

to be θj−i
3a θj

2−i2

3b θj
3−i3

3c times higher than the probability of j → i, and we
can infer that the probability of j∗ → i∗ (i + j < 6) is estimated to be

η
T1(i,j)

3a η
T2(i,j)

3b θ
S2(i,j)

3b θ
S3(i,j)

3c times higher than the probability of i→ j. Namely,
(i) the move to son’s level j (j = 2, 3, 4, 5) from his father’s level 1 (highest)
tends to be less than the move to son’s level 1 from his father’s level j, (ii) the
move to son’s level j from his father’s level i (1 < i < j) tends to be greater
than the move to son’s level i from his father’s level j, and (iii) the move to
son’s level j from his father’s level i (i+ j < 6) tends to be less than the move
to son’s level i∗ from his father’s level j∗. Namely, the sum of occupational
status of father and his son tends to be greater than the average of it (note;
the average of the sum of occupational status of father and his son is 6).

From Theorem 3.1 with k = 2, 3 and 4, we see that the reason for the poor
fit of the DS model is caused by the influence of lack of the DMEk model
rather than the SDSk model.

§7. Concluding remarks

In this paper, we have proposed the SDSk model. For the analysis of data,
when the DLDPS model fits the data poorly, we can apply not only the QDS
model, but also the SDSk (k = 2, 3, . . . , r− 2) model, and so we could analyze
the data more details. Moreover the models in the SDSk models are referred
to as hierarchical models (Figure 1). Thus it is easy to compare two mod-
els because the difference in G2 values can be used to compare two nested
models. Then the conditional test is more powerful than the unconditional
test. For example, the hypothesis, that the SDS2 model holds assuming that
the SDS3 model holds, is equivalent to the hypothesis η3b = θ3c = 1. The
G2(SDS2|SDS3) statistic has higher power than the G2(SDS2) statistic for
departures that are described by the SDS3 model. Therefore, we recommend
that (i) all SDSk models are applied the dataset when the DS model fits the
data poorly and (ii) we select the most appropriate model using the hierarchi-
cal structure.

In Section 3, we have given the separation of the DS model. When the DS
model fits the data poorly, the separation of the DS model (i.e., Theorem 3.1)
would be useful for seeing the reason for its poor fit. As seen in the analysis
of Table 2, the poor fit of the DS model is caused by the poor fit of the DMEk
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model rather than the SDSk model (k = 2, 3, 4).

In Section 5, we have stated that for a fixed k (k = 1, . . . , r − 1), the
test statistic G2(DS) is asymptotically equivalent to the sum of G2(SDSk)
and G2(DMEk) (i.e., Theorem 5.2). Therefore, for the separation of the DS
model into the SDSk and DMEk models, an incompatible situation, that both
the SDSk and DMEk models are accepted with high probability but the DS
model is rejected with high probability, would not arise (see Aitchison, 1962;
Darroch and Silvey, 1963). From Theorem 3.1, when the SDSk model holds,
the DMEk model is equivalent to the DS model. Thus, conditional on the
SDSk model, testing the DMEk model is equivalent to testing the DS model.
Namely,

G2(DS|SDSk) = G2(DS)−G2(SDSk) = G2(DMEk|SDSk).

G2(DS)−G2(SDSk) is asymptotically equivalent to G2(DMEk) from Theo-
rem 5.2. We can obtain that the conditional test statistic G2(DMEk|SDSk)
is asymptotically equivalent to the unconditional test statistic G2(DMEk).
Therefore even if the SDSk model fits the data poorly, the test statistic might
work well when the sample size is large.
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Table 1: The numbers of degrees of freedom (df) for models.

(a) r; even

Model df

DS
r(3r − 2)

4

SDSk


r(3r − 2)

4
− 3k

2
(k; even)

r(3r − 2)

4
− 3k + 1

2
(k; odd)

DMEk


3k

2
(k; even)

3k + 1

2
(k; odd)

(b) r; odd

Model df

DS
(r − 1)(3r + 1)

4

SDSk


(r − 1)(3r + 1)

4
− 3k

2
(k; even)

(r − 1)(3r + 1)

4
− 3k + 1

2
(k; odd)

DMEk


3k

2
(k; even)

3k + 1

2
(k; odd)
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Table 2: Occupational status for Danish father-son pairs; from Goodman
(1981). (The upper, middle and lower parenthesized values are the estimated
expected frequencies under the SDS2, SDS3 and SDS4 models, respectively.)

Father’s Son’s status
status (1) (2) (3) (4) (5) Total

(1) 18 17 16 4 2 57
(16.00) (24.39) (20.29) (7.11) (4.50) (72.29)
(13.73) (19.08) (15.90) (5.91) (3.80) (58.42)
(13.65) (18.16) (15.75) (5.71) (3.73) (57.00)

(2) 24 105 109 59 21 318
(25.39) (91.74) (99.33) (57.38) (15.66) (289.50)
(30.13) (97.55) (104.74) (63.14) (16.74) (312.30)
(31.27) (97.24) (108.51) (63.88) (17.10) (318.00)

(3) 23 84 289 217 95 708
(20.54) (96.55) (289.00) (204.00) (91.69) (701.78)
(22.88) (95.49) (289.00) (216.27) (92.91) (716.55)
(23.01) (92.09) (289.00) (211.90) (92.00) (708.00)

(4) 8 49 175 348 198 778
(6.53) (50.62) (185.12) (361.26) (211.26) (814.79)
(6.63) (44.86) (168.50) (355.45) (196.86) (772.30)
(6.80) (44.12) (172.50) (355.76) (198.82) (778.00)

(5) 6 8 69 201 246 530
(3.50) (11.70) (70.48) (178.96) (248.00) (512.64)
(4.20) (11.72) (71.31) (193.93) (250.27) (531.43)
(4.27) (11.39) (72.24) (191.75) (250.35) (530.00)

Total 79 263 658 829 562 2391
(71.96) (275.00) (664.22) (808.71) (571.11) (2391.00)
(77.57) (268.70) (649.45) (834.70) (560.58) (2391.00)
(79.00) (263.00) (658.00) (829.00) (562.00) (2391.00)
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Table 3: The values of likelihood ratio chi-squared statistic for the models
applied to Table 2.

Models df G2

DS 16 893.23∗

SDS1(DLDPS) 14 24.08∗

SDS2 13 22.24
SDS3 11 11.47
SDS4(QDS) 10 10.83
DME1(DME) 2 832.10∗

DME2 3 840.51∗

DME3 5 861.17∗

DME4(MDS) 6 861.35∗

Note: ∗ Significant at 5% level.

DS �
�
���

@
@
@@R

SDS1
(DLDPS)

DMEr−1

(MDS)

-

- SDS2

DMEr−2
-

-

· · ·

· · ·

-

- SDSr−1

(QDS)

DME1

(DME)

Figure 1: Relationships among models (A→ B indicates that model A implies
model B).
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