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Abstract. We consider roots of a generalized Lens polynomial L(z, z̄) =
z̄mq(z)−p(z) and also harmonically splitting Lens type polynomial Lhs(z, z̄) =
r(z̄)q(z) − p(z) with deg q(z) = n, deg p(z) ≤ n and deg r(z̄) = m. We have
shown that there exists a harmonically splitting polynomial r(z̄)q(z) − p(z)
which takes 5n+m− 6 roots, using a bifurcation family of polynomial. In this
note, we show that this number of roots can be taken by a generalized Lens
polynomial z̄mq(z) − p(z) after a slight modification of the bifurcation family
of a Rhie polynomial.
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§1. Introduction

Consider a mixed polynomial of one variable f(z, z̄) =
∑

ν,µ aν,µz
ν z̄µ. We

consider the number of roots of f = 0. Assume that z = α is an isolated zero
of f = 0. Put f(z, z̄) = g(x, y) + ih(x, y) with z = x+ iy where g = ℜ(f) and
h = ℑ(f). We call α a positive simple root (respectively a negative simple
root), if the Jacobian J(g, h) is positive (resp. negative) at z = α.

1.1. Number of roots with sign

Let f(z, z̄) be a given mixed polynomial of one variable, we consider the fil-
tration by the degree:

f(z, z̄) = fd(z, z̄) + fd−1(z, z̄) + · · ·+ f0(z, z̄).

Here fℓ(z, z̄) :=
∑

ν+µ=ℓ cν,µz
ν z̄µ. We consider the case fd(z, z̄) = znz̄m with

n +m = d. The total number of roots of f(z, z̄) = 0 with sign is denoted by
β(f). Under the above assumption, β(f) = n−m by Theorem 20, [6].
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1.2. Number of roots without the sign

We assume that roots of f(z, z̄) = 0 are all simple. The number of roots with-
out considering the sign is denoted by ρ(f). Note that ρ(f) is not described
by the highest degree part fd, which was the case for β(f). Consider a mixed
polynomial f(z, z̄) =

∑
ν,µ aν,µz

ν z̄µ. We use the definitions

degz f := max{ν | aν,µ ̸= 0}
degz̄ f := max{µ | aν,µ ̸= 0}
deg f := max{µ+ ν | aν,µ ̸= 0}

degz f, degz̄ f, deg f are called the holomorphic degree , the anti-holomorphic
degree and the mixed degree of f respectively. We consider the following sub-
classes of mixed polynomials:

L(n+m;n,m) := {f(z, z̄) = z̄mq(z)− p(z) | degz q = n, degz p ≤ n},
Lhs(n+m;n,m) := {f(z, z̄) = r(z̄)q(z)− p(z) |degz̄ r(z̄) = m,

degz q = n, degz p ≤ n},
M(n+m;n,m) := {f(z, z̄) | deg f = n+m, degz f = n, degz̄ f = m}.

where p(z), q(z) ∈ C[z], r(z̄) ∈ C[z̄]. Here z is an affine coordinate of C
but we do not fix z. So, a mixed polynomial f(u, ū) is called a generalized
Lens polynomial or a harmonically splitting Lens type polynomial if f takes
the above form under some affine coordinate u = z + c. We have canonical
inclusions:

L(n+m;n,m) ⊂ Lhs(n+m;n,m) ⊂M(n+m;n,m).

The class L(n +m;n,m), Lhs(n +m;n,m) corresponds to the numerators of
harmonic functions

z̄m − p(z)

q(z)
, r(z̄)− p(z)

q(z)
.

In particular, L(n+1;n, 1) corresponds to the lens equation. We call z̄mq(z)−
p(z) a generalized lens polynomial and and r(z̄)q(z) − p(z) a harmonically
splitting lens type polynomial respectively.

1.3. Lens equation

The following equation is known as the lens equation.

L(z, z̄) = z̄ −
n∑

i=1

σi
z − αi

= 0, σi, αi ∈ C∗.(1.1)
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We identify the left side rational function with the mixed polynomial given by
its numerator

L̃(z, z̄) := L(z, z̄)
n∏

i=1

(z − αi) ∈M(n+ 1;n, 1).

Theorem 1. (Khavinson-Neumann [2]) The number of roots of L or L̃ is
bounded by 5n− 5 for n ≥ 2.

Rhie gave an explicit polynomial which takes this bound 5n−5 in [8]. Thus
this bound is optimal. On the other hand, ρ(L) ≡ n − 1 mod 2 by Theorem
20, [6].

Theorem 2. (P. Bleher, Y. Homma, L. Ji and P. Roeder [1] ) The set of
possible values of ρ(f) for f ∈ L(n+1, n, 1) is equal to {n−1, n+1, · · · , 5n−5}.

1.3.1. Motivation

The moduli space of smooth complex analytic projective hypersurfaces in Pn

of a given degree is connected and thus the topology does not depend on a
particular hypersurface. But the situation for mixed hypersutfaces is different.
The moduli space of smooth mixed hypersurfaces of given polar radial degrees
are not connected. Thus to know the number of connected components is
very important. The moduli spaces L(n+m;n,m), Lhs(n+m;n,m),M(n+
m;n,m) corresponds to subspaces of the moduli spaces of mixed homogeneous
polynomials of two variables by the correspondence

f(z, z̄) 7→ F (z1, z2, z̄1, z̄2) := f(z1/z2, z̄1/z̄2)z
n
2 z̄

m
2 .

For further detail, we refer §2 of [4]. Two mixed polynomials of the same
moduli space with different number of zeros belongs to different components
of the moduli of mixed homogeneous polynomials and they have different
topologies. Thus to know the possible number of zeros is very important from
this point of view. Also for a given mixed homogeneous polynomial F (z, z̄) of
two variables, we can take the following join operation for any integer ℓ > 0,

G(z,w, z̄, w̄) = F (z, w̄) +

ℓ∑
i=1

wn
i w̄

m
i , w = (w1, . . . , wℓ).

Thus we can construct mixed homogeneous polynomials of any number of
variables with different topology and by the join theorem of [3]. The second
motivation of this note is to give an counter example of a question in [4]. Our
result shows the richness of the moduli space L(n+m;n,m) and also it might
be of some interest from astrophysicists, as the original Lens equations are
first studied by them.
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1.4. Bifurcation family

In [4], we have constructed a generalized Lens type polynomial which take
5(n − m)-roots if n > 3m and we have asked if this is an optimal upper
bound or not. On the other hand, for the space of harmonically splitting Lens
type polynomials Lhs(n+m;n,m), we studied a bifurcation family ψt(z, z̄) :=
tz̄m+ℓn(z, z̄) ∈ Lhs(n+m;n,m) starting from a given Lens polynomial ℓn(z, z̄)
with ρ(ℓn) = k. Let α1, . . . , αk be the roots of ℓn. The main result of this note
is the following.

Theorem 3. ([4]) ψt = 0 has exactly k+m−1 roots for small t. Furthermore
k roots of them are near each αj with the same sign and m−1 roots are newly
born roots bifurcated from z = ∞. These new roots are negative roots.

§2. Proof of main result

2.1. Modification of the bifurcation family and the main result

In this note, we answer the above question negatively. In fact, we modify
the above bifurcation family to prove the same assertion for generalized Lens
polynomials. We start from an arbitrary Lens type polynomial with only
simple roots:

ℓn(z, z̄) := z̄q(z)− p(z), degz q = n, degz p ≤ n, n ≥ 2.

Put k = ρ(ℓn) and let α1, . . . , αk be the roots of ℓn. Note that n−1 ≤ k ≤ 5n−5
and k ≡ n − 1 mod 2. Put γ be the coefficient of zn in q(z). Note that γ is
non-zero, as degz q(z) = n by the assumption. Consider its small perturbation
ϕt(z, z̄) of ℓn(z) in the space of generalized Lens polynomials L(n+m;n,m):

ϕt(z, z̄) :=
((tz̄ + γ)m − γm)

γm−1mt
q(z)− p(z), t ∈ C.(2.1)

Note that ϕ0(z, z̄) = ℓn(z, z̄) and for non-zero t, ϕt corresponds to the gener-
alized Lens equation

(tz̄ + γ)mq(z) = γm−1mtp(z) + γmq(z).

In fact, by the change of coordinate u = t̄z + γ̄, ϕt takes the expected form.

Theorem 4. For sufficiently small t ∈ C, |t| ≪ 1, ρ(ϕt) = k +m − 1. Fur-
thermore

1. k roots αj(t), j = 1, . . . , k are small deformation of αj and the sign of
αj(t) is the same as that of αj.
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2. m−1 new roots βa(t), a = 1, . . . ,m−1 are born at infinity i.e., βa(0) = ∞
and they are negative roots.

Taking ℓn(z, z̄) to be a Rhie’s polynomial, we get ρ(ϕt) = 5n+m− 6.

Proof. For sufficiently small t and for each root α of ℓn, by the continuity
of the roots, there exists a root α(t) of ϕt = 0 in a neighborhood of α with
α(0) = α and α(t) has the same orientation as α. For t ̸= 0, we know that
β(ϕt) = n − m for t ̸= 0 and β(ℓn) = n − 1. Thus it is clear that we need
at least m − 1 negative roots. Take a large R > 0 so that |αj | ≤ R/2 for
any j = 1, . . . , k. For any small ε > 0, there exists δ(ε) > 0 such that ϕt has
k roots near each αj(t), |t| ≤ δ(ε) with the same sign as αj in the original
equation ℓn = 0. We may assume that |αj(t) − αj | ≤ ε for j = 1, . . . , k and
there are no other roots of ϕt(z) = 0 in the disk DR = {z | |z| ≤ R}. On the
other hand, as β(ϕt) = n−m, t ̸= 0, we have the property n−m ≡ k−(m−1),
mod 2. Thus ϕt has at least m− 1 new negative roots outside of the disk DR.

We assert that ϕt obtains exactly m − 1 new negative roots near infinity.
To see this, we change the coordinate u = 1/z and dividing (2.1) by z̄mzn, we
get

ϕ̃t(u) :=
(t+ γū)m − γmūm

γm−1mt
q̃(u)− ūmp̃(u)(2.2)

where q̃, p̃ are polynomials defined as q̃(u) = unq(1/u), p̃(u) = unp(1/u). By
the asumption deg q(z) = n, we can write

q̃(u) = γ +
n∑

i=1

biu
i

We will show that for a sufficiently small t > 0, there exist exactly m−1 roots
u(t) which converges to 0 as t → 0. Put ϕ̃t,1, ϕ̃t,2 be the first and the second
term of (2.2). Putting u = vt for t ̸= 0, we can write ϕ̃t,1 as

ϕ̃t,1(v) := tm−1 (1 + v̄)m − v̄m

γm−1m
q̃(vt)(2.3)

= tm−1h(v)q̃(vt)(2.4)

where h(v) is a polynomial with a non-zero constant. h(v) = 0 has m − 1
simple roots, and we put them as v = β1, . . . , βm−1. Consider the disk at
infinity and its subset W :

∆ := {u | |u| ≤ 1/R}, W := {u ∈ ∆ | |v − βj | ≥ δ, j = 1, . . . ,m− 1}.

On ∆, we estimate 1/M ≤ |q̃(vt)| ≤ M for some M > 0. Taking a small
number δ > 0, we can make∣∣∣∣(1 + v̄)m − v̄m

γm−1m
q̃(vt)

∣∣∣∣ ≥M ′δ, v ∈W
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with some constant M ′ > 0. Or equivalently,

|ϕt,1(u)| ≥ |t|m−1M ′δ, u ∈W.

Taking t small, we can make the second term of (2.2) as small as possible on
∆ comparing with |t|m−1. More precisely, there exists a positive number M ′′

such that
|ϕt,2(u)| ≤M ′′|t|m.

Thus if |t| is sufficiently small,

|ψ̃t(v)| ≥
M ′

2
|t|m−1, for v ∈W

which implies ψ̃t(v) = 0 has one simple negative root in Dj := {v | |v−βj | ≤ δ}
for j = 1, . . . , j and no root on W . The negativity of these m− 1 new roots is
clear as β(ϕt) = n−m and β(ℓn) = n− 1. This completes the proof.

2.2. Possible values of ρ

Assume that n ≥ m. Combining Theorem 2, we can see that

Corollary 5. ρ(f) for f ∈ L(n + m;n,m) can takes the values {n + m −
2, . . . , 5n+m− 6}.

As for the lower values {n−m, . . . , n+m− 4}, we know that these values
can be taken by some polynomials inM(n+m;n,m). We do not know if these
values can be taken in L(n+m;n,m) or Lhs(n+m;n,m) except n−m. For
n−m, it can be taken by

f(z, z̄) = z̄mzn − 1.

2.3. Example

Consider

f(z, z̄) =
( z̄

100
+ 1

)3
(
z3 − 1

8

)
− z3 − 3z2

100
+

12513

100000
.

This is a bifurcation of a Rhie type polynomial ℓ3(z, z̄) with ρ(ℓ3) = 10 where

ℓ3(z, z̄) =
3

100
z̄(z3 − 1

8
)− z3 − 3z2

100
+

12513

100000
= 0.

Let ℜf and ℑf be the real and imaginary part of f . The roots of f = 0 can
be read as the intersection of two real curves ℜf = ℑf = 0. In Fugure 1, the
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left graph is ℑf(x, v) = 0 with v = y + 1 and the right side is the graph of
ℜf · ℑf = 0. The new component is from ℜf = 0 and we see 10 roots in the
graph. Actually there are 12 roots which are approximately given as follows.

(2.5) w1 = [−150.0,−86.59676649], w2 = [−150.0, 86.59676649],

[−0.5514593683,−0.9052203300], [−0.9351977551, 0.0], [0.4816513190,

− 0.7932837118], [−0.1346963314, 0.0], [0.06354099264,−0.1052498909],

[0.007544143902, 0.0], [0.06354099264, 0.1052498909], [−0.5514593683,

0.9052203300], [1.052348943, 0.0], [0.4816513190, 0.7932837118].

where [a, b] := a + bi and two roots w1, w2 are not in the figure. These two
roots w1, w2 are born from the infinity under the bifurcation family. The other
10 roots are deformations from the 10 roots of Rhie’s polynomial.

Figure 1: Left:ℑf = 0, Right:ℜf · ℑf = 0

For the practical computation of the roots, we used the following program
for maple which is kindly offered from Pho Duc Tai, Vietnam National Uni-
versity.

Pho’s program to compute roots of mixed polynomial on Maple:
fsol3 := proc (f, z)

local aa, a, b, ff, f1, f2, h, i, j, k, s, temp;

print(Factorization of Input = factor(f));

ff := factors(f)[2];

temp := {};
for k to nops(ff) do

if 1 < ff[k][2] then

RETURN(printf("Input is not squarefree.

Please solve each factor.")) end if;
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assume(a, real); assume(b, real);

h := expand(subs(z = a+I*b, ff[k][1]));

f1 := Re(h);

f2 := Im(h);

aa := RootFinding[Isolate](a[f1, f2], [a, b]);

temp := `union`(temp, seq([[op(aa[i][1])][2], [op(aa[i][2])][2]],

i = 1 .. nops(aa))) end do;

RETURN([op(temp)]) end proc
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