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Abstract. We study the strong instability of ground-state standing waves
et p,,(x) for N-dimensional nonlinear Schrédinger equations with focusing dou-
ble power nonlinearity. One is L2-subcritical, and the other is L2-supercritical.
The strong instability of standing waves with positive energy was proven by
Ohta and Yamaguchi (2015). In this paper, we improve the previous result,
that is, we prove that if 935, (63)|a=1 < 0, the standing wave is strongly un-
stable, where S, is the action, and ¢J(z) := A/?¢,,(Az) is the L*-invariant
scaling.
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8§1. Introduction

In this paper, we consider the nonlinear Schrodinger equation with double
power nonlinearity

(NLS) i0u = —Au — aluP"tu — blu|f u,  (t,x) € R x RY,
where
(1.1) N eN >0, b>0, 1< <1+4< <1+ 1

N ) a ) ) p N q N—27

and u: R x RV — C is the unknown function of (¢,z) € R x RY. Here,
1+ 4/(N — 2) stands for oo if N = 1 or 2. Eq. (NLS) appears in various
regions of mathematical physics (see [1, 6, 20] and references therein).

The Cauchy problem for (NLS) is locally well-posed in the energy space
HY(RYN) (see, e.g., [4, 9]), that is, for each ug € H'(RY), there exist the
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maximal lifespan Tiax = Tmax(u0) € (0, 00] and a unique solution u of (NLS)
belonging to C([0, Tinax ), H*(R™)) with u(0) = ug such that if Ty < 00, then
IVu(t)||2 — 0o as t / Tiax. In the case Tiax < 00, we say that the solution
u(t) blows up in finite time. Moreover, (NLS) satisfies the two conservation
laws

E(u(t)) = E(uo), |lu(t)|lz2 = [[uoll 2
for all ¢t € [0, Tiax), where E is the energy defined by

E(v) =3IVl = o= Tlollzen = ﬁ“vniﬁl'

Furthermore, if
(1.2) up € ¥ = {v e HY(RY) | ||zv|| 2 < oo},
then the solution wu(t) of (NLS) with u(0) = ug belongs to C([0, Tax), &) and
satisfies the virial identity
d? 9
(1.3 L leu(t) 2 = 8Q((1)
for all ¢ € [0, Tinax) (see [4, Section 6.5]), where v*(z) = AN/2u(Az) and

(14) Q) = ASu(vY)r=

_ 2 aN(p—1) +1 bN(q—1) +1
= |IVoll7. — m”“”iwl - m”””%wl-

Eq. (NLS) has standing wave solutions of the form e®“!¢(z), where w > 0
and ¢ € H'(RY) is a nontrivial solution of the stationary equation

(1.5) —A¢+wé — a6 —blel Tl =0, zeRY.
Eq. (1.5) can be rewritten as S/ (¢) = 0, where S, is the action defined by
Su(v) = B(v) + 5 vl

1 2 W a ptl b g+1
= 310l + Sl - Sl - ol

It is known that if w > 0, then (1.5) has ground state solutions, that is, the
set

Su(¢) = nf{Su,(v) | ¥ # 0, S,,(v) = 0}

of nontrivial solutions to (1.5) with the minimal action is not empty (see, e.g.,
[3, 12, 19]).
The stability and instability of standing waves are defined as follows:

G, = {¢ e H'(RY)

¢ #0, S.,(¢) =0, }
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Definition 1.1. Let ¢ € H'(RY) be a nontrivial solution of (1.5).

e We say that the standing wave solution e®'¢ of (NLS) is stable if for each
e > 0, there exists § > 0 such that if ug € H*(RY) satisfies ||ug— || g1 <
J, then the solution u(t) of (NLS) with u(0) = ug exists globally in time
and satisfies

su inf u(t) — e?o(- — <e.
D o lu(t) — o = y)llm

e We say that the standing wave solution e™!¢ of (NLS) is unstable if it
is not stable.

e We say that the standing wave solution !¢ of (NLS) is strongly unsta-
ble if for each £ > 0, there exists ug € H'(R"Y) such that ||ug— ¢/ < ¢,
and the solution u(t) of (NLS) with u(0) = ug blows up in finite time.

In this paper, we study the strong instability of the standing wave solution
e, for (NLS), where w > 0, and ¢, € G, is a ground state.

In the single-power L2-supercritical or L?-critical case when a = 0, b > 0,
and 1 +4/N < ¢ < 1+ 4/(N — 2), Berestycki and Cazenave [2] and Wein-
stein [21] proved that the standing wave is strongly unstable for any w > 0
by using variational arguments and the virial identity. On the other hand, in
the L2?-subcritical case when @ > 0, b = 0, and 1 < p < 1 +4/N, Cazenave
and Lions [5] proved that the standing wave is stable for any w > 0. They
show that the ground state is the unique minimizer of the action under the
mass constraint [|v]|z2 = ||¢w||z2 up to symmetries and that the minimizing
sequence in the sense that S, (v,) — Su(¢Pw) and ||vn||2 = ||Pw||r2 is compact
up to translation.

In the double power case when (1.1) is assumed, the argument of Ohta [14]
showed the instability of standing waves for sufficiently large w > 0. In [14], it
was proven that if 935, (62)[x=1 < 0, then the standing wave is unstable, where
vM(x) = AV/20(\x) is the scaling, which does not change the L?-norm. The
assumption 925,,(¢})|x=1 < 0 means that 9y¢|r—1 is an unstable direction,
and that the ground state ¢,, is a saddle point of the action on the hypersurface
{ve H'RY) | |lvllz2 = |¢wllz2}. On the other hand, Fukuizumi [8] proved the
stability of standing waves for sufficiently small w > 0 showing some coercivity
of the linearized operator around the ground state. See also [13, 15] for the
stability and instability in one dimensional case. The strong instability of
standing waves for sufficiently large w was proven by Ohta and Yamaguchi [17].
In [17], they proved the strong instability of standing waves with positive
energy F(¢,) > 0 by using and modifying the idea of Zhang [22] and Le
Coz [10] (see also [18] for related works).
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Recently, for the nonlinear Schrédinger equation with harmonic potential
(1.6) i0u = —Au+ |z]2u — [u|f"tu,  (t,x) € R x RN

with 14+4/N < q < 1+4/(N —2), Ohta [16] proved that if 935, (¢})[r=1 < 0,
then the standing wave is strongly unstable, where S, is the corresponding
action. This assumption is the same one as in Ohta [14]. More recently, Fukaya
and Ohta [7] proved the strong instability of standing waves for nonlinear
Schrédinger equation with an attractive inverse power potential

(1.7) i0u = —Au — ﬁu —|u|T ,  (t,z) € R x RY
with v > 0,0 < o < min{2, N}, and 1 +4/N < ¢ <1+4/(N — 2) under the
same assumption 93S,(¢))|x=1 < 0 as in [16] by using the idea of Ohta [16]
with some modifications. The assumption 93S,,(6))|x=1 < 0 indicates that
|L¢L>A\J||L2 = ||pwllz2; gw(qsi\)) < gw(¢w)7 and Q((Z%) < 0 for all A > 1, where
Q@ is the functional arising in the virial identity. In general, the assumption
92S5.,(42)|a=1 < 0 is a local property around ¢,. In case of (1.6) or (1.7),
however, this assumption gives global information in some sense thanks to the
homogeneity of the potential energy. Due to this assumption, the inequality
Q(¢}) < 0 leads to the uniform estimate SUDL[0, Thnar) Q(ux(t)) < 0, where
uy(t) is the solution with initial data ¢},. This uniform estimate combined
with the virial identity implies the strong instability of the standing wave.
For (NLS), the strong instability of standing waves with negative energy
was not known. The aim of this paper is to prove the strong instability under
the same assumption 935,,(¢})[x=1 < 0 as in [7, 16]. Now, we state our main
result.

Theorem 1.2. Assume (1.1), w > 0, and that the ground state ¢, € G,
satisfies 02S,())|r=1 < 0, where ¢}\(x) = AN/2¢,(A\x). Then the standing
wave solution '@, of (NLS) is strongly unstable.

Remark 1.3. In the case (1.1), E(¢,) > 0 implies 925,,(¢})[r=1 < 0. Indeed,
let = N(p—1)/2and 8 = N(g—1)/2. Then since Q(¢.,) = OrSu(¢})|x=1 =0
and 0 < a < 2 < 3, we have

1 bA(S — 1
035.(¢Dlnmt = IVl — “22 Dozt - O Dy i,
~ (a+1)Q(6) - 20B(g) — LEZ2E =)y et

qg+1
<0.

Therefore, Theorem 1.2 is an improvement of the result of Ohta and Yam-
aguchi [17].
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To prove Theorem 1.2, we introduce the set

(18)  Byi= { e H'(RY) f{<(>)<< %(dw, g)(|7|f)z<go||¢w||m,}7
where
(1.9) K, (v) = 0x\S,(A\v)|x=1

1 1
= |Voll72 + wllvll72 — allollfe = bllollfi
is the Nehari functional. Then we obtain the following blowup result.

Theorem 1.4. Assume (1.1), w > 0, and that the ground state ¢, € G,
satisfies 038, (6))a=1 < 0. Then the set B, is invariant under the flow of
(NLS). Moreover, if ug € B, N'X, then the solution u(t) of (NLS) with
u(0) = ug blows up in finite time.

Theorem 1.2 follows from Theorem 1.4 because the scaling of the ground
state ¢, belongs to B, N'Y for all A > 1 (see Section 3 below).

The proof of Theorem 1.4 is based on the variational argument in Ohta [16]
and Fukaya and Ohta [7]. Firstly, we derive the key estimate Q(v)/2 <
Sw(v) — Su(¢w) for all v € B, (Lemma 2.1 below). Then by using the conser-
vation laws, the variational characterization of the ground state by the Nehari
functional, and the key estimate, we show the invariance of B, under the
flow of (NLS) (Lemma 2.2 below). Combining the virial identity with the
key estimate, finally, we can obtain the blowup of solutions to (NLS) with
initial data belonging to B, NY by the classical argument as in Berestycki and
Cazenave [2].

We prove the key estimate Q/2 < S,, — S, (¢w) on B, following the proof
of the same estimate for (1.7) in [7, Lemma 3.2]. The proof relies on the
variational characterization of the ground state by the Nehari functional

Sw(¢w) =inf{S,(v) |v #0, K,(v) =0}

and the property of the graph of the function A ~ S, (v*). Note that the
graph of S,,(v}) for (NLS) has the same property as that for (1.7). In the case
of (1.7), since the action S, can be expressed by use of the Nehari functional
K, (v) := 0xSy,(Av)|r=1 as

& 1~ q—1 +1
(1.10) Su(v) = §Kw(v) + mllv\liw,
the above variational characterization can be written by use of L¢t!'-norm.
Therefore, in [7], not only the action but also L¢"1-norm was used effectively.
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On the other hand, in the case of (NLS), the action S, cannot be expressed
as (1.10) because (NLS) has double power nonlinearity. Due to this fact, we
can not directly apply the proof in [7]. However, in this case, we see that the
action can be expressed as

Su(v) = 3Ku(v) + 3F(0),

where . b )

Fo) = Sz, + =it
Therefore, we can use F instead of L9"'-norm. By applying the argument in
[7] using F', although the calculation processes differ from that in [7], we can
prove the key estimate above.

At the end of this section, we remark that the assumption 93.5,,(¢%})[x=1 < 0
is not a necessary condition for the instability of standing waves (see [18, Sec-
tion 4] for related remarks). However, in [7, 16] and this paper, this assumption
plays a very important role in the proof of the strong instability of standing
waves. It is still an open problem whether the unstable standing wave is
strongly unstable or not if the assumption 025, (4))|x=1 < 0 is broken.

The rest of this paper is organized as follows: In Section 2, we prove Theo-
rem 1.4, that is, we prove that if 925,,(¢7))|x=1 < 0, then the solution of (NLS)
with u(0) = up € B, N'Y blows up in finite time. In Section 3, we prove the
strong instability of standing waves by using Theorem 1.4.

§2. Blowup

In this section, we prove Theorem 1.4. Throughout this section, we assume
(1.1) and w > 0. Recall that the ground state ¢, € G, satisfies K (¢,) = 0
and the variational characterization

(2.1) Su(¢o) = inf{Su(v) | v £ 0, Ku(v) =0}

(see, e.g., [11, 12]), where K|, is the Nehari functional defined in (1.9). Note
that the action S, is expressed as

(2.2) Sw() = %Kw(v) + %F(v),

where ( D " 0
a\p — p+1 q— q+1
Flv)= —— '

Therefore, the characterization (2.1) is rewritten as

(2.3) F(¢y) = inf {F(v) | v #0, Ky(v)=0}.
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bt Np-1) . Ng- 1
- b= . q—
T
Using this notation, we have
22 w a\ bA? 41
Su(v?) = EIIWH%z + §Ilv\liz - Toer — ol Tasas
1 1
K,(vY) = X[ Vol32 + wlvll72 — ax*|lolf5 — bA°lol|955,
N pe®) = X s, + b” B gt
2 p+ 1 Lp+1 La+1»
+1
Q(v) = ”V”H]ﬂ - Ul p+1 — 7” H%Hla
aa( ) 1 b3(B — 1) 1
S0 r=1 = | VV]|72 — [ QTHUII%LM

where v*(z) = AN/2y(Az). Note that by S’ (4,,) = 0, we have

Kw(d)w) = <Sa/u(¢w)v¢w> =0, Q(¢w) = <S:/u(¢w)78)\¢i\;|>\:1> =
Firstly, we prove the key lemma in the proof.

Lemma 2.1. Assume that ¢, € G, satisfies 93S,(¢))|x=1 < 0. Let v €
HY(RN) satisfy

v#0, [l7: < llgulfz Ku(v) <0, Qv) <0.

Then
Q(v)
2
Proof. Since limy\ o Kuy(v?) = wl|v[|2, > 0 and K, (v) < 0, there exists Ag €
(0, 1] such that K, (v*) = 0. By the definition of the scaling v* and (2.3), we
have

< Sw(v) - Sw(¢w)

(24) [0l 22 = 0]z < [ldwllze,
N N aa\d L BB )
(2.5) 5 F(dw) < EF(UAO) = pﬁ\l vl + S Elaee

Now, we define
)\2
FO) = Su(vh) = 5Q(v)

w a al’? 11 b BA? 11
= 5”””%2 - p+1 (Aa - 2) ”U||I£p+1 - m ()\ﬂ B ||U”qu+1-
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for A € (0,1]. If we have f(A\o) < f(1), then by (2.1) and Q(v) < 0, we obtain

26)  Sul0) € S.0™) < Su(0™) — Q) < Su(w) -

This is the desired inequality.

In what follows, we prove the inequality f(Ag) < f(1). This is equivalent
to

@) el < L 2 ARo2e8) e
’ Lret = g4 1 a3 —2)\¢ —a+2 Lat+1:
Since
p+l 2 2 2 2 g+1 2
2.8 rroy 2 2 2 9. 2
(2.8) o +ﬂ N+5+a 5 + =,
we have
Ko(bw) + —025u(@)har — (14— ) Q(b0)
w\Pw alB)\w w)IA=1 Oé,B w
9 ac (p+1 2 +1
—llouls - 2 (P4 S -1 ) el
bﬁ q+1 2 4 +1
2 - 1= ol
- (B - S e,

_ 2 f(etl 2 . 4\N
— wllgullZ: <B +2 a5>2F(¢w).

Therefore, by K, (¢w) = Q(d,) = 0 and the assumption 925,,(¢})[x=1 < 0,

we obtain
+1 2 4 \ N
2 (T2 A N,
("]H(Z)UJHL2 — ( B + Qa C!B 2 ((b )

Combining (2.4) and (2.5) with this inequality and using (2.8) again, we have

9 a 1
wlv||72 < +ﬁ ﬁ

b 1
<b+ s (25 —af — 4)> AgllquLLl-

(20— af —4) ) X [olZiL,
» )
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Moreover, it follows from K, (v*) = 0, Q(v) < 0, and (2.9) that

+1 2— — - +1
alloll7hi = AVollZe + A7 wllvlFe — A0 llolfers

b
9 +1 +1
< (2l szﬂ 2ol

+ <a + m : B (20& —aff — 4)) ||U||i;§i1
b ]. —Q 1 (0%
i <"+ ﬁ — (28— afi - 4>> X5l = 026 el
a —a
_ (a+ Ot (a—aB 4+ atR )) o]z,
b 1 —a —a 1
T ((26—(15—4) Ny + apX] )HquLLu
and thus
a —x 1
] E (045—1—4—204—045)\3 ) HUHZE:H
b 1 a a
i (28 aB =A™+ aBrT™) ollfih.

Since af +4 — 2a — 04/6’)\(2)_0‘ >4 — 2« > 0, this is rewritten as
b B2B—aB—4N *+afA° o]t
L1 S q+1 alaf +4 —2a —afr3™®) Lot
In view of (2.7) and (2.10), it suffices to show that
B(28 — aff — AT ap2AE _ AT — A2 — 2+ 5
alaf+4—2a —afA27) T aXd 20 —a+2
This inequality follows if we have
() = a2V — BAZ =2+ B)(af + 4 — 2a — aBAZY)
A = (@A2 — 2X% — a 1 2)\B—a

2
— 328 —af —4) — j‘f .

(2.10)

>0
for all A € (0,1). Since limy ~; g1(A) = 0, it is enough to show that g} (\) <0
for all A € (0,1). A direct calculation shows
)\a—,B—f—l
/ )\ — «
9N = e —ay2e
((2=a)(B—2) = 28X+ (af — 2a+ 4)A7?)
(202 = )N = aB(B — a)A? +26(8 = 2)A% — (2 — @) (5 — 2)(8 — a)).
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Now, we put
hA) = (2—a)(f—2) — 28\ + (af — 2a + 4\~

Since h(1) =0 and for A € (0,1)

WA ==2aBA° = A7) —42-a)A? <0,
we have h(A) > 0. Thus, we only have to show that
92(N) = 20(2— )X —aB(B - )X’ +28(8 - 2)A* - (2—-a)(B-2)(B—a) <0
for all A € (0,1). Since g2(1) = 0, it suffices to show that

g(N) = 20827 (2= @A = (B— )N+ 8- 2) > 0

for all A € (0,1). This is equivalent to

g3(\) =2 =)V —(B—a) 4+ 53 -2>0.
Since g3(1) = 0, and

BN = —(8— )2 — )N (1 = 32) <0
for all A € (0,1), we obtain gz(A) > 0 for all A € (0,1). This implies f(Ag) <
f(1). Thus, the inequality (2.6) follows. This completes the proof. O
Next, we show that the set B,, given in (1.8) is invariant under the flow of

(NLS).

Lemma 2.2. Let uy € B,,. Then the solution u(t) of (NLS) with u(0) = ug
belongs to By, for allt € [0, Tiax)-

Proof. Firstly, since S, and || - |2 are the conserved quantities of (NLS), we
have S, (u(t)) = Sy (up) < Sw(dw) and ||u(t)||z2 = ||uol|r2 < ||¢w]|r2 for all t €
[0, Tiax). Then by (2.1), we have K, (u(t)) # 0 for all ¢ € [0, Tinax). Moreover,
K, (up) < 0 and the continuity of the solution u(t) imply K, (u(t)) < 0 for all
t €0, Tinax)-

Finally, we show that Q(u(t)) < 0 for all ¢t € [0, Tinax). If not, there exists
to € (0, Thax) such that Q(u(tp)) = 0. Then by Lemma 2.1 and S, (u(tp)) <
Sw(Pw), we have Q(u(tp)) < 0. This is a contradiction. This completes the
proof. O

Finally, we prove the blowup result.

Proof of Theorem 1.4. By the virial identity (1.3), Lemmas 2.1 and 2.2, and
the conservation of S,,, we have

d2
@\IxU(t)II%z = 8Q(u(t))
< 16(Sw(u(t)) — Su(dw)) = 16(Sw(uo) — Suw(dw)) <0
for all t € [0, Tiax). This implies Tipax < 0o. This completes the proof. O
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83. Strong instability

In this section, we prove Theorem 1.2 using Theorem 1.4. Throughout this
section, we impose the assumption of Theorem 1.2.

We remark that
1 1
wa(vA) + §F(v’\)

S, (v = 5

)\2 w a\® +1 b\ +1
= 2 IV0ls + Lo - 25 ezt - el

Q1) = NdrS.(v?),
Qo) = NSw(d}) o1 =0, 035.(63)|a=1 < 0.

Lemma 3.1. Assume that ¢, € G., satisfies 93S.,(¢7)|x=1 < 0. Then ¢}, € B,
for all X > 1.

Proof. First, by the definition of the scaling v*, we have ||¢}|| 2 = ||w]| 2 for
all A > 1.

Next, we show S,,(¢7)) < S.(¢.) and Q(¢))) < 0 for all A > 1. Note that the
function S, (¢}) of A has the form S, (¢})) = AN2+ B — CA* — D)’ with some
positive coefficients A, B, C, and D. By 0xS.(¢})|[a=1 = 0, the assumption
9%5.,(¢2)|x=1 < 0 can be rewritten as —B(3 —2)D < —a(2 — a)C. Using this,
we have

035u(00) = ala = 1)(2 = )ON*"? = B(B = 1)(8 — 2) DA
< —a(2 — a)re3 ((ﬁ SN (- 1)) C <0

for all A > 1. Therefore, it follows that 935, (¢)) < 0, OxSw(¢)) < 0, and thus
Su(#)) < Su(dy) for all X > 1. Moreover, we have d\Q(#)) = xS, (¢)) +
A92S,(¢) < 0 for all A > 1, which implies Q(¢4) < 0.

Finally, we obtain

Kw((ﬁu).\z) = 2Sw(¢u).\z) - F((bi\)) < 2Sw(¢w) - F(¢w) =0
for all A > 1. This completes the proof. O
Now, we prove our main theorem.

Proof of Theorem 1.2. By an analogous argument in the proof of [4, Theo-
rem 8.1.1], we see that ¢, decays exponentially. This implies ¢, € X, where
Y is the weighted space defined in (1.2). Therefore, combining this with
Lemma 3.1, we have qS;\, € B,NX for all A > 1. Thus, Theorem 1.4 im-
plies that for any A > 1, the solution u(t) of (NLS) with u(0) = ¢} blows up
in finite time. Moreover, we obtain ¢, — ¢, in H'(RY) as A\, 1. Hence, the
standing wave solution e“!¢,, of (NLS) is strongly unstable. O
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